4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2016, 2021-2022, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
11 * This file contains the JPEG system-independent memory management
12 * routines. This code is usable across a wide variety of machines; most
13 * of the system dependencies have been isolated in a separate file.
14 * The major functions provided here are:
15 * * pool-based allocation and freeing of memory;
16 * * policy decisions about how to divide available memory among the
18 * * control logic for swapping virtual arrays between main memory and
20 * The separate system-dependent file provides the actual backing-storage
21 * access code, and it contains the policy decision about how much total
23 * This file is system-dependent in the sense that some of its functions
24 * are unnecessary in some systems. For example, if there is enough virtual
25 * memory so that backing storage will never be used, much of the virtual
26 * array control logic could be removed. (Of course, if you have that much
27 * memory then you shouldn't care about a little bit of unused code...)
30 #define JPEG_INTERNALS
31 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
34 #include "jmemsys.h" /* import the system-dependent declarations */
35 #if !defined(_MSC_VER) || _MSC_VER > 1600
42 round_up_pow2(size_t a, size_t b)
43 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
44 /* Assumes a >= 0, b > 0, and b is a power of 2 */
46 return ((a + b - 1) & (~(b - 1)));
51 * Some important notes:
52 * The allocation routines provided here must never return NULL.
53 * They should exit to error_exit if unsuccessful.
55 * It's not a good idea to try to merge the sarray and barray routines,
56 * even though they are textually almost the same, because samples are
57 * usually stored as bytes while coefficients are shorts or ints. Thus,
58 * in machines where byte pointers have a different representation from
59 * word pointers, the resulting machine code could not be the same.
64 * Many machines require storage alignment: longs must start on 4-byte
65 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
66 * always returns pointers that are multiples of the worst-case alignment
67 * requirement, and we had better do so too.
68 * There isn't any really portable way to determine the worst-case alignment
69 * requirement. This module assumes that the alignment requirement is
70 * multiples of ALIGN_SIZE.
71 * By default, we define ALIGN_SIZE as the maximum of sizeof(double) and
72 * sizeof(void *). This is necessary on some workstations (where doubles
73 * really do need 8-byte alignment) and will work fine on nearly everything.
74 * We use the maximum of sizeof(double) and sizeof(void *) since sizeof(double)
75 * may be insufficient, for example, on CHERI-enabled platforms with 16-byte
76 * pointers and a 16-byte alignment requirement. If your machine has lesser
77 * alignment needs, you can save a few bytes by making ALIGN_SIZE smaller.
78 * The only place I know of where this will NOT work is certain Macintosh
79 * 680x0 compilers that define double as a 10-byte IEEE extended float.
80 * Doing 10-byte alignment is counterproductive because longwords won't be
81 * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have
85 #ifndef ALIGN_SIZE /* so can override from jconfig.h */
87 #define ALIGN_SIZE MAX(sizeof(void *), sizeof(double))
89 #define ALIGN_SIZE 32 /* Most of the SIMD instructions we support require
90 16-byte (128-bit) alignment, but AVX2 requires
96 * We allocate objects from "pools", where each pool is gotten with a single
97 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
98 * overhead within a pool, except for alignment padding. Each pool has a
99 * header with a link to the next pool of the same class.
100 * Small and large pool headers are identical.
103 typedef struct small_pool_struct *small_pool_ptr;
105 typedef struct small_pool_struct {
106 small_pool_ptr next; /* next in list of pools */
107 size_t bytes_used; /* how many bytes already used within pool */
108 size_t bytes_left; /* bytes still available in this pool */
111 typedef struct large_pool_struct *large_pool_ptr;
113 typedef struct large_pool_struct {
114 large_pool_ptr next; /* next in list of pools */
115 size_t bytes_used; /* how many bytes already used within pool */
116 size_t bytes_left; /* bytes still available in this pool */
120 * Here is the full definition of a memory manager object.
124 struct jpeg_memory_mgr pub; /* public fields */
126 /* Each pool identifier (lifetime class) names a linked list of pools. */
127 small_pool_ptr small_list[JPOOL_NUMPOOLS];
128 large_pool_ptr large_list[JPOOL_NUMPOOLS];
130 /* Since we only have one lifetime class of virtual arrays, only one
131 * linked list is necessary (for each datatype). Note that the virtual
132 * array control blocks being linked together are actually stored somewhere
133 * in the small-pool list.
135 jvirt_sarray_ptr virt_sarray_list;
136 jvirt_barray_ptr virt_barray_list;
138 /* This counts total space obtained from jpeg_get_small/large */
139 size_t total_space_allocated;
141 /* alloc_sarray and alloc_barray set this value for use by virtual
144 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
147 typedef my_memory_mgr *my_mem_ptr;
151 * The control blocks for virtual arrays.
152 * Note that these blocks are allocated in the "small" pool area.
153 * System-dependent info for the associated backing store (if any) is hidden
154 * inside the backing_store_info struct.
157 struct jvirt_sarray_control {
158 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
159 JDIMENSION rows_in_array; /* total virtual array height */
160 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
161 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
162 JDIMENSION rows_in_mem; /* height of memory buffer */
163 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
164 JDIMENSION cur_start_row; /* first logical row # in the buffer */
165 JDIMENSION first_undef_row; /* row # of first uninitialized row */
166 boolean pre_zero; /* pre-zero mode requested? */
167 boolean dirty; /* do current buffer contents need written? */
168 boolean b_s_open; /* is backing-store data valid? */
169 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
170 backing_store_info b_s_info; /* System-dependent control info */
173 struct jvirt_barray_control {
174 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
175 JDIMENSION rows_in_array; /* total virtual array height */
176 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
177 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
178 JDIMENSION rows_in_mem; /* height of memory buffer */
179 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
180 JDIMENSION cur_start_row; /* first logical row # in the buffer */
181 JDIMENSION first_undef_row; /* row # of first uninitialized row */
182 boolean pre_zero; /* pre-zero mode requested? */
183 boolean dirty; /* do current buffer contents need written? */
184 boolean b_s_open; /* is backing-store data valid? */
185 jvirt_barray_ptr next; /* link to next virtual barray control block */
186 backing_store_info b_s_info; /* System-dependent control info */
190 #ifdef MEM_STATS /* optional extra stuff for statistics */
193 print_mem_stats(j_common_ptr cinfo, int pool_id)
195 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
196 small_pool_ptr shdr_ptr;
197 large_pool_ptr lhdr_ptr;
199 /* Since this is only a debugging stub, we can cheat a little by using
200 * fprintf directly rather than going through the trace message code.
201 * This is helpful because message parm array can't handle longs.
203 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
204 pool_id, mem->total_space_allocated);
206 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
207 lhdr_ptr = lhdr_ptr->next) {
208 fprintf(stderr, " Large chunk used %ld\n", (long)lhdr_ptr->bytes_used);
211 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
212 shdr_ptr = shdr_ptr->next) {
213 fprintf(stderr, " Small chunk used %ld free %ld\n",
214 (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left);
218 #endif /* MEM_STATS */
222 out_of_memory(j_common_ptr cinfo, int which)
223 /* Report an out-of-memory error and stop execution */
224 /* If we compiled MEM_STATS support, report alloc requests before dying */
227 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
229 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
234 * Allocation of "small" objects.
236 * For these, we use pooled storage. When a new pool must be created,
237 * we try to get enough space for the current request plus a "slop" factor,
238 * where the slop will be the amount of leftover space in the new pool.
239 * The speed vs. space tradeoff is largely determined by the slop values.
240 * A different slop value is provided for each pool class (lifetime),
241 * and we also distinguish the first pool of a class from later ones.
242 * NOTE: the values given work fairly well on both 16- and 32-bit-int
243 * machines, but may be too small if longs are 64 bits or more.
245 * Since we do not know what alignment malloc() gives us, we have to
246 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
250 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = {
251 1600, /* first PERMANENT pool */
252 16000 /* first IMAGE pool */
255 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = {
256 0, /* additional PERMANENT pools */
257 5000 /* additional IMAGE pools */
260 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
264 alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
265 /* Allocate a "small" object */
267 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
268 small_pool_ptr hdr_ptr, prev_hdr_ptr;
270 size_t min_request, slop;
273 * Round up the requested size to a multiple of ALIGN_SIZE in order
274 * to assure alignment for the next object allocated in the same pool
275 * and so that algorithms can straddle outside the proper area up
276 * to the next alignment.
278 if (sizeofobject > MAX_ALLOC_CHUNK) {
279 /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
280 is close to SIZE_MAX. */
281 out_of_memory(cinfo, 7);
283 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
285 /* Check for unsatisfiable request (do now to ensure no overflow below) */
286 if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
288 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
290 /* See if space is available in any existing pool */
291 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
292 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
294 hdr_ptr = mem->small_list[pool_id];
295 while (hdr_ptr != NULL) {
296 if (hdr_ptr->bytes_left >= sizeofobject)
297 break; /* found pool with enough space */
298 prev_hdr_ptr = hdr_ptr;
299 hdr_ptr = hdr_ptr->next;
302 /* Time to make a new pool? */
303 if (hdr_ptr == NULL) {
304 /* min_request is what we need now, slop is what will be leftover */
305 min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
306 if (prev_hdr_ptr == NULL) /* first pool in class? */
307 slop = first_pool_slop[pool_id];
309 slop = extra_pool_slop[pool_id];
310 /* Don't ask for more than MAX_ALLOC_CHUNK */
311 if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request))
312 slop = (size_t)(MAX_ALLOC_CHUNK - min_request);
313 /* Try to get space, if fail reduce slop and try again */
315 hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop);
319 if (slop < MIN_SLOP) /* give up when it gets real small */
320 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
322 mem->total_space_allocated += min_request + slop;
323 /* Success, initialize the new pool header and add to end of list */
324 hdr_ptr->next = NULL;
325 hdr_ptr->bytes_used = 0;
326 hdr_ptr->bytes_left = sizeofobject + slop;
327 if (prev_hdr_ptr == NULL) /* first pool in class? */
328 mem->small_list[pool_id] = hdr_ptr;
330 prev_hdr_ptr->next = hdr_ptr;
333 /* OK, allocate the object from the current pool */
334 data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
335 data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
336 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
337 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
338 data_ptr += hdr_ptr->bytes_used; /* point to place for object */
339 hdr_ptr->bytes_used += sizeofobject;
340 hdr_ptr->bytes_left -= sizeofobject;
342 return (void *)data_ptr;
347 * Allocation of "large" objects.
349 * The external semantics of these are the same as "small" objects. However,
350 * the pool management heuristics are quite different. We assume that each
351 * request is large enough that it may as well be passed directly to
352 * jpeg_get_large; the pool management just links everything together
353 * so that we can free it all on demand.
354 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
355 * structures. The routines that create these structures (see below)
356 * deliberately bunch rows together to ensure a large request size.
360 alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
361 /* Allocate a "large" object */
363 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
364 large_pool_ptr hdr_ptr;
368 * Round up the requested size to a multiple of ALIGN_SIZE so that
369 * algorithms can straddle outside the proper area up to the next
372 if (sizeofobject > MAX_ALLOC_CHUNK) {
373 /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
374 is close to SIZE_MAX. */
375 out_of_memory(cinfo, 8);
377 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
379 /* Check for unsatisfiable request (do now to ensure no overflow below) */
380 if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
382 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
384 /* Always make a new pool */
385 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
386 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
388 hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject +
389 sizeof(large_pool_hdr) +
392 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
393 mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
396 /* Success, initialize the new pool header and add to list */
397 hdr_ptr->next = mem->large_list[pool_id];
398 /* We maintain space counts in each pool header for statistical purposes,
399 * even though they are not needed for allocation.
401 hdr_ptr->bytes_used = sizeofobject;
402 hdr_ptr->bytes_left = 0;
403 mem->large_list[pool_id] = hdr_ptr;
405 data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */
406 data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
407 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
408 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
410 return (void *)data_ptr;
415 * Creation of 2-D sample arrays.
417 * To minimize allocation overhead and to allow I/O of large contiguous
418 * blocks, we allocate the sample rows in groups of as many rows as possible
419 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
420 * NB: the virtual array control routines, later in this file, know about
421 * this chunking of rows. The rowsperchunk value is left in the mem manager
422 * object so that it can be saved away if this sarray is the workspace for
425 * Since we are often upsampling with a factor 2, we align the size (not
426 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
427 * to be as careful about size.
430 METHODDEF(JSAMPARRAY)
431 alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow,
433 /* Allocate a 2-D sample array */
435 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
438 JDIMENSION rowsperchunk, currow, i;
441 /* Make sure each row is properly aligned */
442 if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
443 out_of_memory(cinfo, 5); /* safety check */
445 if (samplesperrow > MAX_ALLOC_CHUNK) {
446 /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
447 is close to SIZE_MAX. */
448 out_of_memory(cinfo, 9);
450 samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
453 /* Calculate max # of rows allowed in one allocation chunk */
454 ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
455 ((long)samplesperrow * sizeof(JSAMPLE));
457 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458 if (ltemp < (long)numrows)
459 rowsperchunk = (JDIMENSION)ltemp;
461 rowsperchunk = numrows;
462 mem->last_rowsperchunk = rowsperchunk;
464 /* Get space for row pointers (small object) */
465 result = (JSAMPARRAY)alloc_small(cinfo, pool_id,
466 (size_t)(numrows * sizeof(JSAMPROW)));
468 /* Get the rows themselves (large objects) */
470 while (currow < numrows) {
471 rowsperchunk = MIN(rowsperchunk, numrows - currow);
472 workspace = (JSAMPROW)alloc_large(cinfo, pool_id,
473 (size_t)((size_t)rowsperchunk * (size_t)samplesperrow *
475 for (i = rowsperchunk; i > 0; i--) {
476 result[currow++] = workspace;
477 workspace += samplesperrow;
486 * Creation of 2-D coefficient-block arrays.
487 * This is essentially the same as the code for sample arrays, above.
490 METHODDEF(JBLOCKARRAY)
491 alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow,
493 /* Allocate a 2-D coefficient-block array */
495 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
498 JDIMENSION rowsperchunk, currow, i;
501 /* Make sure each row is properly aligned */
502 if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
503 out_of_memory(cinfo, 6); /* safety check */
505 /* Calculate max # of rows allowed in one allocation chunk */
506 ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) /
507 ((long)blocksperrow * sizeof(JBLOCK));
509 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
510 if (ltemp < (long)numrows)
511 rowsperchunk = (JDIMENSION)ltemp;
513 rowsperchunk = numrows;
514 mem->last_rowsperchunk = rowsperchunk;
516 /* Get space for row pointers (small object) */
517 result = (JBLOCKARRAY)alloc_small(cinfo, pool_id,
518 (size_t)(numrows * sizeof(JBLOCKROW)));
520 /* Get the rows themselves (large objects) */
522 while (currow < numrows) {
523 rowsperchunk = MIN(rowsperchunk, numrows - currow);
524 workspace = (JBLOCKROW)alloc_large(cinfo, pool_id,
525 (size_t)((size_t)rowsperchunk * (size_t)blocksperrow *
527 for (i = rowsperchunk; i > 0; i--) {
528 result[currow++] = workspace;
529 workspace += blocksperrow;
538 * About virtual array management:
540 * The above "normal" array routines are only used to allocate strip buffers
541 * (as wide as the image, but just a few rows high). Full-image-sized buffers
542 * are handled as "virtual" arrays. The array is still accessed a strip at a
543 * time, but the memory manager must save the whole array for repeated
544 * accesses. The intended implementation is that there is a strip buffer in
545 * memory (as high as is possible given the desired memory limit), plus a
546 * backing file that holds the rest of the array.
548 * The request_virt_array routines are told the total size of the image and
549 * the maximum number of rows that will be accessed at once. The in-memory
550 * buffer must be at least as large as the maxaccess value.
552 * The request routines create control blocks but not the in-memory buffers.
553 * That is postponed until realize_virt_arrays is called. At that time the
554 * total amount of space needed is known (approximately, anyway), so free
555 * memory can be divided up fairly.
557 * The access_virt_array routines are responsible for making a specific strip
558 * area accessible (after reading or writing the backing file, if necessary).
559 * Note that the access routines are told whether the caller intends to modify
560 * the accessed strip; during a read-only pass this saves having to rewrite
561 * data to disk. The access routines are also responsible for pre-zeroing
562 * any newly accessed rows, if pre-zeroing was requested.
564 * In current usage, the access requests are usually for nonoverlapping
565 * strips; that is, successive access start_row numbers differ by exactly
566 * num_rows = maxaccess. This means we can get good performance with simple
567 * buffer dump/reload logic, by making the in-memory buffer be a multiple
568 * of the access height; then there will never be accesses across bufferload
569 * boundaries. The code will still work with overlapping access requests,
570 * but it doesn't handle bufferload overlaps very efficiently.
574 METHODDEF(jvirt_sarray_ptr)
575 request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
576 JDIMENSION samplesperrow, JDIMENSION numrows,
577 JDIMENSION maxaccess)
578 /* Request a virtual 2-D sample array */
580 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
581 jvirt_sarray_ptr result;
583 /* Only IMAGE-lifetime virtual arrays are currently supported */
584 if (pool_id != JPOOL_IMAGE)
585 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
587 /* get control block */
588 result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id,
589 sizeof(struct jvirt_sarray_control));
591 result->mem_buffer = NULL; /* marks array not yet realized */
592 result->rows_in_array = numrows;
593 result->samplesperrow = samplesperrow;
594 result->maxaccess = maxaccess;
595 result->pre_zero = pre_zero;
596 result->b_s_open = FALSE; /* no associated backing-store object */
597 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
598 mem->virt_sarray_list = result;
604 METHODDEF(jvirt_barray_ptr)
605 request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero,
606 JDIMENSION blocksperrow, JDIMENSION numrows,
607 JDIMENSION maxaccess)
608 /* Request a virtual 2-D coefficient-block array */
610 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
611 jvirt_barray_ptr result;
613 /* Only IMAGE-lifetime virtual arrays are currently supported */
614 if (pool_id != JPOOL_IMAGE)
615 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
617 /* get control block */
618 result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id,
619 sizeof(struct jvirt_barray_control));
621 result->mem_buffer = NULL; /* marks array not yet realized */
622 result->rows_in_array = numrows;
623 result->blocksperrow = blocksperrow;
624 result->maxaccess = maxaccess;
625 result->pre_zero = pre_zero;
626 result->b_s_open = FALSE; /* no associated backing-store object */
627 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
628 mem->virt_barray_list = result;
635 realize_virt_arrays(j_common_ptr cinfo)
636 /* Allocate the in-memory buffers for any unrealized virtual arrays */
638 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
639 size_t space_per_minheight, maximum_space, avail_mem;
640 size_t minheights, max_minheights;
641 jvirt_sarray_ptr sptr;
642 jvirt_barray_ptr bptr;
644 /* Compute the minimum space needed (maxaccess rows in each buffer)
645 * and the maximum space needed (full image height in each buffer).
646 * These may be of use to the system-dependent jpeg_mem_available routine.
648 space_per_minheight = 0;
650 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
651 if (sptr->mem_buffer == NULL) { /* if not realized yet */
652 size_t new_space = (long)sptr->rows_in_array *
653 (long)sptr->samplesperrow * sizeof(JSAMPLE);
655 space_per_minheight += (long)sptr->maxaccess *
656 (long)sptr->samplesperrow * sizeof(JSAMPLE);
657 if (SIZE_MAX - maximum_space < new_space)
658 out_of_memory(cinfo, 10);
659 maximum_space += new_space;
662 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
663 if (bptr->mem_buffer == NULL) { /* if not realized yet */
664 size_t new_space = (long)bptr->rows_in_array *
665 (long)bptr->blocksperrow * sizeof(JBLOCK);
667 space_per_minheight += (long)bptr->maxaccess *
668 (long)bptr->blocksperrow * sizeof(JBLOCK);
669 if (SIZE_MAX - maximum_space < new_space)
670 out_of_memory(cinfo, 11);
671 maximum_space += new_space;
675 if (space_per_minheight <= 0)
676 return; /* no unrealized arrays, no work */
678 /* Determine amount of memory to actually use; this is system-dependent. */
679 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
680 mem->total_space_allocated);
682 /* If the maximum space needed is available, make all the buffers full
683 * height; otherwise parcel it out with the same number of minheights
686 if (avail_mem >= maximum_space)
687 max_minheights = 1000000000L;
689 max_minheights = avail_mem / space_per_minheight;
690 /* If there doesn't seem to be enough space, try to get the minimum
691 * anyway. This allows a "stub" implementation of jpeg_mem_available().
693 if (max_minheights <= 0)
697 /* Allocate the in-memory buffers and initialize backing store as needed. */
699 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
700 if (sptr->mem_buffer == NULL) { /* if not realized yet */
701 minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
702 if (minheights <= max_minheights) {
703 /* This buffer fits in memory */
704 sptr->rows_in_mem = sptr->rows_in_array;
706 /* It doesn't fit in memory, create backing store. */
707 sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess);
708 jpeg_open_backing_store(cinfo, &sptr->b_s_info,
709 (long)sptr->rows_in_array *
710 (long)sptr->samplesperrow *
711 (long)sizeof(JSAMPLE));
712 sptr->b_s_open = TRUE;
714 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
715 sptr->samplesperrow, sptr->rows_in_mem);
716 sptr->rowsperchunk = mem->last_rowsperchunk;
717 sptr->cur_start_row = 0;
718 sptr->first_undef_row = 0;
723 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
724 if (bptr->mem_buffer == NULL) { /* if not realized yet */
725 minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
726 if (minheights <= max_minheights) {
727 /* This buffer fits in memory */
728 bptr->rows_in_mem = bptr->rows_in_array;
730 /* It doesn't fit in memory, create backing store. */
731 bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess);
732 jpeg_open_backing_store(cinfo, &bptr->b_s_info,
733 (long)bptr->rows_in_array *
734 (long)bptr->blocksperrow *
735 (long)sizeof(JBLOCK));
736 bptr->b_s_open = TRUE;
738 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
739 bptr->blocksperrow, bptr->rows_in_mem);
740 bptr->rowsperchunk = mem->last_rowsperchunk;
741 bptr->cur_start_row = 0;
742 bptr->first_undef_row = 0;
750 do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
751 /* Do backing store read or write of a virtual sample array */
753 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
755 bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE);
756 file_offset = ptr->cur_start_row * bytesperrow;
757 /* Loop to read or write each allocation chunk in mem_buffer */
758 for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
759 /* One chunk, but check for short chunk at end of buffer */
760 rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
761 /* Transfer no more than is currently defined */
762 thisrow = (long)ptr->cur_start_row + i;
763 rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
764 /* Transfer no more than fits in file */
765 rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
766 if (rows <= 0) /* this chunk might be past end of file! */
768 byte_count = rows * bytesperrow;
770 (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
771 (void *)ptr->mem_buffer[i],
772 file_offset, byte_count);
774 (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
775 (void *)ptr->mem_buffer[i],
776 file_offset, byte_count);
777 file_offset += byte_count;
783 do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
784 /* Do backing store read or write of a virtual coefficient-block array */
786 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
788 bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK);
789 file_offset = ptr->cur_start_row * bytesperrow;
790 /* Loop to read or write each allocation chunk in mem_buffer */
791 for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) {
792 /* One chunk, but check for short chunk at end of buffer */
793 rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i);
794 /* Transfer no more than is currently defined */
795 thisrow = (long)ptr->cur_start_row + i;
796 rows = MIN(rows, (long)ptr->first_undef_row - thisrow);
797 /* Transfer no more than fits in file */
798 rows = MIN(rows, (long)ptr->rows_in_array - thisrow);
799 if (rows <= 0) /* this chunk might be past end of file! */
801 byte_count = rows * bytesperrow;
803 (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info,
804 (void *)ptr->mem_buffer[i],
805 file_offset, byte_count);
807 (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info,
808 (void *)ptr->mem_buffer[i],
809 file_offset, byte_count);
810 file_offset += byte_count;
815 METHODDEF(JSAMPARRAY)
816 access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr,
817 JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
818 /* Access the part of a virtual sample array starting at start_row */
819 /* and extending for num_rows rows. writable is true if */
820 /* caller intends to modify the accessed area. */
822 JDIMENSION end_row = start_row + num_rows;
823 JDIMENSION undef_row;
825 /* debugging check */
826 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
827 ptr->mem_buffer == NULL)
828 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
830 /* Make the desired part of the virtual array accessible */
831 if (start_row < ptr->cur_start_row ||
832 end_row > ptr->cur_start_row + ptr->rows_in_mem) {
834 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
835 /* Flush old buffer contents if necessary */
837 do_sarray_io(cinfo, ptr, TRUE);
840 /* Decide what part of virtual array to access.
841 * Algorithm: if target address > current window, assume forward scan,
842 * load starting at target address. If target address < current window,
843 * assume backward scan, load so that target area is top of window.
844 * Note that when switching from forward write to forward read, will have
845 * start_row = 0, so the limiting case applies and we load from 0 anyway.
847 if (start_row > ptr->cur_start_row) {
848 ptr->cur_start_row = start_row;
850 /* use long arithmetic here to avoid overflow & unsigned problems */
853 ltemp = (long)end_row - (long)ptr->rows_in_mem;
855 ltemp = 0; /* don't fall off front end of file */
856 ptr->cur_start_row = (JDIMENSION)ltemp;
858 /* Read in the selected part of the array.
859 * During the initial write pass, we will do no actual read
860 * because the selected part is all undefined.
862 do_sarray_io(cinfo, ptr, FALSE);
864 /* Ensure the accessed part of the array is defined; prezero if needed.
865 * To improve locality of access, we only prezero the part of the array
866 * that the caller is about to access, not the entire in-memory array.
868 if (ptr->first_undef_row < end_row) {
869 if (ptr->first_undef_row < start_row) {
870 if (writable) /* writer skipped over a section of array */
871 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
872 undef_row = start_row; /* but reader is allowed to read ahead */
874 undef_row = ptr->first_undef_row;
877 ptr->first_undef_row = end_row;
879 size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE);
880 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
881 end_row -= ptr->cur_start_row;
882 while (undef_row < end_row) {
883 jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
887 if (!writable) /* reader looking at undefined data */
888 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
891 /* Flag the buffer dirty if caller will write in it */
894 /* Return address of proper part of the buffer */
895 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
899 METHODDEF(JBLOCKARRAY)
900 access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr,
901 JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
902 /* Access the part of a virtual block array starting at start_row */
903 /* and extending for num_rows rows. writable is true if */
904 /* caller intends to modify the accessed area. */
906 JDIMENSION end_row = start_row + num_rows;
907 JDIMENSION undef_row;
909 /* debugging check */
910 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
911 ptr->mem_buffer == NULL)
912 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
914 /* Make the desired part of the virtual array accessible */
915 if (start_row < ptr->cur_start_row ||
916 end_row > ptr->cur_start_row + ptr->rows_in_mem) {
918 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
919 /* Flush old buffer contents if necessary */
921 do_barray_io(cinfo, ptr, TRUE);
924 /* Decide what part of virtual array to access.
925 * Algorithm: if target address > current window, assume forward scan,
926 * load starting at target address. If target address < current window,
927 * assume backward scan, load so that target area is top of window.
928 * Note that when switching from forward write to forward read, will have
929 * start_row = 0, so the limiting case applies and we load from 0 anyway.
931 if (start_row > ptr->cur_start_row) {
932 ptr->cur_start_row = start_row;
934 /* use long arithmetic here to avoid overflow & unsigned problems */
937 ltemp = (long)end_row - (long)ptr->rows_in_mem;
939 ltemp = 0; /* don't fall off front end of file */
940 ptr->cur_start_row = (JDIMENSION)ltemp;
942 /* Read in the selected part of the array.
943 * During the initial write pass, we will do no actual read
944 * because the selected part is all undefined.
946 do_barray_io(cinfo, ptr, FALSE);
948 /* Ensure the accessed part of the array is defined; prezero if needed.
949 * To improve locality of access, we only prezero the part of the array
950 * that the caller is about to access, not the entire in-memory array.
952 if (ptr->first_undef_row < end_row) {
953 if (ptr->first_undef_row < start_row) {
954 if (writable) /* writer skipped over a section of array */
955 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
956 undef_row = start_row; /* but reader is allowed to read ahead */
958 undef_row = ptr->first_undef_row;
961 ptr->first_undef_row = end_row;
963 size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK);
964 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
965 end_row -= ptr->cur_start_row;
966 while (undef_row < end_row) {
967 jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow);
971 if (!writable) /* reader looking at undefined data */
972 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
975 /* Flag the buffer dirty if caller will write in it */
978 /* Return address of proper part of the buffer */
979 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
984 * Release all objects belonging to a specified pool.
988 free_pool(j_common_ptr cinfo, int pool_id)
990 my_mem_ptr mem = (my_mem_ptr)cinfo->mem;
991 small_pool_ptr shdr_ptr;
992 large_pool_ptr lhdr_ptr;
995 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
996 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
999 if (cinfo->err->trace_level > 1)
1000 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
1003 /* If freeing IMAGE pool, close any virtual arrays first */
1004 if (pool_id == JPOOL_IMAGE) {
1005 jvirt_sarray_ptr sptr;
1006 jvirt_barray_ptr bptr;
1008 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1009 if (sptr->b_s_open) { /* there may be no backing store */
1010 sptr->b_s_open = FALSE; /* prevent recursive close if error */
1011 (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info);
1014 mem->virt_sarray_list = NULL;
1015 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1016 if (bptr->b_s_open) { /* there may be no backing store */
1017 bptr->b_s_open = FALSE; /* prevent recursive close if error */
1018 (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info);
1021 mem->virt_barray_list = NULL;
1024 /* Release large objects */
1025 lhdr_ptr = mem->large_list[pool_id];
1026 mem->large_list[pool_id] = NULL;
1028 while (lhdr_ptr != NULL) {
1029 large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1030 space_freed = lhdr_ptr->bytes_used +
1031 lhdr_ptr->bytes_left +
1032 sizeof(large_pool_hdr) + ALIGN_SIZE - 1;
1033 jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed);
1034 mem->total_space_allocated -= space_freed;
1035 lhdr_ptr = next_lhdr_ptr;
1038 /* Release small objects */
1039 shdr_ptr = mem->small_list[pool_id];
1040 mem->small_list[pool_id] = NULL;
1042 while (shdr_ptr != NULL) {
1043 small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1044 space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left +
1045 sizeof(small_pool_hdr) + ALIGN_SIZE - 1;
1046 jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed);
1047 mem->total_space_allocated -= space_freed;
1048 shdr_ptr = next_shdr_ptr;
1054 * Close up shop entirely.
1055 * Note that this cannot be called unless cinfo->mem is non-NULL.
1059 self_destruct(j_common_ptr cinfo)
1063 /* Close all backing store, release all memory.
1064 * Releasing pools in reverse order might help avoid fragmentation
1065 * with some (brain-damaged) malloc libraries.
1067 for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1068 free_pool(cinfo, pool);
1071 /* Release the memory manager control block too. */
1072 jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr));
1073 cinfo->mem = NULL; /* ensures I will be called only once */
1075 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1080 * Memory manager initialization.
1081 * When this is called, only the error manager pointer is valid in cinfo!
1085 jinit_memory_mgr(j_common_ptr cinfo)
1092 cinfo->mem = NULL; /* for safety if init fails */
1094 /* Check for configuration errors.
1095 * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1096 * doesn't reflect any real hardware alignment requirement.
1097 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1098 * in common if and only if X is a power of 2, ie has only one one-bit.
1099 * Some compilers may give an "unreachable code" warning here; ignore it.
1101 if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0)
1102 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1103 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1104 * a multiple of ALIGN_SIZE.
1105 * Again, an "unreachable code" warning may be ignored here.
1106 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1108 test_mac = (size_t)MAX_ALLOC_CHUNK;
1109 if ((long)test_mac != MAX_ALLOC_CHUNK ||
1110 (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1111 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1113 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1115 /* Attempt to allocate memory manager's control block */
1116 mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr));
1119 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1120 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1123 /* OK, fill in the method pointers */
1124 mem->pub.alloc_small = alloc_small;
1125 mem->pub.alloc_large = alloc_large;
1126 mem->pub.alloc_sarray = alloc_sarray;
1127 mem->pub.alloc_barray = alloc_barray;
1128 mem->pub.request_virt_sarray = request_virt_sarray;
1129 mem->pub.request_virt_barray = request_virt_barray;
1130 mem->pub.realize_virt_arrays = realize_virt_arrays;
1131 mem->pub.access_virt_sarray = access_virt_sarray;
1132 mem->pub.access_virt_barray = access_virt_barray;
1133 mem->pub.free_pool = free_pool;
1134 mem->pub.self_destruct = self_destruct;
1136 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1137 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1139 /* Initialize working state */
1140 mem->pub.max_memory_to_use = max_to_use;
1142 for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) {
1143 mem->small_list[pool] = NULL;
1144 mem->large_list[pool] = NULL;
1146 mem->virt_sarray_list = NULL;
1147 mem->virt_barray_list = NULL;
1149 mem->total_space_allocated = sizeof(my_memory_mgr);
1151 /* Declare ourselves open for business */
1152 cinfo->mem = &mem->pub;
1154 /* Check for an environment variable JPEGMEM; if found, override the
1155 * default max_memory setting from jpeg_mem_init. Note that the
1156 * surrounding application may again override this value.
1157 * If your system doesn't support getenv(), define NO_GETENV to disable
1162 char memenv[30] = { 0 };
1164 if (!GETENV_S(memenv, 30, "JPEGMEM") && strlen(memenv) > 0) {
1168 if (sscanf_s(memenv, "%ld%c", &max_to_use, &ch, 1) > 0) {
1170 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1172 if (ch == 'm' || ch == 'M')
1173 max_to_use *= 1000L;
1174 mem->pub.max_memory_to_use = max_to_use * 1000L;