Imported Upstream version 2.0.1
[platform/upstream/libjpeg-turbo.git] / jchuff.c
1 /*
2  * jchuff.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009-2011, 2014-2016, 2018, D. R. Commander.
8  * Copyright (C) 2015, Matthieu Darbois.
9  * For conditions of distribution and use, see the accompanying README.ijg
10  * file.
11  *
12  * This file contains Huffman entropy encoding routines.
13  *
14  * Much of the complexity here has to do with supporting output suspension.
15  * If the data destination module demands suspension, we want to be able to
16  * back up to the start of the current MCU.  To do this, we copy state
17  * variables into local working storage, and update them back to the
18  * permanent JPEG objects only upon successful completion of an MCU.
19  *
20  * NOTE: All referenced figures are from
21  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22  */
23
24 #define JPEG_INTERNALS
25 #include "jinclude.h"
26 #include "jpeglib.h"
27 #include "jsimd.h"
28 #include "jconfigint.h"
29 #include <limits.h>
30
31 /*
32  * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
33  * used for bit counting rather than the lookup table.  This will reduce the
34  * memory footprint by 64k, which is important for some mobile applications
35  * that create many isolated instances of libjpeg-turbo (web browsers, for
36  * instance.)  This may improve performance on some mobile platforms as well.
37  * This feature is enabled by default only on ARM processors, because some x86
38  * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
39  * shown to have a significant performance impact even on the x86 chips that
40  * have a fast implementation of it.  When building for ARMv6, you can
41  * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
42  * flags (this defines __thumb__).
43  */
44
45 /* NOTE: Both GCC and Clang define __GNUC__ */
46 #if defined __GNUC__ && (defined __arm__ || defined __aarch64__)
47 #if !defined __thumb__ || defined __thumb2__
48 #define USE_CLZ_INTRINSIC
49 #endif
50 #endif
51
52 #ifdef USE_CLZ_INTRINSIC
53 #define JPEG_NBITS_NONZERO(x)  (32 - __builtin_clz(x))
54 #define JPEG_NBITS(x)          (x ? JPEG_NBITS_NONZERO(x) : 0)
55 #else
56 #include "jpeg_nbits_table.h"
57 #define JPEG_NBITS(x)          (jpeg_nbits_table[x])
58 #define JPEG_NBITS_NONZERO(x)  JPEG_NBITS(x)
59 #endif
60
61
62 /* Expanded entropy encoder object for Huffman encoding.
63  *
64  * The savable_state subrecord contains fields that change within an MCU,
65  * but must not be updated permanently until we complete the MCU.
66  */
67
68 typedef struct {
69   size_t put_buffer;                    /* current bit-accumulation buffer */
70   int put_bits;                         /* # of bits now in it */
71   int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
72 } savable_state;
73
74 /* This macro is to work around compilers with missing or broken
75  * structure assignment.  You'll need to fix this code if you have
76  * such a compiler and you change MAX_COMPS_IN_SCAN.
77  */
78
79 #ifndef NO_STRUCT_ASSIGN
80 #define ASSIGN_STATE(dest, src)  ((dest) = (src))
81 #else
82 #if MAX_COMPS_IN_SCAN == 4
83 #define ASSIGN_STATE(dest, src) \
84   ((dest).put_buffer = (src).put_buffer, \
85    (dest).put_bits = (src).put_bits, \
86    (dest).last_dc_val[0] = (src).last_dc_val[0], \
87    (dest).last_dc_val[1] = (src).last_dc_val[1], \
88    (dest).last_dc_val[2] = (src).last_dc_val[2], \
89    (dest).last_dc_val[3] = (src).last_dc_val[3])
90 #endif
91 #endif
92
93
94 typedef struct {
95   struct jpeg_entropy_encoder pub; /* public fields */
96
97   savable_state saved;          /* Bit buffer & DC state at start of MCU */
98
99   /* These fields are NOT loaded into local working state. */
100   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
101   int next_restart_num;         /* next restart number to write (0-7) */
102
103   /* Pointers to derived tables (these workspaces have image lifespan) */
104   c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
105   c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
106
107 #ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
108   long *dc_count_ptrs[NUM_HUFF_TBLS];
109   long *ac_count_ptrs[NUM_HUFF_TBLS];
110 #endif
111
112   int simd;
113 } huff_entropy_encoder;
114
115 typedef huff_entropy_encoder *huff_entropy_ptr;
116
117 /* Working state while writing an MCU.
118  * This struct contains all the fields that are needed by subroutines.
119  */
120
121 typedef struct {
122   JOCTET *next_output_byte;     /* => next byte to write in buffer */
123   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
124   savable_state cur;            /* Current bit buffer & DC state */
125   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
126 } working_state;
127
128
129 /* Forward declarations */
130 METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data);
131 METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo);
132 #ifdef ENTROPY_OPT_SUPPORTED
133 METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo,
134                                      JBLOCKROW *MCU_data);
135 METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo);
136 #endif
137
138
139 /*
140  * Initialize for a Huffman-compressed scan.
141  * If gather_statistics is TRUE, we do not output anything during the scan,
142  * just count the Huffman symbols used and generate Huffman code tables.
143  */
144
145 METHODDEF(void)
146 start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
147 {
148   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
149   int ci, dctbl, actbl;
150   jpeg_component_info *compptr;
151
152   if (gather_statistics) {
153 #ifdef ENTROPY_OPT_SUPPORTED
154     entropy->pub.encode_mcu = encode_mcu_gather;
155     entropy->pub.finish_pass = finish_pass_gather;
156 #else
157     ERREXIT(cinfo, JERR_NOT_COMPILED);
158 #endif
159   } else {
160     entropy->pub.encode_mcu = encode_mcu_huff;
161     entropy->pub.finish_pass = finish_pass_huff;
162   }
163
164   entropy->simd = jsimd_can_huff_encode_one_block();
165
166   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
167     compptr = cinfo->cur_comp_info[ci];
168     dctbl = compptr->dc_tbl_no;
169     actbl = compptr->ac_tbl_no;
170     if (gather_statistics) {
171 #ifdef ENTROPY_OPT_SUPPORTED
172       /* Check for invalid table indexes */
173       /* (make_c_derived_tbl does this in the other path) */
174       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
175         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
176       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
177         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
178       /* Allocate and zero the statistics tables */
179       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
180       if (entropy->dc_count_ptrs[dctbl] == NULL)
181         entropy->dc_count_ptrs[dctbl] = (long *)
182           (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
183                                       257 * sizeof(long));
184       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
185       if (entropy->ac_count_ptrs[actbl] == NULL)
186         entropy->ac_count_ptrs[actbl] = (long *)
187           (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
188                                       257 * sizeof(long));
189       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
190 #endif
191     } else {
192       /* Compute derived values for Huffman tables */
193       /* We may do this more than once for a table, but it's not expensive */
194       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
195                               &entropy->dc_derived_tbls[dctbl]);
196       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
197                               &entropy->ac_derived_tbls[actbl]);
198     }
199     /* Initialize DC predictions to 0 */
200     entropy->saved.last_dc_val[ci] = 0;
201   }
202
203   /* Initialize bit buffer to empty */
204   entropy->saved.put_buffer = 0;
205   entropy->saved.put_bits = 0;
206
207   /* Initialize restart stuff */
208   entropy->restarts_to_go = cinfo->restart_interval;
209   entropy->next_restart_num = 0;
210 }
211
212
213 /*
214  * Compute the derived values for a Huffman table.
215  * This routine also performs some validation checks on the table.
216  *
217  * Note this is also used by jcphuff.c.
218  */
219
220 GLOBAL(void)
221 jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno,
222                         c_derived_tbl **pdtbl)
223 {
224   JHUFF_TBL *htbl;
225   c_derived_tbl *dtbl;
226   int p, i, l, lastp, si, maxsymbol;
227   char huffsize[257];
228   unsigned int huffcode[257];
229   unsigned int code;
230
231   /* Note that huffsize[] and huffcode[] are filled in code-length order,
232    * paralleling the order of the symbols themselves in htbl->huffval[].
233    */
234
235   /* Find the input Huffman table */
236   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
237     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
238   htbl =
239     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
240   if (htbl == NULL)
241     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
242
243   /* Allocate a workspace if we haven't already done so. */
244   if (*pdtbl == NULL)
245     *pdtbl = (c_derived_tbl *)
246       (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
247                                   sizeof(c_derived_tbl));
248   dtbl = *pdtbl;
249
250   /* Figure C.1: make table of Huffman code length for each symbol */
251
252   p = 0;
253   for (l = 1; l <= 16; l++) {
254     i = (int)htbl->bits[l];
255     if (i < 0 || p + i > 256)   /* protect against table overrun */
256       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
257     while (i--)
258       huffsize[p++] = (char)l;
259   }
260   huffsize[p] = 0;
261   lastp = p;
262
263   /* Figure C.2: generate the codes themselves */
264   /* We also validate that the counts represent a legal Huffman code tree. */
265
266   code = 0;
267   si = huffsize[0];
268   p = 0;
269   while (huffsize[p]) {
270     while (((int)huffsize[p]) == si) {
271       huffcode[p++] = code;
272       code++;
273     }
274     /* code is now 1 more than the last code used for codelength si; but
275      * it must still fit in si bits, since no code is allowed to be all ones.
276      */
277     if (((JLONG)code) >= (((JLONG)1) << si))
278       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
279     code <<= 1;
280     si++;
281   }
282
283   /* Figure C.3: generate encoding tables */
284   /* These are code and size indexed by symbol value */
285
286   /* Set all codeless symbols to have code length 0;
287    * this lets us detect duplicate VAL entries here, and later
288    * allows emit_bits to detect any attempt to emit such symbols.
289    */
290   MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
291
292   /* This is also a convenient place to check for out-of-range
293    * and duplicated VAL entries.  We allow 0..255 for AC symbols
294    * but only 0..15 for DC.  (We could constrain them further
295    * based on data depth and mode, but this seems enough.)
296    */
297   maxsymbol = isDC ? 15 : 255;
298
299   for (p = 0; p < lastp; p++) {
300     i = htbl->huffval[p];
301     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
302       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
303     dtbl->ehufco[i] = huffcode[p];
304     dtbl->ehufsi[i] = huffsize[p];
305   }
306 }
307
308
309 /* Outputting bytes to the file */
310
311 /* Emit a byte, taking 'action' if must suspend. */
312 #define emit_byte(state, val, action) { \
313   *(state)->next_output_byte++ = (JOCTET)(val); \
314   if (--(state)->free_in_buffer == 0) \
315     if (!dump_buffer(state)) \
316       { action; } \
317 }
318
319
320 LOCAL(boolean)
321 dump_buffer(working_state *state)
322 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
323 {
324   struct jpeg_destination_mgr *dest = state->cinfo->dest;
325
326   if (!(*dest->empty_output_buffer) (state->cinfo))
327     return FALSE;
328   /* After a successful buffer dump, must reset buffer pointers */
329   state->next_output_byte = dest->next_output_byte;
330   state->free_in_buffer = dest->free_in_buffer;
331   return TRUE;
332 }
333
334
335 /* Outputting bits to the file */
336
337 /* These macros perform the same task as the emit_bits() function in the
338  * original libjpeg code.  In addition to reducing overhead by explicitly
339  * inlining the code, additional performance is achieved by taking into
340  * account the size of the bit buffer and waiting until it is almost full
341  * before emptying it.  This mostly benefits 64-bit platforms, since 6
342  * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
343  */
344
345 #define EMIT_BYTE() { \
346   JOCTET c; \
347   put_bits -= 8; \
348   c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
349   *buffer++ = c; \
350   if (c == 0xFF)  /* need to stuff a zero byte? */ \
351     *buffer++ = 0; \
352 }
353
354 #define PUT_BITS(code, size) { \
355   put_bits += size; \
356   put_buffer = (put_buffer << size) | code; \
357 }
358
359 #define CHECKBUF15() { \
360   if (put_bits > 15) { \
361     EMIT_BYTE() \
362     EMIT_BYTE() \
363   } \
364 }
365
366 #define CHECKBUF31() { \
367   if (put_bits > 31) { \
368     EMIT_BYTE() \
369     EMIT_BYTE() \
370     EMIT_BYTE() \
371     EMIT_BYTE() \
372   } \
373 }
374
375 #define CHECKBUF47() { \
376   if (put_bits > 47) { \
377     EMIT_BYTE() \
378     EMIT_BYTE() \
379     EMIT_BYTE() \
380     EMIT_BYTE() \
381     EMIT_BYTE() \
382     EMIT_BYTE() \
383   } \
384 }
385
386 #if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
387 #error Cannot determine word size
388 #endif
389
390 #if SIZEOF_SIZE_T == 8 || defined(_WIN64)
391
392 #define EMIT_BITS(code, size) { \
393   CHECKBUF47() \
394   PUT_BITS(code, size) \
395 }
396
397 #define EMIT_CODE(code, size) { \
398   temp2 &= (((JLONG)1) << nbits) - 1; \
399   CHECKBUF31() \
400   PUT_BITS(code, size) \
401   PUT_BITS(temp2, nbits) \
402 }
403
404 #else
405
406 #define EMIT_BITS(code, size) { \
407   PUT_BITS(code, size) \
408   CHECKBUF15() \
409 }
410
411 #define EMIT_CODE(code, size) { \
412   temp2 &= (((JLONG)1) << nbits) - 1; \
413   PUT_BITS(code, size) \
414   CHECKBUF15() \
415   PUT_BITS(temp2, nbits) \
416   CHECKBUF15() \
417 }
418
419 #endif
420
421
422 /* Although it is exceedingly rare, it is possible for a Huffman-encoded
423  * coefficient block to be larger than the 128-byte unencoded block.  For each
424  * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
425  * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
426  * encoded block.)  If, for instance, one artificially sets the AC
427  * coefficients to alternating values of 32767 and -32768 (using the JPEG
428  * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
429  * larger than 200 bytes.
430  */
431 #define BUFSIZE  (DCTSIZE2 * 4)
432
433 #define LOAD_BUFFER() { \
434   if (state->free_in_buffer < BUFSIZE) { \
435     localbuf = 1; \
436     buffer = _buffer; \
437   } else \
438     buffer = state->next_output_byte; \
439 }
440
441 #define STORE_BUFFER() { \
442   if (localbuf) { \
443     bytes = buffer - _buffer; \
444     buffer = _buffer; \
445     while (bytes > 0) { \
446       bytestocopy = MIN(bytes, state->free_in_buffer); \
447       MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
448       state->next_output_byte += bytestocopy; \
449       buffer += bytestocopy; \
450       state->free_in_buffer -= bytestocopy; \
451       if (state->free_in_buffer == 0) \
452         if (!dump_buffer(state)) return FALSE; \
453       bytes -= bytestocopy; \
454     } \
455   } else { \
456     state->free_in_buffer -= (buffer - state->next_output_byte); \
457     state->next_output_byte = buffer; \
458   } \
459 }
460
461
462 LOCAL(boolean)
463 flush_bits(working_state *state)
464 {
465   JOCTET _buffer[BUFSIZE], *buffer;
466   size_t put_buffer;  int put_bits;
467   size_t bytes, bytestocopy;  int localbuf = 0;
468
469   put_buffer = state->cur.put_buffer;
470   put_bits = state->cur.put_bits;
471   LOAD_BUFFER()
472
473   /* fill any partial byte with ones */
474   PUT_BITS(0x7F, 7)
475   while (put_bits >= 8) EMIT_BYTE()
476
477   state->cur.put_buffer = 0;    /* and reset bit-buffer to empty */
478   state->cur.put_bits = 0;
479   STORE_BUFFER()
480
481   return TRUE;
482 }
483
484
485 /* Encode a single block's worth of coefficients */
486
487 LOCAL(boolean)
488 encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
489                       c_derived_tbl *dctbl, c_derived_tbl *actbl)
490 {
491   JOCTET _buffer[BUFSIZE], *buffer;
492   size_t bytes, bytestocopy;  int localbuf = 0;
493
494   LOAD_BUFFER()
495
496   buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
497                                        dctbl, actbl);
498
499   STORE_BUFFER()
500
501   return TRUE;
502 }
503
504 LOCAL(boolean)
505 encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
506                  c_derived_tbl *dctbl, c_derived_tbl *actbl)
507 {
508   int temp, temp2, temp3;
509   int nbits;
510   int r, code, size;
511   JOCTET _buffer[BUFSIZE], *buffer;
512   size_t put_buffer;  int put_bits;
513   int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
514   size_t bytes, bytestocopy;  int localbuf = 0;
515
516   put_buffer = state->cur.put_buffer;
517   put_bits = state->cur.put_bits;
518   LOAD_BUFFER()
519
520   /* Encode the DC coefficient difference per section F.1.2.1 */
521
522   temp = temp2 = block[0] - last_dc_val;
523
524   /* This is a well-known technique for obtaining the absolute value without a
525    * branch.  It is derived from an assembly language technique presented in
526    * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
527    * Agner Fog.
528    */
529   temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
530   temp ^= temp3;
531   temp -= temp3;
532
533   /* For a negative input, want temp2 = bitwise complement of abs(input) */
534   /* This code assumes we are on a two's complement machine */
535   temp2 += temp3;
536
537   /* Find the number of bits needed for the magnitude of the coefficient */
538   nbits = JPEG_NBITS(temp);
539
540   /* Emit the Huffman-coded symbol for the number of bits */
541   code = dctbl->ehufco[nbits];
542   size = dctbl->ehufsi[nbits];
543   EMIT_BITS(code, size)
544
545   /* Mask off any extra bits in code */
546   temp2 &= (((JLONG)1) << nbits) - 1;
547
548   /* Emit that number of bits of the value, if positive, */
549   /* or the complement of its magnitude, if negative. */
550   EMIT_BITS(temp2, nbits)
551
552   /* Encode the AC coefficients per section F.1.2.2 */
553
554   r = 0;                        /* r = run length of zeros */
555
556 /* Manually unroll the k loop to eliminate the counter variable.  This
557  * improves performance greatly on systems with a limited number of
558  * registers (such as x86.)
559  */
560 #define kloop(jpeg_natural_order_of_k) { \
561   if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
562     r++; \
563   } else { \
564     temp2 = temp; \
565     /* Branch-less absolute value, bitwise complement, etc., same as above */ \
566     temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
567     temp ^= temp3; \
568     temp -= temp3; \
569     temp2 += temp3; \
570     nbits = JPEG_NBITS_NONZERO(temp); \
571     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
572     while (r > 15) { \
573       EMIT_BITS(code_0xf0, size_0xf0) \
574       r -= 16; \
575     } \
576     /* Emit Huffman symbol for run length / number of bits */ \
577     temp3 = (r << 4) + nbits; \
578     code = actbl->ehufco[temp3]; \
579     size = actbl->ehufsi[temp3]; \
580     EMIT_CODE(code, size) \
581     r = 0; \
582   } \
583 }
584
585   /* One iteration for each value in jpeg_natural_order[] */
586   kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
587   kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
588   kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
589   kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
590   kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
591   kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
592   kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
593   kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
594   kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
595   kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
596   kloop(55);  kloop(62);  kloop(63);
597
598   /* If the last coef(s) were zero, emit an end-of-block code */
599   if (r > 0) {
600     code = actbl->ehufco[0];
601     size = actbl->ehufsi[0];
602     EMIT_BITS(code, size)
603   }
604
605   state->cur.put_buffer = put_buffer;
606   state->cur.put_bits = put_bits;
607   STORE_BUFFER()
608
609   return TRUE;
610 }
611
612
613 /*
614  * Emit a restart marker & resynchronize predictions.
615  */
616
617 LOCAL(boolean)
618 emit_restart(working_state *state, int restart_num)
619 {
620   int ci;
621
622   if (!flush_bits(state))
623     return FALSE;
624
625   emit_byte(state, 0xFF, return FALSE);
626   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
627
628   /* Re-initialize DC predictions to 0 */
629   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
630     state->cur.last_dc_val[ci] = 0;
631
632   /* The restart counter is not updated until we successfully write the MCU. */
633
634   return TRUE;
635 }
636
637
638 /*
639  * Encode and output one MCU's worth of Huffman-compressed coefficients.
640  */
641
642 METHODDEF(boolean)
643 encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
644 {
645   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
646   working_state state;
647   int blkn, ci;
648   jpeg_component_info *compptr;
649
650   /* Load up working state */
651   state.next_output_byte = cinfo->dest->next_output_byte;
652   state.free_in_buffer = cinfo->dest->free_in_buffer;
653   ASSIGN_STATE(state.cur, entropy->saved);
654   state.cinfo = cinfo;
655
656   /* Emit restart marker if needed */
657   if (cinfo->restart_interval) {
658     if (entropy->restarts_to_go == 0)
659       if (!emit_restart(&state, entropy->next_restart_num))
660         return FALSE;
661   }
662
663   /* Encode the MCU data blocks */
664   if (entropy->simd) {
665     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
666       ci = cinfo->MCU_membership[blkn];
667       compptr = cinfo->cur_comp_info[ci];
668       if (!encode_one_block_simd(&state,
669                                  MCU_data[blkn][0], state.cur.last_dc_val[ci],
670                                  entropy->dc_derived_tbls[compptr->dc_tbl_no],
671                                  entropy->ac_derived_tbls[compptr->ac_tbl_no]))
672         return FALSE;
673       /* Update last_dc_val */
674       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
675     }
676   } else {
677     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
678       ci = cinfo->MCU_membership[blkn];
679       compptr = cinfo->cur_comp_info[ci];
680       if (!encode_one_block(&state,
681                             MCU_data[blkn][0], state.cur.last_dc_val[ci],
682                             entropy->dc_derived_tbls[compptr->dc_tbl_no],
683                             entropy->ac_derived_tbls[compptr->ac_tbl_no]))
684         return FALSE;
685       /* Update last_dc_val */
686       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
687     }
688   }
689
690   /* Completed MCU, so update state */
691   cinfo->dest->next_output_byte = state.next_output_byte;
692   cinfo->dest->free_in_buffer = state.free_in_buffer;
693   ASSIGN_STATE(entropy->saved, state.cur);
694
695   /* Update restart-interval state too */
696   if (cinfo->restart_interval) {
697     if (entropy->restarts_to_go == 0) {
698       entropy->restarts_to_go = cinfo->restart_interval;
699       entropy->next_restart_num++;
700       entropy->next_restart_num &= 7;
701     }
702     entropy->restarts_to_go--;
703   }
704
705   return TRUE;
706 }
707
708
709 /*
710  * Finish up at the end of a Huffman-compressed scan.
711  */
712
713 METHODDEF(void)
714 finish_pass_huff(j_compress_ptr cinfo)
715 {
716   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
717   working_state state;
718
719   /* Load up working state ... flush_bits needs it */
720   state.next_output_byte = cinfo->dest->next_output_byte;
721   state.free_in_buffer = cinfo->dest->free_in_buffer;
722   ASSIGN_STATE(state.cur, entropy->saved);
723   state.cinfo = cinfo;
724
725   /* Flush out the last data */
726   if (!flush_bits(&state))
727     ERREXIT(cinfo, JERR_CANT_SUSPEND);
728
729   /* Update state */
730   cinfo->dest->next_output_byte = state.next_output_byte;
731   cinfo->dest->free_in_buffer = state.free_in_buffer;
732   ASSIGN_STATE(entropy->saved, state.cur);
733 }
734
735
736 /*
737  * Huffman coding optimization.
738  *
739  * We first scan the supplied data and count the number of uses of each symbol
740  * that is to be Huffman-coded. (This process MUST agree with the code above.)
741  * Then we build a Huffman coding tree for the observed counts.
742  * Symbols which are not needed at all for the particular image are not
743  * assigned any code, which saves space in the DHT marker as well as in
744  * the compressed data.
745  */
746
747 #ifdef ENTROPY_OPT_SUPPORTED
748
749
750 /* Process a single block's worth of coefficients */
751
752 LOCAL(void)
753 htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
754                 long dc_counts[], long ac_counts[])
755 {
756   register int temp;
757   register int nbits;
758   register int k, r;
759
760   /* Encode the DC coefficient difference per section F.1.2.1 */
761
762   temp = block[0] - last_dc_val;
763   if (temp < 0)
764     temp = -temp;
765
766   /* Find the number of bits needed for the magnitude of the coefficient */
767   nbits = 0;
768   while (temp) {
769     nbits++;
770     temp >>= 1;
771   }
772   /* Check for out-of-range coefficient values.
773    * Since we're encoding a difference, the range limit is twice as much.
774    */
775   if (nbits > MAX_COEF_BITS + 1)
776     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
777
778   /* Count the Huffman symbol for the number of bits */
779   dc_counts[nbits]++;
780
781   /* Encode the AC coefficients per section F.1.2.2 */
782
783   r = 0;                        /* r = run length of zeros */
784
785   for (k = 1; k < DCTSIZE2; k++) {
786     if ((temp = block[jpeg_natural_order[k]]) == 0) {
787       r++;
788     } else {
789       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
790       while (r > 15) {
791         ac_counts[0xF0]++;
792         r -= 16;
793       }
794
795       /* Find the number of bits needed for the magnitude of the coefficient */
796       if (temp < 0)
797         temp = -temp;
798
799       /* Find the number of bits needed for the magnitude of the coefficient */
800       nbits = 1;                /* there must be at least one 1 bit */
801       while ((temp >>= 1))
802         nbits++;
803       /* Check for out-of-range coefficient values */
804       if (nbits > MAX_COEF_BITS)
805         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
806
807       /* Count Huffman symbol for run length / number of bits */
808       ac_counts[(r << 4) + nbits]++;
809
810       r = 0;
811     }
812   }
813
814   /* If the last coef(s) were zero, emit an end-of-block code */
815   if (r > 0)
816     ac_counts[0]++;
817 }
818
819
820 /*
821  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
822  * No data is actually output, so no suspension return is possible.
823  */
824
825 METHODDEF(boolean)
826 encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
827 {
828   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
829   int blkn, ci;
830   jpeg_component_info *compptr;
831
832   /* Take care of restart intervals if needed */
833   if (cinfo->restart_interval) {
834     if (entropy->restarts_to_go == 0) {
835       /* Re-initialize DC predictions to 0 */
836       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
837         entropy->saved.last_dc_val[ci] = 0;
838       /* Update restart state */
839       entropy->restarts_to_go = cinfo->restart_interval;
840     }
841     entropy->restarts_to_go--;
842   }
843
844   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
845     ci = cinfo->MCU_membership[blkn];
846     compptr = cinfo->cur_comp_info[ci];
847     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
848                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
849                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
850     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
851   }
852
853   return TRUE;
854 }
855
856
857 /*
858  * Generate the best Huffman code table for the given counts, fill htbl.
859  * Note this is also used by jcphuff.c.
860  *
861  * The JPEG standard requires that no symbol be assigned a codeword of all
862  * one bits (so that padding bits added at the end of a compressed segment
863  * can't look like a valid code).  Because of the canonical ordering of
864  * codewords, this just means that there must be an unused slot in the
865  * longest codeword length category.  Annex K (Clause K.2) of
866  * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
867  * by pretending that symbol 256 is a valid symbol with count 1.  In theory
868  * that's not optimal; giving it count zero but including it in the symbol set
869  * anyway should give a better Huffman code.  But the theoretically better code
870  * actually seems to come out worse in practice, because it produces more
871  * all-ones bytes (which incur stuffed zero bytes in the final file).  In any
872  * case the difference is tiny.
873  *
874  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
875  * If some symbols have a very small but nonzero probability, the Huffman tree
876  * must be adjusted to meet the code length restriction.  We currently use
877  * the adjustment method suggested in JPEG section K.2.  This method is *not*
878  * optimal; it may not choose the best possible limited-length code.  But
879  * typically only very-low-frequency symbols will be given less-than-optimal
880  * lengths, so the code is almost optimal.  Experimental comparisons against
881  * an optimal limited-length-code algorithm indicate that the difference is
882  * microscopic --- usually less than a hundredth of a percent of total size.
883  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
884  */
885
886 GLOBAL(void)
887 jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
888 {
889 #define MAX_CLEN  32            /* assumed maximum initial code length */
890   UINT8 bits[MAX_CLEN + 1];     /* bits[k] = # of symbols with code length k */
891   int codesize[257];            /* codesize[k] = code length of symbol k */
892   int others[257];              /* next symbol in current branch of tree */
893   int c1, c2;
894   int p, i, j;
895   long v;
896
897   /* This algorithm is explained in section K.2 of the JPEG standard */
898
899   MEMZERO(bits, sizeof(bits));
900   MEMZERO(codesize, sizeof(codesize));
901   for (i = 0; i < 257; i++)
902     others[i] = -1;             /* init links to empty */
903
904   freq[256] = 1;                /* make sure 256 has a nonzero count */
905   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
906    * that no real symbol is given code-value of all ones, because 256
907    * will be placed last in the largest codeword category.
908    */
909
910   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
911
912   for (;;) {
913     /* Find the smallest nonzero frequency, set c1 = its symbol */
914     /* In case of ties, take the larger symbol number */
915     c1 = -1;
916     v = 1000000000L;
917     for (i = 0; i <= 256; i++) {
918       if (freq[i] && freq[i] <= v) {
919         v = freq[i];
920         c1 = i;
921       }
922     }
923
924     /* Find the next smallest nonzero frequency, set c2 = its symbol */
925     /* In case of ties, take the larger symbol number */
926     c2 = -1;
927     v = 1000000000L;
928     for (i = 0; i <= 256; i++) {
929       if (freq[i] && freq[i] <= v && i != c1) {
930         v = freq[i];
931         c2 = i;
932       }
933     }
934
935     /* Done if we've merged everything into one frequency */
936     if (c2 < 0)
937       break;
938
939     /* Else merge the two counts/trees */
940     freq[c1] += freq[c2];
941     freq[c2] = 0;
942
943     /* Increment the codesize of everything in c1's tree branch */
944     codesize[c1]++;
945     while (others[c1] >= 0) {
946       c1 = others[c1];
947       codesize[c1]++;
948     }
949
950     others[c1] = c2;            /* chain c2 onto c1's tree branch */
951
952     /* Increment the codesize of everything in c2's tree branch */
953     codesize[c2]++;
954     while (others[c2] >= 0) {
955       c2 = others[c2];
956       codesize[c2]++;
957     }
958   }
959
960   /* Now count the number of symbols of each code length */
961   for (i = 0; i <= 256; i++) {
962     if (codesize[i]) {
963       /* The JPEG standard seems to think that this can't happen, */
964       /* but I'm paranoid... */
965       if (codesize[i] > MAX_CLEN)
966         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
967
968       bits[codesize[i]]++;
969     }
970   }
971
972   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
973    * Huffman procedure assigned any such lengths, we must adjust the coding.
974    * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
975    * bit works: Since symbols are paired for the longest Huffman code, the
976    * symbols are removed from this length category two at a time.  The prefix
977    * for the pair (which is one bit shorter) is allocated to one of the pair;
978    * then, skipping the BITS entry for that prefix length, a code word from the
979    * next shortest nonzero BITS entry is converted into a prefix for two code
980    * words one bit longer.
981    */
982
983   for (i = MAX_CLEN; i > 16; i--) {
984     while (bits[i] > 0) {
985       j = i - 2;                /* find length of new prefix to be used */
986       while (bits[j] == 0)
987         j--;
988
989       bits[i] -= 2;             /* remove two symbols */
990       bits[i - 1]++;            /* one goes in this length */
991       bits[j + 1] += 2;         /* two new symbols in this length */
992       bits[j]--;                /* symbol of this length is now a prefix */
993     }
994   }
995
996   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
997   while (bits[i] == 0)          /* find largest codelength still in use */
998     i--;
999   bits[i]--;
1000
1001   /* Return final symbol counts (only for lengths 0..16) */
1002   MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
1003
1004   /* Return a list of the symbols sorted by code length */
1005   /* It's not real clear to me why we don't need to consider the codelength
1006    * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
1007    * this works.
1008    */
1009   p = 0;
1010   for (i = 1; i <= MAX_CLEN; i++) {
1011     for (j = 0; j <= 255; j++) {
1012       if (codesize[j] == i) {
1013         htbl->huffval[p] = (UINT8)j;
1014         p++;
1015       }
1016     }
1017   }
1018
1019   /* Set sent_table FALSE so updated table will be written to JPEG file. */
1020   htbl->sent_table = FALSE;
1021 }
1022
1023
1024 /*
1025  * Finish up a statistics-gathering pass and create the new Huffman tables.
1026  */
1027
1028 METHODDEF(void)
1029 finish_pass_gather(j_compress_ptr cinfo)
1030 {
1031   huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
1032   int ci, dctbl, actbl;
1033   jpeg_component_info *compptr;
1034   JHUFF_TBL **htblptr;
1035   boolean did_dc[NUM_HUFF_TBLS];
1036   boolean did_ac[NUM_HUFF_TBLS];
1037
1038   /* It's important not to apply jpeg_gen_optimal_table more than once
1039    * per table, because it clobbers the input frequency counts!
1040    */
1041   MEMZERO(did_dc, sizeof(did_dc));
1042   MEMZERO(did_ac, sizeof(did_ac));
1043
1044   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1045     compptr = cinfo->cur_comp_info[ci];
1046     dctbl = compptr->dc_tbl_no;
1047     actbl = compptr->ac_tbl_no;
1048     if (!did_dc[dctbl]) {
1049       htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl];
1050       if (*htblptr == NULL)
1051         *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1052       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
1053       did_dc[dctbl] = TRUE;
1054     }
1055     if (!did_ac[actbl]) {
1056       htblptr = &cinfo->ac_huff_tbl_ptrs[actbl];
1057       if (*htblptr == NULL)
1058         *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
1059       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
1060       did_ac[actbl] = TRUE;
1061     }
1062   }
1063 }
1064
1065
1066 #endif /* ENTROPY_OPT_SUPPORTED */
1067
1068
1069 /*
1070  * Module initialization routine for Huffman entropy encoding.
1071  */
1072
1073 GLOBAL(void)
1074 jinit_huff_encoder(j_compress_ptr cinfo)
1075 {
1076   huff_entropy_ptr entropy;
1077   int i;
1078
1079   entropy = (huff_entropy_ptr)
1080     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1081                                 sizeof(huff_entropy_encoder));
1082   cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
1083   entropy->pub.start_pass = start_pass_huff;
1084
1085   /* Mark tables unallocated */
1086   for (i = 0; i < NUM_HUFF_TBLS; i++) {
1087     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1088 #ifdef ENTROPY_OPT_SUPPORTED
1089     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
1090 #endif
1091   }
1092 }