Use license macro in spec file
[platform/upstream/libjpeg-turbo.git] / jmemmgr.c
1 /*
2  * jmemmgr.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * It was modified by The libjpeg-turbo Project to include only code and
7  * information relevant to libjpeg-turbo.
8  * For conditions of distribution and use, see the accompanying README file.
9  *
10  * This file contains the JPEG system-independent memory management
11  * routines.  This code is usable across a wide variety of machines; most
12  * of the system dependencies have been isolated in a separate file.
13  * The major functions provided here are:
14  *   * pool-based allocation and freeing of memory;
15  *   * policy decisions about how to divide available memory among the
16  *     virtual arrays;
17  *   * control logic for swapping virtual arrays between main memory and
18  *     backing storage.
19  * The separate system-dependent file provides the actual backing-storage
20  * access code, and it contains the policy decision about how much total
21  * main memory to use.
22  * This file is system-dependent in the sense that some of its functions
23  * are unnecessary in some systems.  For example, if there is enough virtual
24  * memory so that backing storage will never be used, much of the virtual
25  * array control logic could be removed.  (Of course, if you have that much
26  * memory then you shouldn't care about a little bit of unused code...)
27  */
28
29 #define JPEG_INTERNALS
30 #define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
31 #include "jinclude.h"
32 #include "jpeglib.h"
33 #include "jmemsys.h"            /* import the system-dependent declarations */
34
35 #ifndef NO_GETENV
36 #ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
37 extern char * getenv (const char * name);
38 #endif
39 #endif
40
41
42 LOCAL(size_t)
43 round_up_pow2 (size_t a, size_t b)
44 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
45 /* Assumes a >= 0, b > 0, and b is a power of 2 */
46 {
47   return ((a + b - 1) & (~(b - 1)));
48 }
49
50
51 /*
52  * Some important notes:
53  *   The allocation routines provided here must never return NULL.
54  *   They should exit to error_exit if unsuccessful.
55  *
56  *   It's not a good idea to try to merge the sarray and barray routines,
57  *   even though they are textually almost the same, because samples are
58  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
59  *   in machines where byte pointers have a different representation from
60  *   word pointers, the resulting machine code could not be the same.
61  */
62
63
64 /*
65  * Many machines require storage alignment: longs must start on 4-byte
66  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
67  * always returns pointers that are multiples of the worst-case alignment
68  * requirement, and we had better do so too.
69  * There isn't any really portable way to determine the worst-case alignment
70  * requirement.  This module assumes that the alignment requirement is
71  * multiples of ALIGN_SIZE.
72  * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on some
73  * workstations (where doubles really do need 8-byte alignment) and will work
74  * fine on nearly everything.  If your machine has lesser alignment needs,
75  * you can save a few bytes by making ALIGN_SIZE smaller.
76  * The only place I know of where this will NOT work is certain Macintosh
77  * 680x0 compilers that define double as a 10-byte IEEE extended float.
78  * Doing 10-byte alignment is counterproductive because longwords won't be
79  * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
80  * such a compiler.
81  */
82
83 #ifndef ALIGN_SIZE              /* so can override from jconfig.h */
84 #ifndef WITH_SIMD
85 #define ALIGN_SIZE  sizeof(double)
86 #else
87 #define ALIGN_SIZE  16 /* Most SIMD implementations require this */
88 #endif
89 #endif
90
91 /*
92  * We allocate objects from "pools", where each pool is gotten with a single
93  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
94  * overhead within a pool, except for alignment padding.  Each pool has a
95  * header with a link to the next pool of the same class.
96  * Small and large pool headers are identical.
97  */
98
99 typedef struct small_pool_struct * small_pool_ptr;
100
101 typedef struct small_pool_struct {
102   small_pool_ptr next;  /* next in list of pools */
103   size_t bytes_used;            /* how many bytes already used within pool */
104   size_t bytes_left;            /* bytes still available in this pool */
105 } small_pool_hdr;
106
107 typedef struct large_pool_struct * large_pool_ptr;
108
109 typedef struct large_pool_struct {
110   large_pool_ptr next;  /* next in list of pools */
111   size_t bytes_used;            /* how many bytes already used within pool */
112   size_t bytes_left;            /* bytes still available in this pool */
113 } large_pool_hdr;
114
115 /*
116  * Here is the full definition of a memory manager object.
117  */
118
119 typedef struct {
120   struct jpeg_memory_mgr pub;   /* public fields */
121
122   /* Each pool identifier (lifetime class) names a linked list of pools. */
123   small_pool_ptr small_list[JPOOL_NUMPOOLS];
124   large_pool_ptr large_list[JPOOL_NUMPOOLS];
125
126   /* Since we only have one lifetime class of virtual arrays, only one
127    * linked list is necessary (for each datatype).  Note that the virtual
128    * array control blocks being linked together are actually stored somewhere
129    * in the small-pool list.
130    */
131   jvirt_sarray_ptr virt_sarray_list;
132   jvirt_barray_ptr virt_barray_list;
133
134   /* This counts total space obtained from jpeg_get_small/large */
135   size_t total_space_allocated;
136
137   /* alloc_sarray and alloc_barray set this value for use by virtual
138    * array routines.
139    */
140   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
141 } my_memory_mgr;
142
143 typedef my_memory_mgr * my_mem_ptr;
144
145
146 /*
147  * The control blocks for virtual arrays.
148  * Note that these blocks are allocated in the "small" pool area.
149  * System-dependent info for the associated backing store (if any) is hidden
150  * inside the backing_store_info struct.
151  */
152
153 struct jvirt_sarray_control {
154   JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
155   JDIMENSION rows_in_array;     /* total virtual array height */
156   JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
157   JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
158   JDIMENSION rows_in_mem;       /* height of memory buffer */
159   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
160   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
161   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
162   boolean pre_zero;             /* pre-zero mode requested? */
163   boolean dirty;                /* do current buffer contents need written? */
164   boolean b_s_open;             /* is backing-store data valid? */
165   jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
166   backing_store_info b_s_info;  /* System-dependent control info */
167 };
168
169 struct jvirt_barray_control {
170   JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
171   JDIMENSION rows_in_array;     /* total virtual array height */
172   JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
173   JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
174   JDIMENSION rows_in_mem;       /* height of memory buffer */
175   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
176   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
177   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
178   boolean pre_zero;             /* pre-zero mode requested? */
179   boolean dirty;                /* do current buffer contents need written? */
180   boolean b_s_open;             /* is backing-store data valid? */
181   jvirt_barray_ptr next;        /* link to next virtual barray control block */
182   backing_store_info b_s_info;  /* System-dependent control info */
183 };
184
185
186 #ifdef MEM_STATS                /* optional extra stuff for statistics */
187
188 LOCAL(void)
189 print_mem_stats (j_common_ptr cinfo, int pool_id)
190 {
191   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
192   small_pool_ptr shdr_ptr;
193   large_pool_ptr lhdr_ptr;
194
195   /* Since this is only a debugging stub, we can cheat a little by using
196    * fprintf directly rather than going through the trace message code.
197    * This is helpful because message parm array can't handle longs.
198    */
199   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
200           pool_id, mem->total_space_allocated);
201
202   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
203        lhdr_ptr = lhdr_ptr->next) {
204     fprintf(stderr, "  Large chunk used %ld\n",
205             (long) lhdr_ptr->bytes_used);
206   }
207
208   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
209        shdr_ptr = shdr_ptr->next) {
210     fprintf(stderr, "  Small chunk used %ld free %ld\n",
211             (long) shdr_ptr->bytes_used,
212             (long) shdr_ptr->bytes_left);
213   }
214 }
215
216 #endif /* MEM_STATS */
217
218
219 LOCAL(void)
220 out_of_memory (j_common_ptr cinfo, int which)
221 /* Report an out-of-memory error and stop execution */
222 /* If we compiled MEM_STATS support, report alloc requests before dying */
223 {
224 #ifdef MEM_STATS
225   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
226 #endif
227   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
228 }
229
230
231 /*
232  * Allocation of "small" objects.
233  *
234  * For these, we use pooled storage.  When a new pool must be created,
235  * we try to get enough space for the current request plus a "slop" factor,
236  * where the slop will be the amount of leftover space in the new pool.
237  * The speed vs. space tradeoff is largely determined by the slop values.
238  * A different slop value is provided for each pool class (lifetime),
239  * and we also distinguish the first pool of a class from later ones.
240  * NOTE: the values given work fairly well on both 16- and 32-bit-int
241  * machines, but may be too small if longs are 64 bits or more.
242  *
243  * Since we do not know what alignment malloc() gives us, we have to
244  * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
245  * adjustment.
246  */
247
248 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
249 {
250         1600,                   /* first PERMANENT pool */
251         16000                   /* first IMAGE pool */
252 };
253
254 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
255 {
256         0,                      /* additional PERMANENT pools */
257         5000                    /* additional IMAGE pools */
258 };
259
260 #define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
261
262
263 METHODDEF(void *)
264 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
265 /* Allocate a "small" object */
266 {
267   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
268   small_pool_ptr hdr_ptr, prev_hdr_ptr;
269   char * data_ptr;
270   size_t min_request, slop;
271
272   /*
273    * Round up the requested size to a multiple of ALIGN_SIZE in order
274    * to assure alignment for the next object allocated in the same pool
275    * and so that algorithms can straddle outside the proper area up
276    * to the next alignment.
277    */
278   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
279
280   /* Check for unsatisfiable request (do now to ensure no overflow below) */
281   if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
282     out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
283
284   /* See if space is available in any existing pool */
285   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
286     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
287   prev_hdr_ptr = NULL;
288   hdr_ptr = mem->small_list[pool_id];
289   while (hdr_ptr != NULL) {
290     if (hdr_ptr->bytes_left >= sizeofobject)
291       break;                    /* found pool with enough space */
292     prev_hdr_ptr = hdr_ptr;
293     hdr_ptr = hdr_ptr->next;
294   }
295
296   /* Time to make a new pool? */
297   if (hdr_ptr == NULL) {
298     /* min_request is what we need now, slop is what will be leftover */
299     min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
300     if (prev_hdr_ptr == NULL)   /* first pool in class? */
301       slop = first_pool_slop[pool_id];
302     else
303       slop = extra_pool_slop[pool_id];
304     /* Don't ask for more than MAX_ALLOC_CHUNK */
305     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
306       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
307     /* Try to get space, if fail reduce slop and try again */
308     for (;;) {
309       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
310       if (hdr_ptr != NULL)
311         break;
312       slop /= 2;
313       if (slop < MIN_SLOP)      /* give up when it gets real small */
314         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
315     }
316     mem->total_space_allocated += min_request + slop;
317     /* Success, initialize the new pool header and add to end of list */
318     hdr_ptr->next = NULL;
319     hdr_ptr->bytes_used = 0;
320     hdr_ptr->bytes_left = sizeofobject + slop;
321     if (prev_hdr_ptr == NULL)   /* first pool in class? */
322       mem->small_list[pool_id] = hdr_ptr;
323     else
324       prev_hdr_ptr->next = hdr_ptr;
325   }
326
327   /* OK, allocate the object from the current pool */
328   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
329   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
330   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
331     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
332   data_ptr += hdr_ptr->bytes_used; /* point to place for object */
333   hdr_ptr->bytes_used += sizeofobject;
334   hdr_ptr->bytes_left -= sizeofobject;
335
336   return (void *) data_ptr;
337 }
338
339
340 /*
341  * Allocation of "large" objects.
342  *
343  * The external semantics of these are the same as "small" objects.  However,
344  * the pool management heuristics are quite different.  We assume that each
345  * request is large enough that it may as well be passed directly to
346  * jpeg_get_large; the pool management just links everything together
347  * so that we can free it all on demand.
348  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
349  * structures.  The routines that create these structures (see below)
350  * deliberately bunch rows together to ensure a large request size.
351  */
352
353 METHODDEF(void *)
354 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
355 /* Allocate a "large" object */
356 {
357   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
358   large_pool_ptr hdr_ptr;
359   char * data_ptr;
360
361   /*
362    * Round up the requested size to a multiple of ALIGN_SIZE so that
363    * algorithms can straddle outside the proper area up to the next
364    * alignment.
365    */
366   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
367
368   /* Check for unsatisfiable request (do now to ensure no overflow below) */
369   if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
370     out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
371
372   /* Always make a new pool */
373   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
374     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
375
376   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
377                                             sizeof(large_pool_hdr) +
378                                             ALIGN_SIZE - 1);
379   if (hdr_ptr == NULL)
380     out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
381   mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + ALIGN_SIZE - 1;
382
383   /* Success, initialize the new pool header and add to list */
384   hdr_ptr->next = mem->large_list[pool_id];
385   /* We maintain space counts in each pool header for statistical purposes,
386    * even though they are not needed for allocation.
387    */
388   hdr_ptr->bytes_used = sizeofobject;
389   hdr_ptr->bytes_left = 0;
390   mem->large_list[pool_id] = hdr_ptr;
391
392   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
393   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
394   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
395     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
396
397   return (void *) data_ptr;
398 }
399
400
401 /*
402  * Creation of 2-D sample arrays.
403  *
404  * To minimize allocation overhead and to allow I/O of large contiguous
405  * blocks, we allocate the sample rows in groups of as many rows as possible
406  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
407  * NB: the virtual array control routines, later in this file, know about
408  * this chunking of rows.  The rowsperchunk value is left in the mem manager
409  * object so that it can be saved away if this sarray is the workspace for
410  * a virtual array.
411  *
412  * Since we are often upsampling with a factor 2, we align the size (not
413  * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
414  * to be as careful about size.
415  */
416
417 METHODDEF(JSAMPARRAY)
418 alloc_sarray (j_common_ptr cinfo, int pool_id,
419               JDIMENSION samplesperrow, JDIMENSION numrows)
420 /* Allocate a 2-D sample array */
421 {
422   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
423   JSAMPARRAY result;
424   JSAMPROW workspace;
425   JDIMENSION rowsperchunk, currow, i;
426   long ltemp;
427
428   /* Make sure each row is properly aligned */
429   if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
430     out_of_memory(cinfo, 5);    /* safety check */
431   samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / sizeof(JSAMPLE));
432
433   /* Calculate max # of rows allowed in one allocation chunk */
434   ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
435           ((long) samplesperrow * sizeof(JSAMPLE));
436   if (ltemp <= 0)
437     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
438   if (ltemp < (long) numrows)
439     rowsperchunk = (JDIMENSION) ltemp;
440   else
441     rowsperchunk = numrows;
442   mem->last_rowsperchunk = rowsperchunk;
443
444   /* Get space for row pointers (small object) */
445   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
446                                     (size_t) (numrows * sizeof(JSAMPROW)));
447
448   /* Get the rows themselves (large objects) */
449   currow = 0;
450   while (currow < numrows) {
451     rowsperchunk = MIN(rowsperchunk, numrows - currow);
452     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
453         (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
454                   * sizeof(JSAMPLE)));
455     for (i = rowsperchunk; i > 0; i--) {
456       result[currow++] = workspace;
457       workspace += samplesperrow;
458     }
459   }
460
461   return result;
462 }
463
464
465 /*
466  * Creation of 2-D coefficient-block arrays.
467  * This is essentially the same as the code for sample arrays, above.
468  */
469
470 METHODDEF(JBLOCKARRAY)
471 alloc_barray (j_common_ptr cinfo, int pool_id,
472               JDIMENSION blocksperrow, JDIMENSION numrows)
473 /* Allocate a 2-D coefficient-block array */
474 {
475   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
476   JBLOCKARRAY result;
477   JBLOCKROW workspace;
478   JDIMENSION rowsperchunk, currow, i;
479   long ltemp;
480
481   /* Make sure each row is properly aligned */
482   if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
483     out_of_memory(cinfo, 6);    /* safety check */
484
485   /* Calculate max # of rows allowed in one allocation chunk */
486   ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
487           ((long) blocksperrow * sizeof(JBLOCK));
488   if (ltemp <= 0)
489     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
490   if (ltemp < (long) numrows)
491     rowsperchunk = (JDIMENSION) ltemp;
492   else
493     rowsperchunk = numrows;
494   mem->last_rowsperchunk = rowsperchunk;
495
496   /* Get space for row pointers (small object) */
497   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
498                                      (size_t) (numrows * sizeof(JBLOCKROW)));
499
500   /* Get the rows themselves (large objects) */
501   currow = 0;
502   while (currow < numrows) {
503     rowsperchunk = MIN(rowsperchunk, numrows - currow);
504     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
505         (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
506                   * sizeof(JBLOCK)));
507     for (i = rowsperchunk; i > 0; i--) {
508       result[currow++] = workspace;
509       workspace += blocksperrow;
510     }
511   }
512
513   return result;
514 }
515
516
517 /*
518  * About virtual array management:
519  *
520  * The above "normal" array routines are only used to allocate strip buffers
521  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
522  * are handled as "virtual" arrays.  The array is still accessed a strip at a
523  * time, but the memory manager must save the whole array for repeated
524  * accesses.  The intended implementation is that there is a strip buffer in
525  * memory (as high as is possible given the desired memory limit), plus a
526  * backing file that holds the rest of the array.
527  *
528  * The request_virt_array routines are told the total size of the image and
529  * the maximum number of rows that will be accessed at once.  The in-memory
530  * buffer must be at least as large as the maxaccess value.
531  *
532  * The request routines create control blocks but not the in-memory buffers.
533  * That is postponed until realize_virt_arrays is called.  At that time the
534  * total amount of space needed is known (approximately, anyway), so free
535  * memory can be divided up fairly.
536  *
537  * The access_virt_array routines are responsible for making a specific strip
538  * area accessible (after reading or writing the backing file, if necessary).
539  * Note that the access routines are told whether the caller intends to modify
540  * the accessed strip; during a read-only pass this saves having to rewrite
541  * data to disk.  The access routines are also responsible for pre-zeroing
542  * any newly accessed rows, if pre-zeroing was requested.
543  *
544  * In current usage, the access requests are usually for nonoverlapping
545  * strips; that is, successive access start_row numbers differ by exactly
546  * num_rows = maxaccess.  This means we can get good performance with simple
547  * buffer dump/reload logic, by making the in-memory buffer be a multiple
548  * of the access height; then there will never be accesses across bufferload
549  * boundaries.  The code will still work with overlapping access requests,
550  * but it doesn't handle bufferload overlaps very efficiently.
551  */
552
553
554 METHODDEF(jvirt_sarray_ptr)
555 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
556                      JDIMENSION samplesperrow, JDIMENSION numrows,
557                      JDIMENSION maxaccess)
558 /* Request a virtual 2-D sample array */
559 {
560   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
561   jvirt_sarray_ptr result;
562
563   /* Only IMAGE-lifetime virtual arrays are currently supported */
564   if (pool_id != JPOOL_IMAGE)
565     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
566
567   /* get control block */
568   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
569                                           sizeof(struct jvirt_sarray_control));
570
571   result->mem_buffer = NULL;    /* marks array not yet realized */
572   result->rows_in_array = numrows;
573   result->samplesperrow = samplesperrow;
574   result->maxaccess = maxaccess;
575   result->pre_zero = pre_zero;
576   result->b_s_open = FALSE;     /* no associated backing-store object */
577   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
578   mem->virt_sarray_list = result;
579
580   return result;
581 }
582
583
584 METHODDEF(jvirt_barray_ptr)
585 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
586                      JDIMENSION blocksperrow, JDIMENSION numrows,
587                      JDIMENSION maxaccess)
588 /* Request a virtual 2-D coefficient-block array */
589 {
590   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
591   jvirt_barray_ptr result;
592
593   /* Only IMAGE-lifetime virtual arrays are currently supported */
594   if (pool_id != JPOOL_IMAGE)
595     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
596
597   /* get control block */
598   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
599                                           sizeof(struct jvirt_barray_control));
600
601   result->mem_buffer = NULL;    /* marks array not yet realized */
602   result->rows_in_array = numrows;
603   result->blocksperrow = blocksperrow;
604   result->maxaccess = maxaccess;
605   result->pre_zero = pre_zero;
606   result->b_s_open = FALSE;     /* no associated backing-store object */
607   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
608   mem->virt_barray_list = result;
609
610   return result;
611 }
612
613
614 METHODDEF(void)
615 realize_virt_arrays (j_common_ptr cinfo)
616 /* Allocate the in-memory buffers for any unrealized virtual arrays */
617 {
618   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
619   size_t space_per_minheight, maximum_space, avail_mem;
620   size_t minheights, max_minheights;
621   jvirt_sarray_ptr sptr;
622   jvirt_barray_ptr bptr;
623
624   /* Compute the minimum space needed (maxaccess rows in each buffer)
625    * and the maximum space needed (full image height in each buffer).
626    * These may be of use to the system-dependent jpeg_mem_available routine.
627    */
628   space_per_minheight = 0;
629   maximum_space = 0;
630   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
631     if (sptr->mem_buffer == NULL) { /* if not realized yet */
632       space_per_minheight += (long) sptr->maxaccess *
633                              (long) sptr->samplesperrow * sizeof(JSAMPLE);
634       maximum_space += (long) sptr->rows_in_array *
635                        (long) sptr->samplesperrow * sizeof(JSAMPLE);
636     }
637   }
638   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
639     if (bptr->mem_buffer == NULL) { /* if not realized yet */
640       space_per_minheight += (long) bptr->maxaccess *
641                              (long) bptr->blocksperrow * sizeof(JBLOCK);
642       maximum_space += (long) bptr->rows_in_array *
643                        (long) bptr->blocksperrow * sizeof(JBLOCK);
644     }
645   }
646
647   if (space_per_minheight <= 0)
648     return;                     /* no unrealized arrays, no work */
649
650   /* Determine amount of memory to actually use; this is system-dependent. */
651   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
652                                  mem->total_space_allocated);
653
654   /* If the maximum space needed is available, make all the buffers full
655    * height; otherwise parcel it out with the same number of minheights
656    * in each buffer.
657    */
658   if (avail_mem >= maximum_space)
659     max_minheights = 1000000000L;
660   else {
661     max_minheights = avail_mem / space_per_minheight;
662     /* If there doesn't seem to be enough space, try to get the minimum
663      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
664      */
665     if (max_minheights <= 0)
666       max_minheights = 1;
667   }
668
669   /* Allocate the in-memory buffers and initialize backing store as needed. */
670
671   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
672     if (sptr->mem_buffer == NULL) { /* if not realized yet */
673       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
674       if (minheights <= max_minheights) {
675         /* This buffer fits in memory */
676         sptr->rows_in_mem = sptr->rows_in_array;
677       } else {
678         /* It doesn't fit in memory, create backing store. */
679         sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
680         jpeg_open_backing_store(cinfo, & sptr->b_s_info,
681                                 (long) sptr->rows_in_array *
682                                 (long) sptr->samplesperrow *
683                                 (long) sizeof(JSAMPLE));
684         sptr->b_s_open = TRUE;
685       }
686       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
687                                       sptr->samplesperrow, sptr->rows_in_mem);
688       sptr->rowsperchunk = mem->last_rowsperchunk;
689       sptr->cur_start_row = 0;
690       sptr->first_undef_row = 0;
691       sptr->dirty = FALSE;
692     }
693   }
694
695   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
696     if (bptr->mem_buffer == NULL) { /* if not realized yet */
697       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
698       if (minheights <= max_minheights) {
699         /* This buffer fits in memory */
700         bptr->rows_in_mem = bptr->rows_in_array;
701       } else {
702         /* It doesn't fit in memory, create backing store. */
703         bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
704         jpeg_open_backing_store(cinfo, & bptr->b_s_info,
705                                 (long) bptr->rows_in_array *
706                                 (long) bptr->blocksperrow *
707                                 (long) sizeof(JBLOCK));
708         bptr->b_s_open = TRUE;
709       }
710       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
711                                       bptr->blocksperrow, bptr->rows_in_mem);
712       bptr->rowsperchunk = mem->last_rowsperchunk;
713       bptr->cur_start_row = 0;
714       bptr->first_undef_row = 0;
715       bptr->dirty = FALSE;
716     }
717   }
718 }
719
720
721 LOCAL(void)
722 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
723 /* Do backing store read or write of a virtual sample array */
724 {
725   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
726
727   bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE);
728   file_offset = ptr->cur_start_row * bytesperrow;
729   /* Loop to read or write each allocation chunk in mem_buffer */
730   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
731     /* One chunk, but check for short chunk at end of buffer */
732     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
733     /* Transfer no more than is currently defined */
734     thisrow = (long) ptr->cur_start_row + i;
735     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
736     /* Transfer no more than fits in file */
737     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
738     if (rows <= 0)              /* this chunk might be past end of file! */
739       break;
740     byte_count = rows * bytesperrow;
741     if (writing)
742       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
743                                             (void *) ptr->mem_buffer[i],
744                                             file_offset, byte_count);
745     else
746       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
747                                            (void *) ptr->mem_buffer[i],
748                                            file_offset, byte_count);
749     file_offset += byte_count;
750   }
751 }
752
753
754 LOCAL(void)
755 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
756 /* Do backing store read or write of a virtual coefficient-block array */
757 {
758   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
759
760   bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK);
761   file_offset = ptr->cur_start_row * bytesperrow;
762   /* Loop to read or write each allocation chunk in mem_buffer */
763   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
764     /* One chunk, but check for short chunk at end of buffer */
765     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
766     /* Transfer no more than is currently defined */
767     thisrow = (long) ptr->cur_start_row + i;
768     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
769     /* Transfer no more than fits in file */
770     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
771     if (rows <= 0)              /* this chunk might be past end of file! */
772       break;
773     byte_count = rows * bytesperrow;
774     if (writing)
775       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
776                                             (void *) ptr->mem_buffer[i],
777                                             file_offset, byte_count);
778     else
779       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
780                                            (void *) ptr->mem_buffer[i],
781                                            file_offset, byte_count);
782     file_offset += byte_count;
783   }
784 }
785
786
787 METHODDEF(JSAMPARRAY)
788 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
789                     JDIMENSION start_row, JDIMENSION num_rows,
790                     boolean writable)
791 /* Access the part of a virtual sample array starting at start_row */
792 /* and extending for num_rows rows.  writable is true if  */
793 /* caller intends to modify the accessed area. */
794 {
795   JDIMENSION end_row = start_row + num_rows;
796   JDIMENSION undef_row;
797
798   /* debugging check */
799   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
800       ptr->mem_buffer == NULL)
801     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
802
803   /* Make the desired part of the virtual array accessible */
804   if (start_row < ptr->cur_start_row ||
805       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
806     if (! ptr->b_s_open)
807       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
808     /* Flush old buffer contents if necessary */
809     if (ptr->dirty) {
810       do_sarray_io(cinfo, ptr, TRUE);
811       ptr->dirty = FALSE;
812     }
813     /* Decide what part of virtual array to access.
814      * Algorithm: if target address > current window, assume forward scan,
815      * load starting at target address.  If target address < current window,
816      * assume backward scan, load so that target area is top of window.
817      * Note that when switching from forward write to forward read, will have
818      * start_row = 0, so the limiting case applies and we load from 0 anyway.
819      */
820     if (start_row > ptr->cur_start_row) {
821       ptr->cur_start_row = start_row;
822     } else {
823       /* use long arithmetic here to avoid overflow & unsigned problems */
824       long ltemp;
825
826       ltemp = (long) end_row - (long) ptr->rows_in_mem;
827       if (ltemp < 0)
828         ltemp = 0;              /* don't fall off front end of file */
829       ptr->cur_start_row = (JDIMENSION) ltemp;
830     }
831     /* Read in the selected part of the array.
832      * During the initial write pass, we will do no actual read
833      * because the selected part is all undefined.
834      */
835     do_sarray_io(cinfo, ptr, FALSE);
836   }
837   /* Ensure the accessed part of the array is defined; prezero if needed.
838    * To improve locality of access, we only prezero the part of the array
839    * that the caller is about to access, not the entire in-memory array.
840    */
841   if (ptr->first_undef_row < end_row) {
842     if (ptr->first_undef_row < start_row) {
843       if (writable)             /* writer skipped over a section of array */
844         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
845       undef_row = start_row;    /* but reader is allowed to read ahead */
846     } else {
847       undef_row = ptr->first_undef_row;
848     }
849     if (writable)
850       ptr->first_undef_row = end_row;
851     if (ptr->pre_zero) {
852       size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE);
853       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
854       end_row -= ptr->cur_start_row;
855       while (undef_row < end_row) {
856         jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
857         undef_row++;
858       }
859     } else {
860       if (! writable)           /* reader looking at undefined data */
861         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
862     }
863   }
864   /* Flag the buffer dirty if caller will write in it */
865   if (writable)
866     ptr->dirty = TRUE;
867   /* Return address of proper part of the buffer */
868   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
869 }
870
871
872 METHODDEF(JBLOCKARRAY)
873 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
874                     JDIMENSION start_row, JDIMENSION num_rows,
875                     boolean writable)
876 /* Access the part of a virtual block array starting at start_row */
877 /* and extending for num_rows rows.  writable is true if  */
878 /* caller intends to modify the accessed area. */
879 {
880   JDIMENSION end_row = start_row + num_rows;
881   JDIMENSION undef_row;
882
883   /* debugging check */
884   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
885       ptr->mem_buffer == NULL)
886     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
887
888   /* Make the desired part of the virtual array accessible */
889   if (start_row < ptr->cur_start_row ||
890       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
891     if (! ptr->b_s_open)
892       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
893     /* Flush old buffer contents if necessary */
894     if (ptr->dirty) {
895       do_barray_io(cinfo, ptr, TRUE);
896       ptr->dirty = FALSE;
897     }
898     /* Decide what part of virtual array to access.
899      * Algorithm: if target address > current window, assume forward scan,
900      * load starting at target address.  If target address < current window,
901      * assume backward scan, load so that target area is top of window.
902      * Note that when switching from forward write to forward read, will have
903      * start_row = 0, so the limiting case applies and we load from 0 anyway.
904      */
905     if (start_row > ptr->cur_start_row) {
906       ptr->cur_start_row = start_row;
907     } else {
908       /* use long arithmetic here to avoid overflow & unsigned problems */
909       long ltemp;
910
911       ltemp = (long) end_row - (long) ptr->rows_in_mem;
912       if (ltemp < 0)
913         ltemp = 0;              /* don't fall off front end of file */
914       ptr->cur_start_row = (JDIMENSION) ltemp;
915     }
916     /* Read in the selected part of the array.
917      * During the initial write pass, we will do no actual read
918      * because the selected part is all undefined.
919      */
920     do_barray_io(cinfo, ptr, FALSE);
921   }
922   /* Ensure the accessed part of the array is defined; prezero if needed.
923    * To improve locality of access, we only prezero the part of the array
924    * that the caller is about to access, not the entire in-memory array.
925    */
926   if (ptr->first_undef_row < end_row) {
927     if (ptr->first_undef_row < start_row) {
928       if (writable)             /* writer skipped over a section of array */
929         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
930       undef_row = start_row;    /* but reader is allowed to read ahead */
931     } else {
932       undef_row = ptr->first_undef_row;
933     }
934     if (writable)
935       ptr->first_undef_row = end_row;
936     if (ptr->pre_zero) {
937       size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK);
938       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
939       end_row -= ptr->cur_start_row;
940       while (undef_row < end_row) {
941         jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
942         undef_row++;
943       }
944     } else {
945       if (! writable)           /* reader looking at undefined data */
946         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
947     }
948   }
949   /* Flag the buffer dirty if caller will write in it */
950   if (writable)
951     ptr->dirty = TRUE;
952   /* Return address of proper part of the buffer */
953   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
954 }
955
956
957 /*
958  * Release all objects belonging to a specified pool.
959  */
960
961 METHODDEF(void)
962 free_pool (j_common_ptr cinfo, int pool_id)
963 {
964   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
965   small_pool_ptr shdr_ptr;
966   large_pool_ptr lhdr_ptr;
967   size_t space_freed;
968
969   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
970     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
971
972 #ifdef MEM_STATS
973   if (cinfo->err->trace_level > 1)
974     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
975 #endif
976
977   /* If freeing IMAGE pool, close any virtual arrays first */
978   if (pool_id == JPOOL_IMAGE) {
979     jvirt_sarray_ptr sptr;
980     jvirt_barray_ptr bptr;
981
982     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
983       if (sptr->b_s_open) {     /* there may be no backing store */
984         sptr->b_s_open = FALSE; /* prevent recursive close if error */
985         (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
986       }
987     }
988     mem->virt_sarray_list = NULL;
989     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
990       if (bptr->b_s_open) {     /* there may be no backing store */
991         bptr->b_s_open = FALSE; /* prevent recursive close if error */
992         (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
993       }
994     }
995     mem->virt_barray_list = NULL;
996   }
997
998   /* Release large objects */
999   lhdr_ptr = mem->large_list[pool_id];
1000   mem->large_list[pool_id] = NULL;
1001
1002   while (lhdr_ptr != NULL) {
1003     large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1004     space_freed = lhdr_ptr->bytes_used +
1005                   lhdr_ptr->bytes_left +
1006                   sizeof(large_pool_hdr);
1007     jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed);
1008     mem->total_space_allocated -= space_freed;
1009     lhdr_ptr = next_lhdr_ptr;
1010   }
1011
1012   /* Release small objects */
1013   shdr_ptr = mem->small_list[pool_id];
1014   mem->small_list[pool_id] = NULL;
1015
1016   while (shdr_ptr != NULL) {
1017     small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1018     space_freed = shdr_ptr->bytes_used +
1019                   shdr_ptr->bytes_left +
1020                   sizeof(small_pool_hdr);
1021     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1022     mem->total_space_allocated -= space_freed;
1023     shdr_ptr = next_shdr_ptr;
1024   }
1025 }
1026
1027
1028 /*
1029  * Close up shop entirely.
1030  * Note that this cannot be called unless cinfo->mem is non-NULL.
1031  */
1032
1033 METHODDEF(void)
1034 self_destruct (j_common_ptr cinfo)
1035 {
1036   int pool;
1037
1038   /* Close all backing store, release all memory.
1039    * Releasing pools in reverse order might help avoid fragmentation
1040    * with some (brain-damaged) malloc libraries.
1041    */
1042   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1043     free_pool(cinfo, pool);
1044   }
1045
1046   /* Release the memory manager control block too. */
1047   jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr));
1048   cinfo->mem = NULL;            /* ensures I will be called only once */
1049
1050   jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1051 }
1052
1053
1054 /*
1055  * Memory manager initialization.
1056  * When this is called, only the error manager pointer is valid in cinfo!
1057  */
1058
1059 GLOBAL(void)
1060 jinit_memory_mgr (j_common_ptr cinfo)
1061 {
1062   my_mem_ptr mem;
1063   long max_to_use;
1064   int pool;
1065   size_t test_mac;
1066
1067   cinfo->mem = NULL;            /* for safety if init fails */
1068
1069   /* Check for configuration errors.
1070    * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1071    * doesn't reflect any real hardware alignment requirement.
1072    * The test is a little tricky: for X>0, X and X-1 have no one-bits
1073    * in common if and only if X is a power of 2, ie has only one one-bit.
1074    * Some compilers may give an "unreachable code" warning here; ignore it.
1075    */
1076   if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
1077     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1078   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1079    * a multiple of ALIGN_SIZE.
1080    * Again, an "unreachable code" warning may be ignored here.
1081    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1082    */
1083   test_mac = (size_t) MAX_ALLOC_CHUNK;
1084   if ((long) test_mac != MAX_ALLOC_CHUNK ||
1085       (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1086     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1087
1088   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1089
1090   /* Attempt to allocate memory manager's control block */
1091   mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr));
1092
1093   if (mem == NULL) {
1094     jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1095     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1096   }
1097
1098   /* OK, fill in the method pointers */
1099   mem->pub.alloc_small = alloc_small;
1100   mem->pub.alloc_large = alloc_large;
1101   mem->pub.alloc_sarray = alloc_sarray;
1102   mem->pub.alloc_barray = alloc_barray;
1103   mem->pub.request_virt_sarray = request_virt_sarray;
1104   mem->pub.request_virt_barray = request_virt_barray;
1105   mem->pub.realize_virt_arrays = realize_virt_arrays;
1106   mem->pub.access_virt_sarray = access_virt_sarray;
1107   mem->pub.access_virt_barray = access_virt_barray;
1108   mem->pub.free_pool = free_pool;
1109   mem->pub.self_destruct = self_destruct;
1110
1111   /* Make MAX_ALLOC_CHUNK accessible to other modules */
1112   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1113
1114   /* Initialize working state */
1115   mem->pub.max_memory_to_use = max_to_use;
1116
1117   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1118     mem->small_list[pool] = NULL;
1119     mem->large_list[pool] = NULL;
1120   }
1121   mem->virt_sarray_list = NULL;
1122   mem->virt_barray_list = NULL;
1123
1124   mem->total_space_allocated = sizeof(my_memory_mgr);
1125
1126   /* Declare ourselves open for business */
1127   cinfo->mem = & mem->pub;
1128
1129   /* Check for an environment variable JPEGMEM; if found, override the
1130    * default max_memory setting from jpeg_mem_init.  Note that the
1131    * surrounding application may again override this value.
1132    * If your system doesn't support getenv(), define NO_GETENV to disable
1133    * this feature.
1134    */
1135 #ifndef NO_GETENV
1136   { char * memenv;
1137
1138     if ((memenv = getenv("JPEGMEM")) != NULL) {
1139       char ch = 'x';
1140
1141       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1142         if (ch == 'm' || ch == 'M')
1143           max_to_use *= 1000L;
1144         mem->pub.max_memory_to_use = max_to_use * 1000L;
1145       }
1146     }
1147   }
1148 #endif
1149
1150 }