clk: x86: Rename clk-lpt to more specific clk-lpss-atom
[platform/kernel/linux-rpi.git] / kernel / audit_tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "audit.h"
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
9
10 struct audit_tree;
11 struct audit_chunk;
12
13 struct audit_tree {
14         refcount_t count;
15         int goner;
16         struct audit_chunk *root;
17         struct list_head chunks;
18         struct list_head rules;
19         struct list_head list;
20         struct list_head same_root;
21         struct rcu_head head;
22         char pathname[];
23 };
24
25 struct audit_chunk {
26         struct list_head hash;
27         unsigned long key;
28         struct fsnotify_mark *mark;
29         struct list_head trees;         /* with root here */
30         int count;
31         atomic_long_t refs;
32         struct rcu_head head;
33         struct node {
34                 struct list_head list;
35                 struct audit_tree *owner;
36                 unsigned index;         /* index; upper bit indicates 'will prune' */
37         } owners[];
38 };
39
40 struct audit_tree_mark {
41         struct fsnotify_mark mark;
42         struct audit_chunk *chunk;
43 };
44
45 static LIST_HEAD(tree_list);
46 static LIST_HEAD(prune_list);
47 static struct task_struct *prune_thread;
48
49 /*
50  * One struct chunk is attached to each inode of interest through
51  * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
52  * untagging, the mark is stable as long as there is chunk attached. The
53  * association between mark and chunk is protected by hash_lock and
54  * audit_tree_group->mark_mutex. Thus as long as we hold
55  * audit_tree_group->mark_mutex and check that the mark is alive by
56  * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
57  * the current chunk.
58  *
59  * Rules have pointer to struct audit_tree.
60  * Rules have struct list_head rlist forming a list of rules over
61  * the same tree.
62  * References to struct chunk are collected at audit_inode{,_child}()
63  * time and used in AUDIT_TREE rule matching.
64  * These references are dropped at the same time we are calling
65  * audit_free_names(), etc.
66  *
67  * Cyclic lists galore:
68  * tree.chunks anchors chunk.owners[].list                      hash_lock
69  * tree.rules anchors rule.rlist                                audit_filter_mutex
70  * chunk.trees anchors tree.same_root                           hash_lock
71  * chunk.hash is a hash with middle bits of watch.inode as
72  * a hash function.                                             RCU, hash_lock
73  *
74  * tree is refcounted; one reference for "some rules on rules_list refer to
75  * it", one for each chunk with pointer to it.
76  *
77  * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
78  * one chunk reference. This reference is dropped either when a mark is going
79  * to be freed (corresponding inode goes away) or when chunk attached to the
80  * mark gets replaced. This reference must be dropped using
81  * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
82  * grace period as it protects RCU readers of the hash table.
83  *
84  * node.index allows to get from node.list to containing chunk.
85  * MSB of that sucker is stolen to mark taggings that we might have to
86  * revert - several operations have very unpleasant cleanup logics and
87  * that makes a difference.  Some.
88  */
89
90 static struct fsnotify_group *audit_tree_group;
91 static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
92
93 static struct audit_tree *alloc_tree(const char *s)
94 {
95         struct audit_tree *tree;
96
97         tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
98         if (tree) {
99                 refcount_set(&tree->count, 1);
100                 tree->goner = 0;
101                 INIT_LIST_HEAD(&tree->chunks);
102                 INIT_LIST_HEAD(&tree->rules);
103                 INIT_LIST_HEAD(&tree->list);
104                 INIT_LIST_HEAD(&tree->same_root);
105                 tree->root = NULL;
106                 strcpy(tree->pathname, s);
107         }
108         return tree;
109 }
110
111 static inline void get_tree(struct audit_tree *tree)
112 {
113         refcount_inc(&tree->count);
114 }
115
116 static inline void put_tree(struct audit_tree *tree)
117 {
118         if (refcount_dec_and_test(&tree->count))
119                 kfree_rcu(tree, head);
120 }
121
122 /* to avoid bringing the entire thing in audit.h */
123 const char *audit_tree_path(struct audit_tree *tree)
124 {
125         return tree->pathname;
126 }
127
128 static void free_chunk(struct audit_chunk *chunk)
129 {
130         int i;
131
132         for (i = 0; i < chunk->count; i++) {
133                 if (chunk->owners[i].owner)
134                         put_tree(chunk->owners[i].owner);
135         }
136         kfree(chunk);
137 }
138
139 void audit_put_chunk(struct audit_chunk *chunk)
140 {
141         if (atomic_long_dec_and_test(&chunk->refs))
142                 free_chunk(chunk);
143 }
144
145 static void __put_chunk(struct rcu_head *rcu)
146 {
147         struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
148         audit_put_chunk(chunk);
149 }
150
151 /*
152  * Drop reference to the chunk that was held by the mark. This is the reference
153  * that gets dropped after we've removed the chunk from the hash table and we
154  * use it to make sure chunk cannot be freed before RCU grace period expires.
155  */
156 static void audit_mark_put_chunk(struct audit_chunk *chunk)
157 {
158         call_rcu(&chunk->head, __put_chunk);
159 }
160
161 static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
162 {
163         return container_of(mark, struct audit_tree_mark, mark);
164 }
165
166 static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
167 {
168         return audit_mark(mark)->chunk;
169 }
170
171 static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
172 {
173         kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
174 }
175
176 static struct fsnotify_mark *alloc_mark(void)
177 {
178         struct audit_tree_mark *amark;
179
180         amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
181         if (!amark)
182                 return NULL;
183         fsnotify_init_mark(&amark->mark, audit_tree_group);
184         amark->mark.mask = FS_IN_IGNORED;
185         return &amark->mark;
186 }
187
188 static struct audit_chunk *alloc_chunk(int count)
189 {
190         struct audit_chunk *chunk;
191         int i;
192
193         chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
194         if (!chunk)
195                 return NULL;
196
197         INIT_LIST_HEAD(&chunk->hash);
198         INIT_LIST_HEAD(&chunk->trees);
199         chunk->count = count;
200         atomic_long_set(&chunk->refs, 1);
201         for (i = 0; i < count; i++) {
202                 INIT_LIST_HEAD(&chunk->owners[i].list);
203                 chunk->owners[i].index = i;
204         }
205         return chunk;
206 }
207
208 enum {HASH_SIZE = 128};
209 static struct list_head chunk_hash_heads[HASH_SIZE];
210 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
211
212 /* Function to return search key in our hash from inode. */
213 static unsigned long inode_to_key(const struct inode *inode)
214 {
215         /* Use address pointed to by connector->obj as the key */
216         return (unsigned long)&inode->i_fsnotify_marks;
217 }
218
219 static inline struct list_head *chunk_hash(unsigned long key)
220 {
221         unsigned long n = key / L1_CACHE_BYTES;
222         return chunk_hash_heads + n % HASH_SIZE;
223 }
224
225 /* hash_lock & mark->group->mark_mutex is held by caller */
226 static void insert_hash(struct audit_chunk *chunk)
227 {
228         struct list_head *list;
229
230         /*
231          * Make sure chunk is fully initialized before making it visible in the
232          * hash. Pairs with a data dependency barrier in READ_ONCE() in
233          * audit_tree_lookup().
234          */
235         smp_wmb();
236         WARN_ON_ONCE(!chunk->key);
237         list = chunk_hash(chunk->key);
238         list_add_rcu(&chunk->hash, list);
239 }
240
241 /* called under rcu_read_lock */
242 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
243 {
244         unsigned long key = inode_to_key(inode);
245         struct list_head *list = chunk_hash(key);
246         struct audit_chunk *p;
247
248         list_for_each_entry_rcu(p, list, hash) {
249                 /*
250                  * We use a data dependency barrier in READ_ONCE() to make sure
251                  * the chunk we see is fully initialized.
252                  */
253                 if (READ_ONCE(p->key) == key) {
254                         atomic_long_inc(&p->refs);
255                         return p;
256                 }
257         }
258         return NULL;
259 }
260
261 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
262 {
263         int n;
264         for (n = 0; n < chunk->count; n++)
265                 if (chunk->owners[n].owner == tree)
266                         return true;
267         return false;
268 }
269
270 /* tagging and untagging inodes with trees */
271
272 static struct audit_chunk *find_chunk(struct node *p)
273 {
274         int index = p->index & ~(1U<<31);
275         p -= index;
276         return container_of(p, struct audit_chunk, owners[0]);
277 }
278
279 static void replace_mark_chunk(struct fsnotify_mark *mark,
280                                struct audit_chunk *chunk)
281 {
282         struct audit_chunk *old;
283
284         assert_spin_locked(&hash_lock);
285         old = mark_chunk(mark);
286         audit_mark(mark)->chunk = chunk;
287         if (chunk)
288                 chunk->mark = mark;
289         if (old)
290                 old->mark = NULL;
291 }
292
293 static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
294 {
295         struct audit_tree *owner;
296         int i, j;
297
298         new->key = old->key;
299         list_splice_init(&old->trees, &new->trees);
300         list_for_each_entry(owner, &new->trees, same_root)
301                 owner->root = new;
302         for (i = j = 0; j < old->count; i++, j++) {
303                 if (!old->owners[j].owner) {
304                         i--;
305                         continue;
306                 }
307                 owner = old->owners[j].owner;
308                 new->owners[i].owner = owner;
309                 new->owners[i].index = old->owners[j].index - j + i;
310                 if (!owner) /* result of earlier fallback */
311                         continue;
312                 get_tree(owner);
313                 list_replace_init(&old->owners[j].list, &new->owners[i].list);
314         }
315         replace_mark_chunk(old->mark, new);
316         /*
317          * Make sure chunk is fully initialized before making it visible in the
318          * hash. Pairs with a data dependency barrier in READ_ONCE() in
319          * audit_tree_lookup().
320          */
321         smp_wmb();
322         list_replace_rcu(&old->hash, &new->hash);
323 }
324
325 static void remove_chunk_node(struct audit_chunk *chunk, struct node *p)
326 {
327         struct audit_tree *owner = p->owner;
328
329         if (owner->root == chunk) {
330                 list_del_init(&owner->same_root);
331                 owner->root = NULL;
332         }
333         list_del_init(&p->list);
334         p->owner = NULL;
335         put_tree(owner);
336 }
337
338 static int chunk_count_trees(struct audit_chunk *chunk)
339 {
340         int i;
341         int ret = 0;
342
343         for (i = 0; i < chunk->count; i++)
344                 if (chunk->owners[i].owner)
345                         ret++;
346         return ret;
347 }
348
349 static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
350 {
351         struct audit_chunk *new;
352         int size;
353
354         mutex_lock(&audit_tree_group->mark_mutex);
355         /*
356          * mark_mutex stabilizes chunk attached to the mark so we can check
357          * whether it didn't change while we've dropped hash_lock.
358          */
359         if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
360             mark_chunk(mark) != chunk)
361                 goto out_mutex;
362
363         size = chunk_count_trees(chunk);
364         if (!size) {
365                 spin_lock(&hash_lock);
366                 list_del_init(&chunk->trees);
367                 list_del_rcu(&chunk->hash);
368                 replace_mark_chunk(mark, NULL);
369                 spin_unlock(&hash_lock);
370                 fsnotify_detach_mark(mark);
371                 mutex_unlock(&audit_tree_group->mark_mutex);
372                 audit_mark_put_chunk(chunk);
373                 fsnotify_free_mark(mark);
374                 return;
375         }
376
377         new = alloc_chunk(size);
378         if (!new)
379                 goto out_mutex;
380
381         spin_lock(&hash_lock);
382         /*
383          * This has to go last when updating chunk as once replace_chunk() is
384          * called, new RCU readers can see the new chunk.
385          */
386         replace_chunk(new, chunk);
387         spin_unlock(&hash_lock);
388         mutex_unlock(&audit_tree_group->mark_mutex);
389         audit_mark_put_chunk(chunk);
390         return;
391
392 out_mutex:
393         mutex_unlock(&audit_tree_group->mark_mutex);
394 }
395
396 /* Call with group->mark_mutex held, releases it */
397 static int create_chunk(struct inode *inode, struct audit_tree *tree)
398 {
399         struct fsnotify_mark *mark;
400         struct audit_chunk *chunk = alloc_chunk(1);
401
402         if (!chunk) {
403                 mutex_unlock(&audit_tree_group->mark_mutex);
404                 return -ENOMEM;
405         }
406
407         mark = alloc_mark();
408         if (!mark) {
409                 mutex_unlock(&audit_tree_group->mark_mutex);
410                 kfree(chunk);
411                 return -ENOMEM;
412         }
413
414         if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
415                 mutex_unlock(&audit_tree_group->mark_mutex);
416                 fsnotify_put_mark(mark);
417                 kfree(chunk);
418                 return -ENOSPC;
419         }
420
421         spin_lock(&hash_lock);
422         if (tree->goner) {
423                 spin_unlock(&hash_lock);
424                 fsnotify_detach_mark(mark);
425                 mutex_unlock(&audit_tree_group->mark_mutex);
426                 fsnotify_free_mark(mark);
427                 fsnotify_put_mark(mark);
428                 kfree(chunk);
429                 return 0;
430         }
431         replace_mark_chunk(mark, chunk);
432         chunk->owners[0].index = (1U << 31);
433         chunk->owners[0].owner = tree;
434         get_tree(tree);
435         list_add(&chunk->owners[0].list, &tree->chunks);
436         if (!tree->root) {
437                 tree->root = chunk;
438                 list_add(&tree->same_root, &chunk->trees);
439         }
440         chunk->key = inode_to_key(inode);
441         /*
442          * Inserting into the hash table has to go last as once we do that RCU
443          * readers can see the chunk.
444          */
445         insert_hash(chunk);
446         spin_unlock(&hash_lock);
447         mutex_unlock(&audit_tree_group->mark_mutex);
448         /*
449          * Drop our initial reference. When mark we point to is getting freed,
450          * we get notification through ->freeing_mark callback and cleanup
451          * chunk pointing to this mark.
452          */
453         fsnotify_put_mark(mark);
454         return 0;
455 }
456
457 /* the first tagged inode becomes root of tree */
458 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
459 {
460         struct fsnotify_mark *mark;
461         struct audit_chunk *chunk, *old;
462         struct node *p;
463         int n;
464
465         mutex_lock(&audit_tree_group->mark_mutex);
466         mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
467         if (!mark)
468                 return create_chunk(inode, tree);
469
470         /*
471          * Found mark is guaranteed to be attached and mark_mutex protects mark
472          * from getting detached and thus it makes sure there is chunk attached
473          * to the mark.
474          */
475         /* are we already there? */
476         spin_lock(&hash_lock);
477         old = mark_chunk(mark);
478         for (n = 0; n < old->count; n++) {
479                 if (old->owners[n].owner == tree) {
480                         spin_unlock(&hash_lock);
481                         mutex_unlock(&audit_tree_group->mark_mutex);
482                         fsnotify_put_mark(mark);
483                         return 0;
484                 }
485         }
486         spin_unlock(&hash_lock);
487
488         chunk = alloc_chunk(old->count + 1);
489         if (!chunk) {
490                 mutex_unlock(&audit_tree_group->mark_mutex);
491                 fsnotify_put_mark(mark);
492                 return -ENOMEM;
493         }
494
495         spin_lock(&hash_lock);
496         if (tree->goner) {
497                 spin_unlock(&hash_lock);
498                 mutex_unlock(&audit_tree_group->mark_mutex);
499                 fsnotify_put_mark(mark);
500                 kfree(chunk);
501                 return 0;
502         }
503         p = &chunk->owners[chunk->count - 1];
504         p->index = (chunk->count - 1) | (1U<<31);
505         p->owner = tree;
506         get_tree(tree);
507         list_add(&p->list, &tree->chunks);
508         if (!tree->root) {
509                 tree->root = chunk;
510                 list_add(&tree->same_root, &chunk->trees);
511         }
512         /*
513          * This has to go last when updating chunk as once replace_chunk() is
514          * called, new RCU readers can see the new chunk.
515          */
516         replace_chunk(chunk, old);
517         spin_unlock(&hash_lock);
518         mutex_unlock(&audit_tree_group->mark_mutex);
519         fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
520         audit_mark_put_chunk(old);
521
522         return 0;
523 }
524
525 static void audit_tree_log_remove_rule(struct audit_context *context,
526                                        struct audit_krule *rule)
527 {
528         struct audit_buffer *ab;
529
530         if (!audit_enabled)
531                 return;
532         ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
533         if (unlikely(!ab))
534                 return;
535         audit_log_format(ab, "op=remove_rule dir=");
536         audit_log_untrustedstring(ab, rule->tree->pathname);
537         audit_log_key(ab, rule->filterkey);
538         audit_log_format(ab, " list=%d res=1", rule->listnr);
539         audit_log_end(ab);
540 }
541
542 static void kill_rules(struct audit_context *context, struct audit_tree *tree)
543 {
544         struct audit_krule *rule, *next;
545         struct audit_entry *entry;
546
547         list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
548                 entry = container_of(rule, struct audit_entry, rule);
549
550                 list_del_init(&rule->rlist);
551                 if (rule->tree) {
552                         /* not a half-baked one */
553                         audit_tree_log_remove_rule(context, rule);
554                         if (entry->rule.exe)
555                                 audit_remove_mark(entry->rule.exe);
556                         rule->tree = NULL;
557                         list_del_rcu(&entry->list);
558                         list_del(&entry->rule.list);
559                         call_rcu(&entry->rcu, audit_free_rule_rcu);
560                 }
561         }
562 }
563
564 /*
565  * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
566  * chunks. The function expects tagged chunks are all at the beginning of the
567  * chunks list.
568  */
569 static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
570 {
571         spin_lock(&hash_lock);
572         while (!list_empty(&victim->chunks)) {
573                 struct node *p;
574                 struct audit_chunk *chunk;
575                 struct fsnotify_mark *mark;
576
577                 p = list_first_entry(&victim->chunks, struct node, list);
578                 /* have we run out of marked? */
579                 if (tagged && !(p->index & (1U<<31)))
580                         break;
581                 chunk = find_chunk(p);
582                 mark = chunk->mark;
583                 remove_chunk_node(chunk, p);
584                 /* Racing with audit_tree_freeing_mark()? */
585                 if (!mark)
586                         continue;
587                 fsnotify_get_mark(mark);
588                 spin_unlock(&hash_lock);
589
590                 untag_chunk(chunk, mark);
591                 fsnotify_put_mark(mark);
592
593                 spin_lock(&hash_lock);
594         }
595         spin_unlock(&hash_lock);
596         put_tree(victim);
597 }
598
599 /*
600  * finish killing struct audit_tree
601  */
602 static void prune_one(struct audit_tree *victim)
603 {
604         prune_tree_chunks(victim, false);
605 }
606
607 /* trim the uncommitted chunks from tree */
608
609 static void trim_marked(struct audit_tree *tree)
610 {
611         struct list_head *p, *q;
612         spin_lock(&hash_lock);
613         if (tree->goner) {
614                 spin_unlock(&hash_lock);
615                 return;
616         }
617         /* reorder */
618         for (p = tree->chunks.next; p != &tree->chunks; p = q) {
619                 struct node *node = list_entry(p, struct node, list);
620                 q = p->next;
621                 if (node->index & (1U<<31)) {
622                         list_del_init(p);
623                         list_add(p, &tree->chunks);
624                 }
625         }
626         spin_unlock(&hash_lock);
627
628         prune_tree_chunks(tree, true);
629
630         spin_lock(&hash_lock);
631         if (!tree->root && !tree->goner) {
632                 tree->goner = 1;
633                 spin_unlock(&hash_lock);
634                 mutex_lock(&audit_filter_mutex);
635                 kill_rules(audit_context(), tree);
636                 list_del_init(&tree->list);
637                 mutex_unlock(&audit_filter_mutex);
638                 prune_one(tree);
639         } else {
640                 spin_unlock(&hash_lock);
641         }
642 }
643
644 static void audit_schedule_prune(void);
645
646 /* called with audit_filter_mutex */
647 int audit_remove_tree_rule(struct audit_krule *rule)
648 {
649         struct audit_tree *tree;
650         tree = rule->tree;
651         if (tree) {
652                 spin_lock(&hash_lock);
653                 list_del_init(&rule->rlist);
654                 if (list_empty(&tree->rules) && !tree->goner) {
655                         tree->root = NULL;
656                         list_del_init(&tree->same_root);
657                         tree->goner = 1;
658                         list_move(&tree->list, &prune_list);
659                         rule->tree = NULL;
660                         spin_unlock(&hash_lock);
661                         audit_schedule_prune();
662                         return 1;
663                 }
664                 rule->tree = NULL;
665                 spin_unlock(&hash_lock);
666                 return 1;
667         }
668         return 0;
669 }
670
671 static int compare_root(struct vfsmount *mnt, void *arg)
672 {
673         return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
674                (unsigned long)arg;
675 }
676
677 void audit_trim_trees(void)
678 {
679         struct list_head cursor;
680
681         mutex_lock(&audit_filter_mutex);
682         list_add(&cursor, &tree_list);
683         while (cursor.next != &tree_list) {
684                 struct audit_tree *tree;
685                 struct path path;
686                 struct vfsmount *root_mnt;
687                 struct node *node;
688                 int err;
689
690                 tree = container_of(cursor.next, struct audit_tree, list);
691                 get_tree(tree);
692                 list_move(&cursor, &tree->list);
693                 mutex_unlock(&audit_filter_mutex);
694
695                 err = kern_path(tree->pathname, 0, &path);
696                 if (err)
697                         goto skip_it;
698
699                 root_mnt = collect_mounts(&path);
700                 path_put(&path);
701                 if (IS_ERR(root_mnt))
702                         goto skip_it;
703
704                 spin_lock(&hash_lock);
705                 list_for_each_entry(node, &tree->chunks, list) {
706                         struct audit_chunk *chunk = find_chunk(node);
707                         /* this could be NULL if the watch is dying else where... */
708                         node->index |= 1U<<31;
709                         if (iterate_mounts(compare_root,
710                                            (void *)(chunk->key),
711                                            root_mnt))
712                                 node->index &= ~(1U<<31);
713                 }
714                 spin_unlock(&hash_lock);
715                 trim_marked(tree);
716                 drop_collected_mounts(root_mnt);
717 skip_it:
718                 put_tree(tree);
719                 mutex_lock(&audit_filter_mutex);
720         }
721         list_del(&cursor);
722         mutex_unlock(&audit_filter_mutex);
723 }
724
725 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
726 {
727
728         if (pathname[0] != '/' ||
729             rule->listnr != AUDIT_FILTER_EXIT ||
730             op != Audit_equal ||
731             rule->inode_f || rule->watch || rule->tree)
732                 return -EINVAL;
733         rule->tree = alloc_tree(pathname);
734         if (!rule->tree)
735                 return -ENOMEM;
736         return 0;
737 }
738
739 void audit_put_tree(struct audit_tree *tree)
740 {
741         put_tree(tree);
742 }
743
744 static int tag_mount(struct vfsmount *mnt, void *arg)
745 {
746         return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
747 }
748
749 /*
750  * That gets run when evict_chunk() ends up needing to kill audit_tree.
751  * Runs from a separate thread.
752  */
753 static int prune_tree_thread(void *unused)
754 {
755         for (;;) {
756                 if (list_empty(&prune_list)) {
757                         set_current_state(TASK_INTERRUPTIBLE);
758                         schedule();
759                 }
760
761                 audit_ctl_lock();
762                 mutex_lock(&audit_filter_mutex);
763
764                 while (!list_empty(&prune_list)) {
765                         struct audit_tree *victim;
766
767                         victim = list_entry(prune_list.next,
768                                         struct audit_tree, list);
769                         list_del_init(&victim->list);
770
771                         mutex_unlock(&audit_filter_mutex);
772
773                         prune_one(victim);
774
775                         mutex_lock(&audit_filter_mutex);
776                 }
777
778                 mutex_unlock(&audit_filter_mutex);
779                 audit_ctl_unlock();
780         }
781         return 0;
782 }
783
784 static int audit_launch_prune(void)
785 {
786         if (prune_thread)
787                 return 0;
788         prune_thread = kthread_run(prune_tree_thread, NULL,
789                                 "audit_prune_tree");
790         if (IS_ERR(prune_thread)) {
791                 pr_err("cannot start thread audit_prune_tree");
792                 prune_thread = NULL;
793                 return -ENOMEM;
794         }
795         return 0;
796 }
797
798 /* called with audit_filter_mutex */
799 int audit_add_tree_rule(struct audit_krule *rule)
800 {
801         struct audit_tree *seed = rule->tree, *tree;
802         struct path path;
803         struct vfsmount *mnt;
804         int err;
805
806         rule->tree = NULL;
807         list_for_each_entry(tree, &tree_list, list) {
808                 if (!strcmp(seed->pathname, tree->pathname)) {
809                         put_tree(seed);
810                         rule->tree = tree;
811                         list_add(&rule->rlist, &tree->rules);
812                         return 0;
813                 }
814         }
815         tree = seed;
816         list_add(&tree->list, &tree_list);
817         list_add(&rule->rlist, &tree->rules);
818         /* do not set rule->tree yet */
819         mutex_unlock(&audit_filter_mutex);
820
821         if (unlikely(!prune_thread)) {
822                 err = audit_launch_prune();
823                 if (err)
824                         goto Err;
825         }
826
827         err = kern_path(tree->pathname, 0, &path);
828         if (err)
829                 goto Err;
830         mnt = collect_mounts(&path);
831         path_put(&path);
832         if (IS_ERR(mnt)) {
833                 err = PTR_ERR(mnt);
834                 goto Err;
835         }
836
837         get_tree(tree);
838         err = iterate_mounts(tag_mount, tree, mnt);
839         drop_collected_mounts(mnt);
840
841         if (!err) {
842                 struct node *node;
843                 spin_lock(&hash_lock);
844                 list_for_each_entry(node, &tree->chunks, list)
845                         node->index &= ~(1U<<31);
846                 spin_unlock(&hash_lock);
847         } else {
848                 trim_marked(tree);
849                 goto Err;
850         }
851
852         mutex_lock(&audit_filter_mutex);
853         if (list_empty(&rule->rlist)) {
854                 put_tree(tree);
855                 return -ENOENT;
856         }
857         rule->tree = tree;
858         put_tree(tree);
859
860         return 0;
861 Err:
862         mutex_lock(&audit_filter_mutex);
863         list_del_init(&tree->list);
864         list_del_init(&tree->rules);
865         put_tree(tree);
866         return err;
867 }
868
869 int audit_tag_tree(char *old, char *new)
870 {
871         struct list_head cursor, barrier;
872         int failed = 0;
873         struct path path1, path2;
874         struct vfsmount *tagged;
875         int err;
876
877         err = kern_path(new, 0, &path2);
878         if (err)
879                 return err;
880         tagged = collect_mounts(&path2);
881         path_put(&path2);
882         if (IS_ERR(tagged))
883                 return PTR_ERR(tagged);
884
885         err = kern_path(old, 0, &path1);
886         if (err) {
887                 drop_collected_mounts(tagged);
888                 return err;
889         }
890
891         mutex_lock(&audit_filter_mutex);
892         list_add(&barrier, &tree_list);
893         list_add(&cursor, &barrier);
894
895         while (cursor.next != &tree_list) {
896                 struct audit_tree *tree;
897                 int good_one = 0;
898
899                 tree = container_of(cursor.next, struct audit_tree, list);
900                 get_tree(tree);
901                 list_move(&cursor, &tree->list);
902                 mutex_unlock(&audit_filter_mutex);
903
904                 err = kern_path(tree->pathname, 0, &path2);
905                 if (!err) {
906                         good_one = path_is_under(&path1, &path2);
907                         path_put(&path2);
908                 }
909
910                 if (!good_one) {
911                         put_tree(tree);
912                         mutex_lock(&audit_filter_mutex);
913                         continue;
914                 }
915
916                 failed = iterate_mounts(tag_mount, tree, tagged);
917                 if (failed) {
918                         put_tree(tree);
919                         mutex_lock(&audit_filter_mutex);
920                         break;
921                 }
922
923                 mutex_lock(&audit_filter_mutex);
924                 spin_lock(&hash_lock);
925                 if (!tree->goner) {
926                         list_move(&tree->list, &tree_list);
927                 }
928                 spin_unlock(&hash_lock);
929                 put_tree(tree);
930         }
931
932         while (barrier.prev != &tree_list) {
933                 struct audit_tree *tree;
934
935                 tree = container_of(barrier.prev, struct audit_tree, list);
936                 get_tree(tree);
937                 list_move(&tree->list, &barrier);
938                 mutex_unlock(&audit_filter_mutex);
939
940                 if (!failed) {
941                         struct node *node;
942                         spin_lock(&hash_lock);
943                         list_for_each_entry(node, &tree->chunks, list)
944                                 node->index &= ~(1U<<31);
945                         spin_unlock(&hash_lock);
946                 } else {
947                         trim_marked(tree);
948                 }
949
950                 put_tree(tree);
951                 mutex_lock(&audit_filter_mutex);
952         }
953         list_del(&barrier);
954         list_del(&cursor);
955         mutex_unlock(&audit_filter_mutex);
956         path_put(&path1);
957         drop_collected_mounts(tagged);
958         return failed;
959 }
960
961
962 static void audit_schedule_prune(void)
963 {
964         wake_up_process(prune_thread);
965 }
966
967 /*
968  * ... and that one is done if evict_chunk() decides to delay until the end
969  * of syscall.  Runs synchronously.
970  */
971 void audit_kill_trees(struct audit_context *context)
972 {
973         struct list_head *list = &context->killed_trees;
974
975         audit_ctl_lock();
976         mutex_lock(&audit_filter_mutex);
977
978         while (!list_empty(list)) {
979                 struct audit_tree *victim;
980
981                 victim = list_entry(list->next, struct audit_tree, list);
982                 kill_rules(context, victim);
983                 list_del_init(&victim->list);
984
985                 mutex_unlock(&audit_filter_mutex);
986
987                 prune_one(victim);
988
989                 mutex_lock(&audit_filter_mutex);
990         }
991
992         mutex_unlock(&audit_filter_mutex);
993         audit_ctl_unlock();
994 }
995
996 /*
997  *  Here comes the stuff asynchronous to auditctl operations
998  */
999
1000 static void evict_chunk(struct audit_chunk *chunk)
1001 {
1002         struct audit_tree *owner;
1003         struct list_head *postponed = audit_killed_trees();
1004         int need_prune = 0;
1005         int n;
1006
1007         mutex_lock(&audit_filter_mutex);
1008         spin_lock(&hash_lock);
1009         while (!list_empty(&chunk->trees)) {
1010                 owner = list_entry(chunk->trees.next,
1011                                    struct audit_tree, same_root);
1012                 owner->goner = 1;
1013                 owner->root = NULL;
1014                 list_del_init(&owner->same_root);
1015                 spin_unlock(&hash_lock);
1016                 if (!postponed) {
1017                         kill_rules(audit_context(), owner);
1018                         list_move(&owner->list, &prune_list);
1019                         need_prune = 1;
1020                 } else {
1021                         list_move(&owner->list, postponed);
1022                 }
1023                 spin_lock(&hash_lock);
1024         }
1025         list_del_rcu(&chunk->hash);
1026         for (n = 0; n < chunk->count; n++)
1027                 list_del_init(&chunk->owners[n].list);
1028         spin_unlock(&hash_lock);
1029         mutex_unlock(&audit_filter_mutex);
1030         if (need_prune)
1031                 audit_schedule_prune();
1032 }
1033
1034 static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
1035                                    struct inode *inode, struct inode *dir,
1036                                    const struct qstr *file_name, u32 cookie)
1037 {
1038         return 0;
1039 }
1040
1041 static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1042                                     struct fsnotify_group *group)
1043 {
1044         struct audit_chunk *chunk;
1045
1046         mutex_lock(&mark->group->mark_mutex);
1047         spin_lock(&hash_lock);
1048         chunk = mark_chunk(mark);
1049         replace_mark_chunk(mark, NULL);
1050         spin_unlock(&hash_lock);
1051         mutex_unlock(&mark->group->mark_mutex);
1052         if (chunk) {
1053                 evict_chunk(chunk);
1054                 audit_mark_put_chunk(chunk);
1055         }
1056
1057         /*
1058          * We are guaranteed to have at least one reference to the mark from
1059          * either the inode or the caller of fsnotify_destroy_mark().
1060          */
1061         BUG_ON(refcount_read(&mark->refcnt) < 1);
1062 }
1063
1064 static const struct fsnotify_ops audit_tree_ops = {
1065         .handle_inode_event = audit_tree_handle_event,
1066         .freeing_mark = audit_tree_freeing_mark,
1067         .free_mark = audit_tree_destroy_watch,
1068 };
1069
1070 static int __init audit_tree_init(void)
1071 {
1072         int i;
1073
1074         audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1075
1076         audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1077         if (IS_ERR(audit_tree_group))
1078                 audit_panic("cannot initialize fsnotify group for rectree watches");
1079
1080         for (i = 0; i < HASH_SIZE; i++)
1081                 INIT_LIST_HEAD(&chunk_hash_heads[i]);
1082
1083         return 0;
1084 }
1085 __initcall(audit_tree_init);