Imported Upstream version 1.4.2
[platform/upstream/libjpeg-turbo.git] / jfdctint.c
1 /*
2  * jfdctint.c
3  *
4  * This file was part of the Independent JPEG Group's software.
5  * Copyright (C) 1991-1996, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2015, D. R. Commander
8  * For conditions of distribution and use, see the accompanying README file.
9  *
10  * This file contains a slow-but-accurate integer implementation of the
11  * forward DCT (Discrete Cosine Transform).
12  *
13  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
14  * on each column.  Direct algorithms are also available, but they are
15  * much more complex and seem not to be any faster when reduced to code.
16  *
17  * This implementation is based on an algorithm described in
18  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
19  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
20  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
21  * The primary algorithm described there uses 11 multiplies and 29 adds.
22  * We use their alternate method with 12 multiplies and 32 adds.
23  * The advantage of this method is that no data path contains more than one
24  * multiplication; this allows a very simple and accurate implementation in
25  * scaled fixed-point arithmetic, with a minimal number of shifts.
26  */
27
28 #define JPEG_INTERNALS
29 #include "jinclude.h"
30 #include "jpeglib.h"
31 #include "jdct.h"               /* Private declarations for DCT subsystem */
32
33 #ifdef DCT_ISLOW_SUPPORTED
34
35
36 /*
37  * This module is specialized to the case DCTSIZE = 8.
38  */
39
40 #if DCTSIZE != 8
41   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
42 #endif
43
44
45 /*
46  * The poop on this scaling stuff is as follows:
47  *
48  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
49  * larger than the true DCT outputs.  The final outputs are therefore
50  * a factor of N larger than desired; since N=8 this can be cured by
51  * a simple right shift at the end of the algorithm.  The advantage of
52  * this arrangement is that we save two multiplications per 1-D DCT,
53  * because the y0 and y4 outputs need not be divided by sqrt(N).
54  * In the IJG code, this factor of 8 is removed by the quantization step
55  * (in jcdctmgr.c), NOT in this module.
56  *
57  * We have to do addition and subtraction of the integer inputs, which
58  * is no problem, and multiplication by fractional constants, which is
59  * a problem to do in integer arithmetic.  We multiply all the constants
60  * by CONST_SCALE and convert them to integer constants (thus retaining
61  * CONST_BITS bits of precision in the constants).  After doing a
62  * multiplication we have to divide the product by CONST_SCALE, with proper
63  * rounding, to produce the correct output.  This division can be done
64  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
65  * as long as possible so that partial sums can be added together with
66  * full fractional precision.
67  *
68  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
69  * they are represented to better-than-integral precision.  These outputs
70  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
71  * with the recommended scaling.  (For 12-bit sample data, the intermediate
72  * array is INT32 anyway.)
73  *
74  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
75  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
76  * shows that the values given below are the most effective.
77  */
78
79 #if BITS_IN_JSAMPLE == 8
80 #define CONST_BITS  13
81 #define PASS1_BITS  2
82 #else
83 #define CONST_BITS  13
84 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
85 #endif
86
87 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
88  * causing a lot of useless floating-point operations at run time.
89  * To get around this we use the following pre-calculated constants.
90  * If you change CONST_BITS you may want to add appropriate values.
91  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
92  */
93
94 #if CONST_BITS == 13
95 #define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */
96 #define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */
97 #define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */
98 #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
99 #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
100 #define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */
101 #define FIX_1_501321110  ((INT32)  12299)       /* FIX(1.501321110) */
102 #define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
103 #define FIX_1_961570560  ((INT32)  16069)       /* FIX(1.961570560) */
104 #define FIX_2_053119869  ((INT32)  16819)       /* FIX(2.053119869) */
105 #define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
106 #define FIX_3_072711026  ((INT32)  25172)       /* FIX(3.072711026) */
107 #else
108 #define FIX_0_298631336  FIX(0.298631336)
109 #define FIX_0_390180644  FIX(0.390180644)
110 #define FIX_0_541196100  FIX(0.541196100)
111 #define FIX_0_765366865  FIX(0.765366865)
112 #define FIX_0_899976223  FIX(0.899976223)
113 #define FIX_1_175875602  FIX(1.175875602)
114 #define FIX_1_501321110  FIX(1.501321110)
115 #define FIX_1_847759065  FIX(1.847759065)
116 #define FIX_1_961570560  FIX(1.961570560)
117 #define FIX_2_053119869  FIX(2.053119869)
118 #define FIX_2_562915447  FIX(2.562915447)
119 #define FIX_3_072711026  FIX(3.072711026)
120 #endif
121
122
123 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
124  * For 8-bit samples with the recommended scaling, all the variable
125  * and constant values involved are no more than 16 bits wide, so a
126  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
127  * For 12-bit samples, a full 32-bit multiplication will be needed.
128  */
129
130 #if BITS_IN_JSAMPLE == 8
131 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
132 #else
133 #define MULTIPLY(var,const)  ((var) * (const))
134 #endif
135
136
137 /*
138  * Perform the forward DCT on one block of samples.
139  */
140
141 GLOBAL(void)
142 jpeg_fdct_islow (DCTELEM * data)
143 {
144   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
145   INT32 tmp10, tmp11, tmp12, tmp13;
146   INT32 z1, z2, z3, z4, z5;
147   DCTELEM *dataptr;
148   int ctr;
149   SHIFT_TEMPS
150
151   /* Pass 1: process rows. */
152   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
153   /* furthermore, we scale the results by 2**PASS1_BITS. */
154
155   dataptr = data;
156   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
157     tmp0 = dataptr[0] + dataptr[7];
158     tmp7 = dataptr[0] - dataptr[7];
159     tmp1 = dataptr[1] + dataptr[6];
160     tmp6 = dataptr[1] - dataptr[6];
161     tmp2 = dataptr[2] + dataptr[5];
162     tmp5 = dataptr[2] - dataptr[5];
163     tmp3 = dataptr[3] + dataptr[4];
164     tmp4 = dataptr[3] - dataptr[4];
165
166     /* Even part per LL&M figure 1 --- note that published figure is faulty;
167      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
168      */
169
170     tmp10 = tmp0 + tmp3;
171     tmp13 = tmp0 - tmp3;
172     tmp11 = tmp1 + tmp2;
173     tmp12 = tmp1 - tmp2;
174
175     dataptr[0] = (DCTELEM) LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS);
176     dataptr[4] = (DCTELEM) LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS);
177
178     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
179     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
180                                    CONST_BITS-PASS1_BITS);
181     dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
182                                    CONST_BITS-PASS1_BITS);
183
184     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
185      * cK represents cos(K*pi/16).
186      * i0..i3 in the paper are tmp4..tmp7 here.
187      */
188
189     z1 = tmp4 + tmp7;
190     z2 = tmp5 + tmp6;
191     z3 = tmp4 + tmp6;
192     z4 = tmp5 + tmp7;
193     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
194
195     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
196     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
197     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
198     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
199     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
200     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
201     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
202     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
203
204     z3 += z5;
205     z4 += z5;
206
207     dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
208     dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
209     dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
210     dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
211
212     dataptr += DCTSIZE;         /* advance pointer to next row */
213   }
214
215   /* Pass 2: process columns.
216    * We remove the PASS1_BITS scaling, but leave the results scaled up
217    * by an overall factor of 8.
218    */
219
220   dataptr = data;
221   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
222     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
223     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
224     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
225     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
226     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
227     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
228     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
229     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
230
231     /* Even part per LL&M figure 1 --- note that published figure is faulty;
232      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
233      */
234
235     tmp10 = tmp0 + tmp3;
236     tmp13 = tmp0 - tmp3;
237     tmp11 = tmp1 + tmp2;
238     tmp12 = tmp1 - tmp2;
239
240     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
241     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
242
243     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
244     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
245                                            CONST_BITS+PASS1_BITS);
246     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
247                                            CONST_BITS+PASS1_BITS);
248
249     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
250      * cK represents cos(K*pi/16).
251      * i0..i3 in the paper are tmp4..tmp7 here.
252      */
253
254     z1 = tmp4 + tmp7;
255     z2 = tmp5 + tmp6;
256     z3 = tmp4 + tmp6;
257     z4 = tmp5 + tmp7;
258     z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
259
260     tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
261     tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
262     tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
263     tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
264     z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
265     z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
266     z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
267     z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
268
269     z3 += z5;
270     z4 += z5;
271
272     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
273                                            CONST_BITS+PASS1_BITS);
274     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
275                                            CONST_BITS+PASS1_BITS);
276     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
277                                            CONST_BITS+PASS1_BITS);
278     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
279                                            CONST_BITS+PASS1_BITS);
280
281     dataptr++;                  /* advance pointer to next column */
282   }
283 }
284
285 #endif /* DCT_ISLOW_SUPPORTED */