4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * Lossless JPEG Modifications:
7 * Copyright (C) 1999, Ken Murchison.
8 * libjpeg-turbo Modifications:
9 * Copyright (C) 2009-2011, 2016, 2018-2019, 2022, D. R. Commander.
10 * Copyright (C) 2018, Matthias Räncker.
11 * For conditions of distribution and use, see the accompanying README.ijg
14 * This file contains Huffman entropy decoding routines.
16 * Much of the complexity here has to do with supporting input suspension.
17 * If the data source module demands suspension, we want to be able to back
18 * up to the start of the current MCU. To do this, we copy state variables
19 * into local working storage, and update them back to the permanent
20 * storage only upon successful completion of an MCU.
22 * NOTE: All referenced figures are from
23 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
26 #define JPEG_INTERNALS
29 #include "jdhuff.h" /* Declarations shared with jd*huff.c */
30 #include "jpegapicomp.h"
35 * Expanded entropy decoder object for Huffman decoding.
37 * The savable_state subrecord contains fields that change within an MCU,
38 * but must not be updated permanently until we complete the MCU.
42 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
46 struct jpeg_entropy_decoder pub; /* public fields */
48 /* These fields are loaded into local variables at start of each MCU.
49 * In case of suspension, we exit WITHOUT updating them.
51 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
52 savable_state saved; /* Other state at start of MCU */
54 /* These fields are NOT loaded into local working state. */
55 unsigned int restarts_to_go; /* MCUs left in this restart interval */
57 /* Pointers to derived tables (these workspaces have image lifespan) */
58 d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
59 d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
61 /* Precalculated info set up by start_pass for use in decode_mcu: */
63 /* Pointers to derived tables to be used for each block within an MCU */
64 d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
65 d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
66 /* Whether we care about the DC and AC coefficient values for each block */
67 boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
68 boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
69 } huff_entropy_decoder;
71 typedef huff_entropy_decoder *huff_entropy_ptr;
75 * Initialize for a Huffman-compressed scan.
79 start_pass_huff_decoder(j_decompress_ptr cinfo)
81 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
82 int ci, blkn, dctbl, actbl;
83 d_derived_tbl **pdtbl;
84 jpeg_component_info *compptr;
86 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
87 * This ought to be an error condition, but we make it a warning because
88 * there are some baseline files out there with all zeroes in these bytes.
90 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
91 cinfo->Ah != 0 || cinfo->Al != 0)
92 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
94 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
95 compptr = cinfo->cur_comp_info[ci];
96 dctbl = compptr->dc_tbl_no;
97 actbl = compptr->ac_tbl_no;
98 /* Compute derived values for Huffman tables */
99 /* We may do this more than once for a table, but it's not expensive */
100 pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
101 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
102 pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
103 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
104 /* Initialize DC predictions to 0 */
105 entropy->saved.last_dc_val[ci] = 0;
108 /* Precalculate decoding info for each block in an MCU of this scan */
109 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
110 ci = cinfo->MCU_membership[blkn];
111 compptr = cinfo->cur_comp_info[ci];
112 /* Precalculate which table to use for each block */
113 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
114 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
115 /* Decide whether we really care about the coefficient values */
116 if (compptr->component_needed) {
117 entropy->dc_needed[blkn] = TRUE;
118 /* we don't need the ACs if producing a 1/8th-size image */
119 entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
121 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
125 /* Initialize bitread state variables */
126 entropy->bitstate.bits_left = 0;
127 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
128 entropy->pub.insufficient_data = FALSE;
130 /* Initialize restart counter */
131 entropy->restarts_to_go = cinfo->restart_interval;
136 * Compute the derived values for a Huffman table.
137 * This routine also performs some validation checks on the table.
139 * Note this is also used by jdphuff.c and jdlhuff.c.
143 jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
144 d_derived_tbl **pdtbl)
148 int p, i, l, si, numsymbols;
151 unsigned int huffcode[257];
154 /* Note that huffsize[] and huffcode[] are filled in code-length order,
155 * paralleling the order of the symbols themselves in htbl->huffval[].
158 /* Find the input Huffman table */
159 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
160 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
162 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
164 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
166 /* Allocate a workspace if we haven't already done so. */
168 *pdtbl = (d_derived_tbl *)
169 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
170 sizeof(d_derived_tbl));
172 dtbl->pub = htbl; /* fill in back link */
174 /* Figure C.1: make table of Huffman code length for each symbol */
177 for (l = 1; l <= 16; l++) {
178 i = (int)htbl->bits[l];
179 if (i < 0 || p + i > 256) /* protect against table overrun */
180 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
182 huffsize[p++] = (char)l;
187 /* Figure C.2: generate the codes themselves */
188 /* We also validate that the counts represent a legal Huffman code tree. */
193 while (huffsize[p]) {
194 while (((int)huffsize[p]) == si) {
195 huffcode[p++] = code;
198 /* code is now 1 more than the last code used for codelength si; but
199 * it must still fit in si bits, since no code is allowed to be all ones.
201 if (((JLONG)code) >= (((JLONG)1) << si))
202 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
207 /* Figure F.15: generate decoding tables for bit-sequential decoding */
210 for (l = 1; l <= 16; l++) {
212 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
213 * minus the minimum code of length l
215 dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
217 dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
219 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
222 dtbl->valoffset[17] = 0;
223 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
225 /* Compute lookahead tables to speed up decoding.
226 * First we set all the table entries to 0, indicating "too long";
227 * then we iterate through the Huffman codes that are short enough and
228 * fill in all the entries that correspond to bit sequences starting
232 for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
233 dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
236 for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
237 for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
238 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
239 /* Generate left-justified code followed by all possible bit sequences */
240 lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
241 for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
242 dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
248 /* Validate symbols as being reasonable.
249 * For AC tables, we make no check, but accept all byte values 0..255.
250 * For DC tables, we require the symbols to be in range 0..15 in lossy mode
251 * and 0..16 in lossless mode. (Tighter bounds could be applied depending on
252 * the data depth and mode, but this is sufficient to ensure safe decoding.)
255 for (i = 0; i < numsymbols; i++) {
256 int sym = htbl->huffval[i];
257 if (sym < 0 || sym > (cinfo->master->lossless ? 16 : 15))
258 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
265 * Out-of-line code for bit fetching (shared with jdphuff.c and jdlhuff.c).
266 * See jdhuff.h for info about usage.
267 * Note: current values of get_buffer and bits_left are passed as parameters,
268 * but are returned in the corresponding fields of the state struct.
270 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
271 * of get_buffer to be used. (On machines with wider words, an even larger
272 * buffer could be used.) However, on some machines 32-bit shifts are
273 * quite slow and take time proportional to the number of places shifted.
274 * (This is true with most PC compilers, for instance.) In this case it may
275 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
276 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
280 #define MIN_GET_BITS 15 /* minimum allowable value */
282 #define MIN_GET_BITS (BIT_BUF_SIZE - 7)
287 jpeg_fill_bit_buffer(bitread_working_state *state,
288 register bit_buf_type get_buffer, register int bits_left,
290 /* Load up the bit buffer to a depth of at least nbits */
292 /* Copy heavily used state fields into locals (hopefully registers) */
293 register const JOCTET *next_input_byte = state->next_input_byte;
294 register size_t bytes_in_buffer = state->bytes_in_buffer;
295 j_decompress_ptr cinfo = state->cinfo;
297 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
298 /* (It is assumed that no request will be for more than that many bits.) */
299 /* We fail to do so only if we hit a marker or are forced to suspend. */
301 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
302 while (bits_left < MIN_GET_BITS) {
305 /* Attempt to read a byte */
306 if (bytes_in_buffer == 0) {
307 if (!(*cinfo->src->fill_input_buffer) (cinfo))
309 next_input_byte = cinfo->src->next_input_byte;
310 bytes_in_buffer = cinfo->src->bytes_in_buffer;
313 c = *next_input_byte++;
315 /* If it's 0xFF, check and discard stuffed zero byte */
317 /* Loop here to discard any padding FF's on terminating marker,
318 * so that we can save a valid unread_marker value. NOTE: we will
319 * accept multiple FF's followed by a 0 as meaning a single FF data
320 * byte. This data pattern is not valid according to the standard.
323 if (bytes_in_buffer == 0) {
324 if (!(*cinfo->src->fill_input_buffer) (cinfo))
326 next_input_byte = cinfo->src->next_input_byte;
327 bytes_in_buffer = cinfo->src->bytes_in_buffer;
330 c = *next_input_byte++;
334 /* Found FF/00, which represents an FF data byte */
337 /* Oops, it's actually a marker indicating end of compressed data.
338 * Save the marker code for later use.
339 * Fine point: it might appear that we should save the marker into
340 * bitread working state, not straight into permanent state. But
341 * once we have hit a marker, we cannot need to suspend within the
342 * current MCU, because we will read no more bytes from the data
343 * source. So it is OK to update permanent state right away.
345 cinfo->unread_marker = c;
346 /* See if we need to insert some fake zero bits. */
351 /* OK, load c into get_buffer */
352 get_buffer = (get_buffer << 8) | c;
357 /* We get here if we've read the marker that terminates the compressed
358 * data segment. There should be enough bits in the buffer register
359 * to satisfy the request; if so, no problem.
361 if (nbits > bits_left) {
362 /* Uh-oh. Report corrupted data to user and stuff zeroes into
363 * the data stream, so that we can produce some kind of image.
364 * We use a nonvolatile flag to ensure that only one warning message
365 * appears per data segment.
367 if (!cinfo->entropy->insufficient_data) {
368 WARNMS(cinfo, JWRN_HIT_MARKER);
369 cinfo->entropy->insufficient_data = TRUE;
371 /* Fill the buffer with zero bits */
372 get_buffer <<= MIN_GET_BITS - bits_left;
373 bits_left = MIN_GET_BITS;
377 /* Unload the local registers */
378 state->next_input_byte = next_input_byte;
379 state->bytes_in_buffer = bytes_in_buffer;
380 state->get_buffer = get_buffer;
381 state->bits_left = bits_left;
387 /* Macro version of the above, which performs much better but does not
388 handle markers. We have to hand off any blocks with markers to the
392 register int c0, c1; \
395 /* Pre-execute most common case */ \
396 get_buffer = (get_buffer << 8) | c0; \
399 /* Pre-execute case of FF/00, which represents an FF data byte */ \
402 /* Oops, it's actually a marker indicating end of compressed data. */ \
403 cinfo->unread_marker = c1; \
404 /* Back out pre-execution and fill the buffer with zero bits */ \
406 get_buffer &= ~0xFF; \
411 #if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__))
413 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
414 #define FILL_BIT_BUFFER_FAST \
415 if (bits_left <= 16) { \
416 GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
421 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
422 #define FILL_BIT_BUFFER_FAST \
423 if (bits_left <= 16) { \
431 * Out-of-line code for Huffman code decoding.
432 * See jdhuff.h for info about usage.
436 jpeg_huff_decode(bitread_working_state *state,
437 register bit_buf_type get_buffer, register int bits_left,
438 d_derived_tbl *htbl, int min_bits)
440 register int l = min_bits;
443 /* HUFF_DECODE has determined that the code is at least min_bits */
444 /* bits long, so fetch that many bits in one swoop. */
446 CHECK_BIT_BUFFER(*state, l, return -1);
449 /* Collect the rest of the Huffman code one bit at a time. */
450 /* This is per Figure F.16. */
452 while (code > htbl->maxcode[l]) {
454 CHECK_BIT_BUFFER(*state, 1, return -1);
459 /* Unload the local registers */
460 state->get_buffer = get_buffer;
461 state->bits_left = bits_left;
463 /* With garbage input we may reach the sentinel value l = 17. */
466 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
467 return 0; /* fake a zero as the safest result */
470 return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
475 * Figure F.12: extend sign bit.
476 * On some machines, a shift and add will be faster than a table lookup.
482 #define NEG_1 ((unsigned int)-1)
483 #define HUFF_EXTEND(x, s) \
484 ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
488 #define HUFF_EXTEND(x, s) \
489 ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
491 static const int extend_test[16] = { /* entry n is 2**(n-1) */
492 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
493 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
496 static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
497 0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
498 ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
499 ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
500 ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
503 #endif /* AVOID_TABLES */
507 * Check for a restart marker & resynchronize decoder.
508 * Returns FALSE if must suspend.
512 process_restart(j_decompress_ptr cinfo)
514 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
517 /* Throw away any unused bits remaining in bit buffer; */
518 /* include any full bytes in next_marker's count of discarded bytes */
519 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
520 entropy->bitstate.bits_left = 0;
522 /* Advance past the RSTn marker */
523 if (!(*cinfo->marker->read_restart_marker) (cinfo))
526 /* Re-initialize DC predictions to 0 */
527 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
528 entropy->saved.last_dc_val[ci] = 0;
530 /* Reset restart counter */
531 entropy->restarts_to_go = cinfo->restart_interval;
533 /* Reset out-of-data flag, unless read_restart_marker left us smack up
534 * against a marker. In that case we will end up treating the next data
535 * segment as empty, and we can avoid producing bogus output pixels by
536 * leaving the flag set.
538 if (cinfo->unread_marker == 0)
539 entropy->pub.insufficient_data = FALSE;
545 #if defined(__has_feature)
546 #if __has_feature(undefined_behavior_sanitizer)
547 __attribute__((no_sanitize("signed-integer-overflow"),
548 no_sanitize("unsigned-integer-overflow")))
552 decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
554 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
558 /* Outer loop handles each block in the MCU */
560 /* Load up working state */
561 BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
562 state = entropy->saved;
564 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
566 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
567 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
568 register int s, k, r;
570 /* Decode a single block's worth of coefficients */
572 /* Section F.2.2.1: decode the DC coefficient difference */
573 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
575 CHECK_BIT_BUFFER(br_state, s, return FALSE);
577 s = HUFF_EXTEND(r, s);
580 if (entropy->dc_needed[blkn]) {
581 /* Convert DC difference to actual value, update last_dc_val */
582 int ci = cinfo->MCU_membership[blkn];
583 /* Certain malformed JPEG images produce repeated DC coefficient
584 * differences of 2047 or -2047, which causes state.last_dc_val[ci] to
585 * grow until it overflows or underflows a 32-bit signed integer. This
586 * behavior is, to the best of our understanding, innocuous, and it is
587 * unclear how to work around it without potentially affecting
588 * performance. Thus, we (hopefully temporarily) suppress UBSan integer
589 * overflow errors for this function and decode_mcu_fast().
591 s += state.last_dc_val[ci];
592 state.last_dc_val[ci] = s;
594 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
595 (*block)[0] = (JCOEF)s;
599 if (entropy->ac_needed[blkn] && block) {
601 /* Section F.2.2.2: decode the AC coefficients */
602 /* Since zeroes are skipped, output area must be cleared beforehand */
603 for (k = 1; k < DCTSIZE2; k++) {
604 HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
611 CHECK_BIT_BUFFER(br_state, s, return FALSE);
613 s = HUFF_EXTEND(r, s);
614 /* Output coefficient in natural (dezigzagged) order.
615 * Note: the extra entries in jpeg_natural_order[] will save us
616 * if k >= DCTSIZE2, which could happen if the data is corrupted.
618 (*block)[jpeg_natural_order[k]] = (JCOEF)s;
628 /* Section F.2.2.2: decode the AC coefficients */
629 /* In this path we just discard the values */
630 for (k = 1; k < DCTSIZE2; k++) {
631 HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
638 CHECK_BIT_BUFFER(br_state, s, return FALSE);
649 /* Completed MCU, so update state */
650 BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
651 entropy->saved = state;
656 #if defined(__has_feature)
657 #if __has_feature(undefined_behavior_sanitizer)
658 __attribute__((no_sanitize("signed-integer-overflow"),
659 no_sanitize("unsigned-integer-overflow")))
663 decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
665 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
670 /* Outer loop handles each block in the MCU */
672 /* Load up working state */
673 BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
674 buffer = (JOCTET *)br_state.next_input_byte;
675 state = entropy->saved;
677 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
679 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
680 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
681 register int s, k, r, l;
683 HUFF_DECODE_FAST(s, l, dctbl);
687 s = HUFF_EXTEND(r, s);
690 if (entropy->dc_needed[blkn]) {
691 int ci = cinfo->MCU_membership[blkn];
692 /* Refer to the comment in decode_mcu_slow() regarding the supression of
693 * a UBSan integer overflow error in this line of code.
695 s += state.last_dc_val[ci];
696 state.last_dc_val[ci] = s;
698 (*block)[0] = (JCOEF)s;
701 if (entropy->ac_needed[blkn] && block) {
703 for (k = 1; k < DCTSIZE2; k++) {
704 HUFF_DECODE_FAST(s, l, actbl);
712 s = HUFF_EXTEND(r, s);
713 (*block)[jpeg_natural_order[k]] = (JCOEF)s;
722 for (k = 1; k < DCTSIZE2; k++) {
723 HUFF_DECODE_FAST(s, l, actbl);
739 if (cinfo->unread_marker != 0) {
740 cinfo->unread_marker = 0;
744 br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
745 br_state.next_input_byte = buffer;
746 BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
747 entropy->saved = state;
753 * Decode and return one MCU's worth of Huffman-compressed coefficients.
754 * The coefficients are reordered from zigzag order into natural array order,
755 * but are not dequantized.
757 * The i'th block of the MCU is stored into the block pointed to by
758 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
759 * (Wholesale zeroing is usually a little faster than retail...)
761 * Returns FALSE if data source requested suspension. In that case no
762 * changes have been made to permanent state. (Exception: some output
763 * coefficients may already have been assigned. This is harmless for
764 * this module, since we'll just re-assign them on the next call.)
767 #define BUFSIZE (DCTSIZE2 * 8)
770 decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
772 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
775 /* Process restart marker if needed; may have to suspend */
776 if (cinfo->restart_interval) {
777 if (entropy->restarts_to_go == 0)
778 if (!process_restart(cinfo))
783 if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
784 cinfo->unread_marker != 0)
787 /* If we've run out of data, just leave the MCU set to zeroes.
788 * This way, we return uniform gray for the remainder of the segment.
790 if (!entropy->pub.insufficient_data) {
793 if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
796 if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
801 /* Account for restart interval (no-op if not using restarts) */
802 if (cinfo->restart_interval)
803 entropy->restarts_to_go--;
810 * Module initialization routine for Huffman entropy decoding.
814 jinit_huff_decoder(j_decompress_ptr cinfo)
816 huff_entropy_ptr entropy;
819 /* Motion JPEG frames typically do not include the Huffman tables if they
820 are the default tables. Thus, if the tables are not set by the time
821 the Huffman decoder is initialized (usually within the body of
822 jpeg_start_decompress()), we set them to default values. */
823 std_huff_tables((j_common_ptr)cinfo);
825 entropy = (huff_entropy_ptr)
826 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
827 sizeof(huff_entropy_decoder));
828 cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
829 entropy->pub.start_pass = start_pass_huff_decoder;
830 entropy->pub.decode_mcu = decode_mcu;
832 /* Mark tables unallocated */
833 for (i = 0; i < NUM_HUFF_TBLS; i++) {
834 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;