4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1994-1998, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2015, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
11 * This file contains a fast, not so accurate integer implementation of the
12 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
13 * must also perform dequantization of the input coefficients.
15 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
16 * on each row (or vice versa, but it's more convenient to emit a row at
17 * a time). Direct algorithms are also available, but they are much more
18 * complex and seem not to be any faster when reduced to code.
20 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
21 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
22 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
23 * JPEG textbook (see REFERENCES section in file README.ijg). The following
24 * code is based directly on figure 4-8 in P&M.
25 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
26 * possible to arrange the computation so that many of the multiplies are
27 * simple scalings of the final outputs. These multiplies can then be
28 * folded into the multiplications or divisions by the JPEG quantization
29 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
30 * to be done in the DCT itself.
31 * The primary disadvantage of this method is that with fixed-point math,
32 * accuracy is lost due to imprecise representation of the scaled
33 * quantization values. The smaller the quantization table entry, the less
34 * precise the scaled value, so this implementation does worse with high-
35 * quality-setting files than with low-quality ones.
38 #define JPEG_INTERNALS
41 #include "jdct.h" /* Private declarations for DCT subsystem */
43 #ifdef DCT_IFAST_SUPPORTED
47 * This module is specialized to the case DCTSIZE = 8.
51 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
55 /* Scaling decisions are generally the same as in the LL&M algorithm;
56 * see jidctint.c for more details. However, we choose to descale
57 * (right shift) multiplication products as soon as they are formed,
58 * rather than carrying additional fractional bits into subsequent additions.
59 * This compromises accuracy slightly, but it lets us save a few shifts.
60 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
61 * everywhere except in the multiplications proper; this saves a good deal
62 * of work on 16-bit-int machines.
64 * The dequantized coefficients are not integers because the AA&N scaling
65 * factors have been incorporated. We represent them scaled up by PASS1_BITS,
66 * so that the first and second IDCT rounds have the same input scaling.
67 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
68 * avoid a descaling shift; this compromises accuracy rather drastically
69 * for small quantization table entries, but it saves a lot of shifts.
70 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
71 * so we use a much larger scaling factor to preserve accuracy.
73 * A final compromise is to represent the multiplicative constants to only
74 * 8 fractional bits, rather than 13. This saves some shifting work on some
75 * machines, and may also reduce the cost of multiplication (since there
76 * are fewer one-bits in the constants).
79 #if BITS_IN_JSAMPLE == 8
84 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
87 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
88 * causing a lot of useless floating-point operations at run time.
89 * To get around this we use the following pre-calculated constants.
90 * If you change CONST_BITS you may want to add appropriate values.
91 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
95 #define FIX_1_082392200 ((JLONG)277) /* FIX(1.082392200) */
96 #define FIX_1_414213562 ((JLONG)362) /* FIX(1.414213562) */
97 #define FIX_1_847759065 ((JLONG)473) /* FIX(1.847759065) */
98 #define FIX_2_613125930 ((JLONG)669) /* FIX(2.613125930) */
100 #define FIX_1_082392200 FIX(1.082392200)
101 #define FIX_1_414213562 FIX(1.414213562)
102 #define FIX_1_847759065 FIX(1.847759065)
103 #define FIX_2_613125930 FIX(2.613125930)
107 /* We can gain a little more speed, with a further compromise in accuracy,
108 * by omitting the addition in a descaling shift. This yields an incorrectly
109 * rounded result half the time...
112 #ifndef USE_ACCURATE_ROUNDING
114 #define DESCALE(x, n) RIGHT_SHIFT(x, n)
118 /* Multiply a DCTELEM variable by an JLONG constant, and immediately
119 * descale to yield a DCTELEM result.
122 #define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS))
125 /* Dequantize a coefficient by multiplying it by the multiplier-table
126 * entry; produce a DCTELEM result. For 8-bit data a 16x16->16
127 * multiplication will do. For 12-bit data, the multiplier table is
128 * declared JLONG, so a 32-bit multiply will be used.
131 #if BITS_IN_JSAMPLE == 8
132 #define DEQUANTIZE(coef, quantval) (((IFAST_MULT_TYPE)(coef)) * (quantval))
134 #define DEQUANTIZE(coef, quantval) \
135 DESCALE((coef) * (quantval), IFAST_SCALE_BITS - PASS1_BITS)
139 /* Like DESCALE, but applies to a DCTELEM and produces an int.
140 * We assume that int right shift is unsigned if JLONG right shift is.
143 #ifdef RIGHT_SHIFT_IS_UNSIGNED
144 #define ISHIFT_TEMPS DCTELEM ishift_temp;
145 #if BITS_IN_JSAMPLE == 8
146 #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
148 #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
150 #define IRIGHT_SHIFT(x, shft) \
151 ((ishift_temp = (x)) < 0 ? \
152 (ishift_temp >> (shft)) | ((~((DCTELEM)0)) << (DCTELEMBITS - (shft))) : \
153 (ishift_temp >> (shft)))
156 #define IRIGHT_SHIFT(x, shft) ((x) >> (shft))
159 #ifdef USE_ACCURATE_ROUNDING
160 #define IDESCALE(x, n) ((int)IRIGHT_SHIFT((x) + (1 << ((n) - 1)), n))
162 #define IDESCALE(x, n) ((int)IRIGHT_SHIFT(x, n))
167 * Perform dequantization and inverse DCT on one block of coefficients.
171 jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr,
172 JCOEFPTR coef_block, JSAMPARRAY output_buf,
173 JDIMENSION output_col)
175 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
176 DCTELEM tmp10, tmp11, tmp12, tmp13;
177 DCTELEM z5, z10, z11, z12, z13;
179 IFAST_MULT_TYPE *quantptr;
182 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
184 int workspace[DCTSIZE2]; /* buffers data between passes */
185 SHIFT_TEMPS /* for DESCALE */
186 ISHIFT_TEMPS /* for IDESCALE */
188 /* Pass 1: process columns from input, store into work array. */
191 quantptr = (IFAST_MULT_TYPE *)compptr->dct_table;
193 for (ctr = DCTSIZE; ctr > 0; ctr--) {
194 /* Due to quantization, we will usually find that many of the input
195 * coefficients are zero, especially the AC terms. We can exploit this
196 * by short-circuiting the IDCT calculation for any column in which all
197 * the AC terms are zero. In that case each output is equal to the
198 * DC coefficient (with scale factor as needed).
199 * With typical images and quantization tables, half or more of the
200 * column DCT calculations can be simplified this way.
203 if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
204 inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 &&
205 inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 &&
206 inptr[DCTSIZE * 7] == 0) {
207 /* AC terms all zero */
208 int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
210 wsptr[DCTSIZE * 0] = dcval;
211 wsptr[DCTSIZE * 1] = dcval;
212 wsptr[DCTSIZE * 2] = dcval;
213 wsptr[DCTSIZE * 3] = dcval;
214 wsptr[DCTSIZE * 4] = dcval;
215 wsptr[DCTSIZE * 5] = dcval;
216 wsptr[DCTSIZE * 6] = dcval;
217 wsptr[DCTSIZE * 7] = dcval;
219 inptr++; /* advance pointers to next column */
227 tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
228 tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
229 tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]);
230 tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
232 tmp10 = tmp0 + tmp2; /* phase 3 */
235 tmp13 = tmp1 + tmp3; /* phases 5-3 */
236 tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
238 tmp0 = tmp10 + tmp13; /* phase 2 */
239 tmp3 = tmp10 - tmp13;
240 tmp1 = tmp11 + tmp12;
241 tmp2 = tmp11 - tmp12;
245 tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
246 tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
247 tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
248 tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
250 z13 = tmp6 + tmp5; /* phase 6 */
255 tmp7 = z11 + z13; /* phase 5 */
256 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
258 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
259 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
260 tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
262 tmp6 = tmp12 - tmp7; /* phase 2 */
266 wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7);
267 wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7);
268 wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6);
269 wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6);
270 wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5);
271 wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5);
272 wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4);
273 wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4);
275 inptr++; /* advance pointers to next column */
280 /* Pass 2: process rows from work array, store into output array. */
281 /* Note that we must descale the results by a factor of 8 == 2**3, */
282 /* and also undo the PASS1_BITS scaling. */
285 for (ctr = 0; ctr < DCTSIZE; ctr++) {
286 outptr = output_buf[ctr] + output_col;
287 /* Rows of zeroes can be exploited in the same way as we did with columns.
288 * However, the column calculation has created many nonzero AC terms, so
289 * the simplification applies less often (typically 5% to 10% of the time).
290 * On machines with very fast multiplication, it's possible that the
291 * test takes more time than it's worth. In that case this section
292 * may be commented out.
295 #ifndef NO_ZERO_ROW_TEST
296 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
297 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
298 /* AC terms all zero */
300 range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK];
311 wsptr += DCTSIZE; /* advance pointer to next row */
318 tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]);
319 tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]);
321 tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]);
323 MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13;
325 tmp0 = tmp10 + tmp13;
326 tmp3 = tmp10 - tmp13;
327 tmp1 = tmp11 + tmp12;
328 tmp2 = tmp11 - tmp12;
332 z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3];
333 z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3];
334 z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7];
335 z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7];
337 tmp7 = z11 + z13; /* phase 5 */
338 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
340 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
341 tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
342 tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */
344 tmp6 = tmp12 - tmp7; /* phase 2 */
348 /* Final output stage: scale down by a factor of 8 and range-limit */
351 range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK];
353 range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK];
355 range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK];
357 range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK];
359 range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK];
361 range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK];
363 range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK];
365 range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK];
367 wsptr += DCTSIZE; /* advance pointer to next row */
371 #endif /* DCT_IFAST_SUPPORTED */