2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include "isl_map_private.h"
16 /* Given a map that represents a path with the length of the path
17 * encoded as the difference between the last output coordindate
18 * and the last input coordinate, set this length to either
19 * exactly "length" (if "exactly" is set) or at least "length"
20 * (if "exactly" is not set).
22 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
23 int exactly, int length)
26 struct isl_basic_map *bmap;
35 dim = isl_map_get_dim(map);
36 d = isl_dim_size(dim, isl_dim_in);
37 nparam = isl_dim_size(dim, isl_dim_param);
38 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
40 k = isl_basic_map_alloc_equality(bmap);
43 k = isl_basic_map_alloc_inequality(bmap);
48 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
49 isl_int_set_si(c[0], -length);
50 isl_int_set_si(c[1 + nparam + d - 1], -1);
51 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
53 bmap = isl_basic_map_finalize(bmap);
54 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
58 isl_basic_map_free(bmap);
63 /* Check whether the overapproximation of the power of "map" is exactly
64 * the power of "map". Let R be "map" and A_k the overapproximation.
65 * The approximation is exact if
68 * A_k = A_{k-1} \circ R k >= 2
70 * Since A_k is known to be an overapproximation, we only need to check
73 * A_k \subset A_{k-1} \circ R k >= 2
75 * In practice, "app" has an extra input and output coordinate
76 * to encode the length of the path. So, we first need to add
77 * this coordinate to "map" and set the length of the path to
80 static int check_power_exactness(__isl_take isl_map *map,
81 __isl_take isl_map *app)
87 map = isl_map_add(map, isl_dim_in, 1);
88 map = isl_map_add(map, isl_dim_out, 1);
89 map = set_path_length(map, 1, 1);
91 app_1 = set_path_length(isl_map_copy(app), 1, 1);
93 exact = isl_map_is_subset(app_1, map);
96 if (!exact || exact < 0) {
102 app_1 = set_path_length(isl_map_copy(app), 0, 1);
103 app_2 = set_path_length(app, 0, 2);
104 app_1 = isl_map_apply_range(map, app_1);
106 exact = isl_map_is_subset(app_2, app_1);
114 /* Check whether the overapproximation of the power of "map" is exactly
115 * the power of "map", possibly after projecting out the power (if "project"
118 * If "project" is set and if "steps" can only result in acyclic paths,
121 * A = R \cup (A \circ R)
123 * where A is the overapproximation with the power projected out, i.e.,
124 * an overapproximation of the transitive closure.
125 * More specifically, since A is known to be an overapproximation, we check
127 * A \subset R \cup (A \circ R)
129 * Otherwise, we check if the power is exact.
131 * Note that "app" has an extra input and output coordinate to encode
132 * the length of the part. If we are only interested in the transitive
133 * closure, then we can simply project out these coordinates first.
135 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
143 return check_power_exactness(map, app);
145 d = isl_map_dim(map, isl_dim_in);
146 app = set_path_length(app, 0, 1);
147 app = isl_map_project_out(app, isl_dim_in, d, 1);
148 app = isl_map_project_out(app, isl_dim_out, d, 1);
150 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
151 test = isl_map_union(test, isl_map_copy(map));
153 exact = isl_map_is_subset(app, test);
164 * The transitive closure implementation is based on the paper
165 * "Computing the Transitive Closure of a Union of Affine Integer
166 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
170 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
171 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
172 * that maps an element x to any element that can be reached
173 * by taking a non-negative number of steps along any of
174 * the extended offsets v'_i = [v_i 1].
177 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
179 * For any element in this relation, the number of steps taken
180 * is equal to the difference in the final coordinates.
182 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
183 __isl_keep isl_mat *steps)
186 struct isl_basic_map *path = NULL;
194 d = isl_dim_size(dim, isl_dim_in);
196 nparam = isl_dim_size(dim, isl_dim_param);
198 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
200 for (i = 0; i < n; ++i) {
201 k = isl_basic_map_alloc_div(path);
204 isl_assert(steps->ctx, i == k, goto error);
205 isl_int_set_si(path->div[k][0], 0);
208 for (i = 0; i < d; ++i) {
209 k = isl_basic_map_alloc_equality(path);
212 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
213 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
214 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
216 for (j = 0; j < n; ++j)
217 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
219 for (j = 0; j < n; ++j)
220 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
224 for (i = 0; i < n; ++i) {
225 k = isl_basic_map_alloc_inequality(path);
228 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
229 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
234 path = isl_basic_map_simplify(path);
235 path = isl_basic_map_finalize(path);
236 return isl_map_from_basic_map(path);
239 isl_basic_map_free(path);
248 /* Check whether the parametric constant term of constraint c is never
249 * positive in "bset".
251 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
252 isl_int *c, int *div_purity)
261 n_div = isl_basic_set_dim(bset, isl_dim_div);
262 d = isl_basic_set_dim(bset, isl_dim_set);
263 nparam = isl_basic_set_dim(bset, isl_dim_param);
265 bset = isl_basic_set_copy(bset);
266 bset = isl_basic_set_cow(bset);
267 bset = isl_basic_set_extend_constraints(bset, 0, 1);
268 k = isl_basic_set_alloc_inequality(bset);
271 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
272 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
273 for (i = 0; i < n_div; ++i) {
274 if (div_purity[i] != PURE_PARAM)
276 isl_int_set(bset->ineq[k][1 + nparam + d + i],
277 c[1 + nparam + d + i]);
279 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
280 empty = isl_basic_set_is_empty(bset);
281 isl_basic_set_free(bset);
285 isl_basic_set_free(bset);
289 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
290 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
291 * Return MIXED if only the coefficients of the parameters and the set
292 * variables are non-zero and if moreover the parametric constant
293 * can never attain positive values.
294 * Return IMPURE otherwise.
296 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
306 n_div = isl_basic_set_dim(bset, isl_dim_div);
307 d = isl_basic_set_dim(bset, isl_dim_set);
308 nparam = isl_basic_set_dim(bset, isl_dim_param);
310 for (i = 0; i < n_div; ++i) {
311 if (isl_int_is_zero(c[1 + nparam + d + i]))
313 switch (div_purity[i]) {
314 case PURE_PARAM: p = 1; break;
315 case PURE_VAR: v = 1; break;
316 default: return IMPURE;
319 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
321 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
324 empty = parametric_constant_never_positive(bset, c, div_purity);
325 if (eq && empty >= 0 && !empty) {
326 isl_seq_neg(c, c, 1 + nparam + d + n_div);
327 empty = parametric_constant_never_positive(bset, c, div_purity);
330 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
333 /* Return an array of integers indicating the type of each div in bset.
334 * If the div is (recursively) defined in terms of only the parameters,
335 * then the type is PURE_PARAM.
336 * If the div is (recursively) defined in terms of only the set variables,
337 * then the type is PURE_VAR.
338 * Otherwise, the type is IMPURE.
340 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
351 n_div = isl_basic_set_dim(bset, isl_dim_div);
352 d = isl_basic_set_dim(bset, isl_dim_set);
353 nparam = isl_basic_set_dim(bset, isl_dim_param);
355 div_purity = isl_alloc_array(bset->ctx, int, n_div);
359 for (i = 0; i < bset->n_div; ++i) {
361 if (isl_int_is_zero(bset->div[i][0])) {
362 div_purity[i] = IMPURE;
365 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
367 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
369 for (j = 0; j < i; ++j) {
370 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
372 switch (div_purity[j]) {
373 case PURE_PARAM: p = 1; break;
374 case PURE_VAR: v = 1; break;
375 default: p = v = 1; break;
378 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
384 /* Given a path with the as yet unconstrained length at position "pos",
385 * check if setting the length to zero results in only the identity
388 int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
390 isl_basic_map *test = NULL;
391 isl_basic_map *id = NULL;
395 test = isl_basic_map_copy(path);
396 test = isl_basic_map_extend_constraints(test, 1, 0);
397 k = isl_basic_map_alloc_equality(test);
400 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
401 isl_int_set_si(test->eq[k][pos], 1);
402 id = isl_basic_map_identity(isl_dim_domain(isl_basic_map_get_dim(path)));
403 is_id = isl_basic_map_is_equal(test, id);
404 isl_basic_map_free(test);
405 isl_basic_map_free(id);
408 isl_basic_map_free(test);
412 __isl_give isl_basic_map *add_delta_constraints(__isl_take isl_basic_map *path,
413 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
414 unsigned d, int *div_purity, int eq)
417 int n = eq ? delta->n_eq : delta->n_ineq;
418 isl_int **delta_c = eq ? delta->eq : delta->ineq;
421 n_div = isl_basic_set_dim(delta, isl_dim_div);
423 for (i = 0; i < n; ++i) {
425 int p = purity(delta, delta_c[i], div_purity, eq);
430 if (eq && p != MIXED) {
431 k = isl_basic_map_alloc_equality(path);
432 path_c = path->eq[k];
434 k = isl_basic_map_alloc_inequality(path);
435 path_c = path->ineq[k];
439 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
441 isl_seq_cpy(path_c + off,
442 delta_c[i] + 1 + nparam, d);
443 isl_int_set(path_c[off + d], delta_c[i][0]);
444 } else if (p == PURE_PARAM) {
445 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
447 isl_seq_cpy(path_c + off,
448 delta_c[i] + 1 + nparam, d);
449 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
451 isl_seq_cpy(path_c + off - n_div,
452 delta_c[i] + 1 + nparam + d, n_div);
457 isl_basic_map_free(path);
461 /* Given a set of offsets "delta", construct a relation of the
462 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
463 * is an overapproximation of the relations that
464 * maps an element x to any element that can be reached
465 * by taking a non-negative number of steps along any of
466 * the elements in "delta".
467 * That is, construct an approximation of
469 * { [x] -> [y] : exists f \in \delta, k \in Z :
470 * y = x + k [f, 1] and k >= 0 }
472 * For any element in this relation, the number of steps taken
473 * is equal to the difference in the final coordinates.
475 * In particular, let delta be defined as
477 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
478 * C x + C'p + c >= 0 and
479 * D x + D'p + d >= 0 }
481 * where the constraints C x + C'p + c >= 0 are such that the parametric
482 * constant term of each constraint j, "C_j x + C'_j p + c_j",
483 * can never attain positive values, then the relation is constructed as
485 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
486 * A f + k a >= 0 and B p + b >= 0 and
487 * C f + C'p + c >= 0 and k >= 1 }
488 * union { [x] -> [x] }
490 * If the zero-length paths happen to correspond exactly to the identity
491 * mapping, then we return
493 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
494 * A f + k a >= 0 and B p + b >= 0 and
495 * C f + C'p + c >= 0 and k >= 0 }
499 * Existentially quantified variables in \delta are handled by
500 * classifying them as independent of the parameters, purely
501 * parameter dependent and others. Constraints containing
502 * any of the other existentially quantified variables are removed.
503 * This is safe, but leads to an additional overapproximation.
505 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
506 __isl_take isl_basic_set *delta)
508 isl_basic_map *path = NULL;
515 int *div_purity = NULL;
519 n_div = isl_basic_set_dim(delta, isl_dim_div);
520 d = isl_basic_set_dim(delta, isl_dim_set);
521 nparam = isl_basic_set_dim(delta, isl_dim_param);
522 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
523 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
524 off = 1 + nparam + 2 * (d + 1) + n_div;
526 for (i = 0; i < n_div + d + 1; ++i) {
527 k = isl_basic_map_alloc_div(path);
530 isl_int_set_si(path->div[k][0], 0);
533 for (i = 0; i < d + 1; ++i) {
534 k = isl_basic_map_alloc_equality(path);
537 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
538 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
539 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
540 isl_int_set_si(path->eq[k][off + i], 1);
543 div_purity = get_div_purity(delta);
547 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 1);
548 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 0);
550 is_id = empty_path_is_identity(path, off + d);
554 k = isl_basic_map_alloc_inequality(path);
557 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
559 isl_int_set_si(path->ineq[k][0], -1);
560 isl_int_set_si(path->ineq[k][off + d], 1);
563 isl_basic_set_free(delta);
564 path = isl_basic_map_finalize(path);
567 return isl_map_from_basic_map(path);
569 return isl_basic_map_union(path,
570 isl_basic_map_identity(isl_dim_domain(dim)));
574 isl_basic_set_free(delta);
575 isl_basic_map_free(path);
579 /* Given a dimenion specification Z^{n+1} -> Z^{n+1} and a parameter "param",
580 * construct a map that equates the parameter to the difference
581 * in the final coordinates and imposes that this difference is positive.
584 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
586 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
589 struct isl_basic_map *bmap;
594 d = isl_dim_size(dim, isl_dim_in);
595 nparam = isl_dim_size(dim, isl_dim_param);
596 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
597 k = isl_basic_map_alloc_equality(bmap);
600 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
601 isl_int_set_si(bmap->eq[k][1 + param], -1);
602 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
603 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
605 k = isl_basic_map_alloc_inequality(bmap);
608 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
609 isl_int_set_si(bmap->ineq[k][1 + param], 1);
610 isl_int_set_si(bmap->ineq[k][0], -1);
612 bmap = isl_basic_map_finalize(bmap);
613 return isl_map_from_basic_map(bmap);
615 isl_basic_map_free(bmap);
619 /* Check whether "path" is acyclic, where the last coordinates of domain
620 * and range of path encode the number of steps taken.
621 * That is, check whether
623 * { d | d = y - x and (x,y) in path }
625 * does not contain any element with positive last coordinate (positive length)
626 * and zero remaining coordinates (cycle).
628 static int is_acyclic(__isl_take isl_map *path)
633 struct isl_set *delta;
635 delta = isl_map_deltas(path);
636 dim = isl_set_dim(delta, isl_dim_set);
637 for (i = 0; i < dim; ++i) {
639 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
641 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
644 acyclic = isl_set_is_empty(delta);
650 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
651 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
652 * construct a map that is an overapproximation of the map
653 * that takes an element from the space D \times Z to another
654 * element from the same space, such that the first n coordinates of the
655 * difference between them is a sum of differences between images
656 * and pre-images in one of the R_i and such that the last coordinate
657 * is equal to the number of steps taken.
660 * \Delta_i = { y - x | (x, y) in R_i }
662 * then the constructed map is an overapproximation of
664 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
665 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
667 * The elements of the singleton \Delta_i's are collected as the
668 * rows of the steps matrix. For all these \Delta_i's together,
669 * a single path is constructed.
670 * For each of the other \Delta_i's, we compute an overapproximation
671 * of the paths along elements of \Delta_i.
672 * Since each of these paths performs an addition, composition is
673 * symmetric and we can simply compose all resulting paths in any order.
675 static __isl_give isl_map *construct_extended_path(__isl_take isl_dim *dim,
676 __isl_keep isl_map *map, int *project)
678 struct isl_mat *steps = NULL;
679 struct isl_map *path = NULL;
683 d = isl_map_dim(map, isl_dim_in);
685 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
687 steps = isl_mat_alloc(map->ctx, map->n, d);
692 for (i = 0; i < map->n; ++i) {
693 struct isl_basic_set *delta;
695 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
697 for (j = 0; j < d; ++j) {
700 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
703 isl_basic_set_free(delta);
712 path = isl_map_apply_range(path,
713 path_along_delta(isl_dim_copy(dim), delta));
714 path = isl_map_coalesce(path);
716 isl_basic_set_free(delta);
723 path = isl_map_apply_range(path,
724 path_along_steps(isl_dim_copy(dim), steps));
727 if (project && *project) {
728 *project = is_acyclic(isl_map_copy(path));
743 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
748 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
749 no_overlap = isl_set_is_empty(i);
752 return no_overlap < 0 ? -1 : !no_overlap;
755 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
756 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
757 * construct a map that is an overapproximation of the map
758 * that takes an element from the dom R \times Z to an
759 * element from ran R \times Z, such that the first n coordinates of the
760 * difference between them is a sum of differences between images
761 * and pre-images in one of the R_i and such that the last coordinate
762 * is equal to the number of steps taken.
765 * \Delta_i = { y - x | (x, y) in R_i }
767 * then the constructed map is an overapproximation of
769 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
770 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
771 * x in dom R and x + d in ran R and
774 static __isl_give isl_map *construct_component(__isl_take isl_dim *dim,
775 __isl_keep isl_map *map, int *exact, int project)
777 struct isl_set *domain = NULL;
778 struct isl_set *range = NULL;
779 struct isl_map *app = NULL;
780 struct isl_map *path = NULL;
782 domain = isl_map_domain(isl_map_copy(map));
783 domain = isl_set_coalesce(domain);
784 range = isl_map_range(isl_map_copy(map));
785 range = isl_set_coalesce(range);
786 if (!isl_set_overlaps(domain, range)) {
787 isl_set_free(domain);
791 map = isl_map_copy(map);
792 map = isl_map_add(map, isl_dim_in, 1);
793 map = isl_map_add(map, isl_dim_out, 1);
794 map = set_path_length(map, 1, 1);
797 app = isl_map_from_domain_and_range(domain, range);
798 app = isl_map_add(app, isl_dim_in, 1);
799 app = isl_map_add(app, isl_dim_out, 1);
801 path = construct_extended_path(isl_dim_copy(dim), map,
802 exact && *exact ? &project : NULL);
803 app = isl_map_intersect(app, path);
805 if (exact && *exact &&
806 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
811 app = set_path_length(app, 0, 1);
819 /* Call construct_component and, if "project" is set, project out
820 * the final coordinates.
822 static __isl_give isl_map *construct_projected_component(
823 __isl_take isl_dim *dim,
824 __isl_keep isl_map *map, int *exact, int project)
831 d = isl_dim_size(dim, isl_dim_in);
833 app = construct_component(dim, map, exact, project);
835 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
836 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
841 /* Compute an extended version, i.e., with path lengths, of
842 * an overapproximation of the transitive closure of "bmap"
843 * with path lengths greater than or equal to zero and with
844 * domain and range equal to "dom".
846 static __isl_give isl_map *q_closure(__isl_take isl_dim *dim,
847 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
854 dom = isl_set_add(dom, isl_dim_set, 1);
855 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
856 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
857 path = construct_extended_path(dim, map, &project);
858 app = isl_map_intersect(app, path);
860 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
869 /* Check whether qc has any elements of length at least one
870 * with domain and/or range outside of dom and ran.
872 static int has_spurious_elements(__isl_keep isl_map *qc,
873 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
879 if (!qc || !dom || !ran)
882 d = isl_map_dim(qc, isl_dim_in);
884 qc = isl_map_copy(qc);
885 qc = set_path_length(qc, 0, 1);
886 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
887 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
889 s = isl_map_domain(isl_map_copy(qc));
890 subset = isl_set_is_subset(s, dom);
899 s = isl_map_range(qc);
900 subset = isl_set_is_subset(s, ran);
903 return subset < 0 ? -1 : !subset;
912 /* For each basic map in "map", except i, check whether it combines
913 * with the transitive closure that is reflexive on C combines
914 * to the left and to the right.
918 * dom map_j \subseteq C
920 * then right[j] is set to 1. Otherwise, if
922 * ran map_i \cap dom map_j = \emptyset
924 * then right[j] is set to 0. Otherwise, composing to the right
927 * Similar, for composing to the left, we have if
929 * ran map_j \subseteq C
931 * then left[j] is set to 1. Otherwise, if
933 * dom map_i \cap ran map_j = \emptyset
935 * then left[j] is set to 0. Otherwise, composing to the left
938 * The return value is or'd with LEFT if composing to the left
939 * is possible and with RIGHT if composing to the right is possible.
941 static int composability(__isl_keep isl_set *C, int i,
942 isl_set **dom, isl_set **ran, int *left, int *right,
943 __isl_keep isl_map *map)
949 for (j = 0; j < map->n && ok; ++j) {
950 int overlaps, subset;
956 dom[j] = isl_set_from_basic_set(
957 isl_basic_map_domain(
958 isl_basic_map_copy(map->p[j])));
961 overlaps = isl_set_overlaps(ran[i], dom[j]);
967 subset = isl_set_is_subset(dom[j], C);
979 ran[j] = isl_set_from_basic_set(
981 isl_basic_map_copy(map->p[j])));
984 overlaps = isl_set_overlaps(dom[i], ran[j]);
990 subset = isl_set_is_subset(ran[j], C);
1004 /* Return a map that is a union of the basic maps in "map", except i,
1005 * composed to left and right with qc based on the entries of "left"
1008 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1009 __isl_take isl_map *qc, int *left, int *right)
1014 comp = isl_map_empty(isl_map_get_dim(map));
1015 for (j = 0; j < map->n; ++j) {
1021 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1022 if (left && left[j])
1023 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1024 if (right && right[j])
1025 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1026 comp = isl_map_union(comp, map_j);
1029 comp = isl_map_compute_divs(comp);
1030 comp = isl_map_coalesce(comp);
1037 /* Compute the transitive closure of "map" incrementally by
1044 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1048 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1050 * depending on whether left or right are NULL.
1052 static __isl_give isl_map *compute_incremental(
1053 __isl_take isl_dim *dim, __isl_keep isl_map *map,
1054 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1058 isl_map *rtc = NULL;
1062 isl_assert(map->ctx, left || right, goto error);
1064 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1065 tc = construct_projected_component(isl_dim_copy(dim), map_i,
1067 isl_map_free(map_i);
1070 qc = isl_map_transitive_closure(qc, exact);
1076 return isl_map_universe(isl_map_get_dim(map));
1079 if (!left || !right)
1080 rtc = isl_map_union(isl_map_copy(tc),
1081 isl_map_identity(isl_dim_domain(isl_map_get_dim(tc))));
1083 qc = isl_map_apply_range(rtc, qc);
1085 qc = isl_map_apply_range(qc, rtc);
1086 qc = isl_map_union(tc, qc);
1097 /* Given a map "map", try to find a basic map such that
1098 * map^+ can be computed as
1100 * map^+ = map_i^+ \cup
1101 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1103 * with C the simple hull of the domain and range of the input map.
1104 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1105 * and by intersecting domain and range with C.
1106 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1107 * Also, we only use the incremental computation if all the transitive
1108 * closures are exact and if the number of basic maps in the union,
1109 * after computing the integer divisions, is smaller than the number
1110 * of basic maps in the input map.
1112 static int incemental_on_entire_domain(__isl_keep isl_dim *dim,
1113 __isl_keep isl_map *map,
1114 isl_set **dom, isl_set **ran, int *left, int *right,
1115 __isl_give isl_map **res)
1123 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1124 isl_map_range(isl_map_copy(map)));
1125 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1133 d = isl_map_dim(map, isl_dim_in);
1135 for (i = 0; i < map->n; ++i) {
1137 int exact_i, spurious;
1139 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1140 isl_basic_map_copy(map->p[i])));
1141 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1142 isl_basic_map_copy(map->p[i])));
1143 qc = q_closure(isl_dim_copy(dim), isl_set_copy(C),
1144 map->p[i], &exact_i);
1151 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1158 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1159 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1160 qc = isl_map_compute_divs(qc);
1161 for (j = 0; j < map->n; ++j)
1162 left[j] = right[j] = 1;
1163 qc = compose(map, i, qc, left, right);
1166 if (qc->n >= map->n) {
1170 *res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1171 left, right, &exact_i);
1182 return *res != NULL;
1188 /* Try and compute the transitive closure of "map" as
1190 * map^+ = map_i^+ \cup
1191 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1193 * with C either the simple hull of the domain and range of the entire
1194 * map or the simple hull of domain and range of map_i.
1196 static __isl_give isl_map *incremental_closure(__isl_take isl_dim *dim,
1197 __isl_keep isl_map *map, int *exact, int project)
1200 isl_set **dom = NULL;
1201 isl_set **ran = NULL;
1206 isl_map *res = NULL;
1209 return construct_projected_component(dim, map, exact, project);
1214 return construct_projected_component(dim, map, exact, project);
1216 d = isl_map_dim(map, isl_dim_in);
1218 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1219 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1220 left = isl_calloc_array(map->ctx, int, map->n);
1221 right = isl_calloc_array(map->ctx, int, map->n);
1222 if (!ran || !dom || !left || !right)
1225 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1228 for (i = 0; !res && i < map->n; ++i) {
1230 int exact_i, spurious, comp;
1232 dom[i] = isl_set_from_basic_set(
1233 isl_basic_map_domain(
1234 isl_basic_map_copy(map->p[i])));
1238 ran[i] = isl_set_from_basic_set(
1239 isl_basic_map_range(
1240 isl_basic_map_copy(map->p[i])));
1243 C = isl_set_union(isl_set_copy(dom[i]),
1244 isl_set_copy(ran[i]));
1245 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1252 comp = composability(C, i, dom, ran, left, right, map);
1253 if (!comp || comp < 0) {
1259 qc = q_closure(isl_dim_copy(dim), C, map->p[i], &exact_i);
1266 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1273 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1274 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1275 qc = isl_map_compute_divs(qc);
1276 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1277 (comp & RIGHT) ? right : NULL);
1280 if (qc->n >= map->n) {
1284 res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1285 (comp & LEFT) ? left : NULL,
1286 (comp & RIGHT) ? right : NULL, &exact_i);
1295 for (i = 0; i < map->n; ++i) {
1296 isl_set_free(dom[i]);
1297 isl_set_free(ran[i]);
1309 return construct_projected_component(dim, map, exact, project);
1312 for (i = 0; i < map->n; ++i)
1313 isl_set_free(dom[i]);
1316 for (i = 0; i < map->n; ++i)
1317 isl_set_free(ran[i]);
1325 /* Given an array of sets "set", add "dom" at position "pos"
1326 * and search for elements at earlier positions that overlap with "dom".
1327 * If any can be found, then merge all of them, together with "dom", into
1328 * a single set and assign the union to the first in the array,
1329 * which becomes the new group leader for all groups involved in the merge.
1330 * During the search, we only consider group leaders, i.e., those with
1331 * group[i] = i, as the other sets have already been combined
1332 * with one of the group leaders.
1334 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1339 set[pos] = isl_set_copy(dom);
1341 for (i = pos - 1; i >= 0; --i) {
1347 o = isl_set_overlaps(set[i], dom);
1353 set[i] = isl_set_union(set[i], set[group[pos]]);
1356 set[group[pos]] = NULL;
1357 group[group[pos]] = i;
1368 /* Given a partition of the domains and ranges of the basic maps in "map",
1369 * apply the Floyd-Warshall algorithm with the elements in the partition
1372 * In particular, there are "n" elements in the partition and "group" is
1373 * an array of length 2 * map->n with entries in [0,n-1].
1375 * We first construct a matrix of relations based on the partition information,
1376 * apply Floyd-Warshall on this matrix of relations and then take the
1377 * union of all entries in the matrix as the final result.
1379 * The algorithm iterates over all vertices. In each step, the whole
1380 * matrix is updated to include all paths that go to the current vertex,
1381 * possibly stay there a while (including passing through earlier vertices)
1382 * and then come back. At the start of each iteration, the diagonal
1383 * element corresponding to the current vertex is replaced by its
1384 * transitive closure to account for all indirect paths that stay
1385 * in the current vertex.
1387 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_dim *dim,
1388 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1392 isl_map ***grid = NULL;
1400 return incremental_closure(dim, map, exact, project);
1403 grid = isl_calloc_array(map->ctx, isl_map **, n);
1406 for (i = 0; i < n; ++i) {
1407 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1410 for (j = 0; j < n; ++j)
1411 grid[i][j] = isl_map_empty(isl_map_get_dim(map));
1414 for (k = 0; k < map->n; ++k) {
1416 j = group[2 * k + 1];
1417 grid[i][j] = isl_map_union(grid[i][j],
1418 isl_map_from_basic_map(
1419 isl_basic_map_copy(map->p[k])));
1422 for (r = 0; r < n; ++r) {
1424 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1425 (exact && *exact) ? &r_exact : NULL);
1426 if (exact && *exact && !r_exact)
1429 for (p = 0; p < n; ++p)
1430 for (q = 0; q < n; ++q) {
1432 if (p == r && q == r)
1434 loop = isl_map_apply_range(
1435 isl_map_copy(grid[p][r]),
1436 isl_map_copy(grid[r][q]));
1437 grid[p][q] = isl_map_union(grid[p][q], loop);
1438 loop = isl_map_apply_range(
1439 isl_map_copy(grid[p][r]),
1440 isl_map_apply_range(
1441 isl_map_copy(grid[r][r]),
1442 isl_map_copy(grid[r][q])));
1443 grid[p][q] = isl_map_union(grid[p][q], loop);
1444 grid[p][q] = isl_map_coalesce(grid[p][q]);
1448 app = isl_map_empty(isl_map_get_dim(map));
1450 for (i = 0; i < n; ++i) {
1451 for (j = 0; j < n; ++j)
1452 app = isl_map_union(app, grid[i][j]);
1463 for (i = 0; i < n; ++i) {
1466 for (j = 0; j < n; ++j)
1467 isl_map_free(grid[i][j]);
1476 /* Check if the domains and ranges of the basic maps in "map" can
1477 * be partitioned, and if so, apply Floyd-Warshall on the elements
1478 * of the partition. Note that we can only apply this algorithm
1479 * if we want to compute the transitive closure, i.e., when "project"
1480 * is set. If we want to compute the power, we need to keep track
1481 * of the lengths and the recursive calls inside the Floyd-Warshall
1482 * would result in non-linear lengths.
1484 * To find the partition, we simply consider all of the domains
1485 * and ranges in turn and combine those that overlap.
1486 * "set" contains the partition elements and "group" indicates
1487 * to which partition element a given domain or range belongs.
1488 * The domain of basic map i corresponds to element 2 * i in these arrays,
1489 * while the domain corresponds to element 2 * i + 1.
1490 * During the construction group[k] is either equal to k,
1491 * in which case set[k] contains the union of all the domains and
1492 * ranges in the corresponding group, or is equal to some l < k,
1493 * with l another domain or range in the same group.
1495 static __isl_give isl_map *floyd_warshall(__isl_take isl_dim *dim,
1496 __isl_keep isl_map *map, int *exact, int project)
1499 isl_set **set = NULL;
1505 if (!project || map->n <= 1)
1506 return incremental_closure(dim, map, exact, project);
1508 set = isl_calloc_array(map->ctx, isl_set *, 2 * map->n);
1509 group = isl_alloc_array(map->ctx, int, 2 * map->n);
1514 for (i = 0; i < map->n; ++i) {
1516 dom = isl_set_from_basic_set(isl_basic_map_domain(
1517 isl_basic_map_copy(map->p[i])));
1518 if (merge(set, group, dom, 2 * i) < 0)
1520 dom = isl_set_from_basic_set(isl_basic_map_range(
1521 isl_basic_map_copy(map->p[i])));
1522 if (merge(set, group, dom, 2 * i + 1) < 0)
1527 for (i = 0; i < 2 * map->n; ++i)
1531 group[i] = group[group[i]];
1533 for (i = 0; i < 2 * map->n; ++i)
1534 isl_set_free(set[i]);
1538 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1540 for (i = 0; i < 2 * map->n; ++i)
1541 isl_set_free(set[i]);
1548 /* Structure for representing the nodes in the graph being traversed
1549 * using Tarjan's algorithm.
1550 * index represents the order in which nodes are visited.
1551 * min_index is the index of the root of a (sub)component.
1552 * on_stack indicates whether the node is currently on the stack.
1554 struct basic_map_sort_node {
1559 /* Structure for representing the graph being traversed
1560 * using Tarjan's algorithm.
1561 * len is the number of nodes
1562 * node is an array of nodes
1563 * stack contains the nodes on the path from the root to the current node
1564 * sp is the stack pointer
1565 * index is the index of the last node visited
1566 * order contains the elements of the components separated by -1
1567 * op represents the current position in order
1569 struct basic_map_sort {
1571 struct basic_map_sort_node *node;
1579 static void basic_map_sort_free(struct basic_map_sort *s)
1589 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
1591 struct basic_map_sort *s;
1594 s = isl_calloc_type(ctx, struct basic_map_sort);
1598 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
1601 for (i = 0; i < len; ++i)
1602 s->node[i].index = -1;
1603 s->stack = isl_alloc_array(ctx, int, len);
1606 s->order = isl_alloc_array(ctx, int, 2 * len);
1616 basic_map_sort_free(s);
1620 /* Check whether in the computation of the transitive closure
1621 * "bmap1" (R_1) should follow (or be part of the same component as)
1624 * That is check whether
1632 * If so, then there is no reason for R_1 to immediately follow R_2
1635 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
1636 __isl_keep isl_basic_map *bmap2)
1638 struct isl_map *map12 = NULL;
1639 struct isl_map *map21 = NULL;
1642 map21 = isl_map_from_basic_map(
1643 isl_basic_map_apply_range(
1644 isl_basic_map_copy(bmap2),
1645 isl_basic_map_copy(bmap1)));
1646 subset = isl_map_is_empty(map21);
1650 isl_map_free(map21);
1654 map12 = isl_map_from_basic_map(
1655 isl_basic_map_apply_range(
1656 isl_basic_map_copy(bmap1),
1657 isl_basic_map_copy(bmap2)));
1659 subset = isl_map_is_subset(map21, map12);
1661 isl_map_free(map12);
1662 isl_map_free(map21);
1664 return subset < 0 ? -1 : !subset;
1666 isl_map_free(map21);
1670 /* Perform Tarjan's algorithm for computing the strongly connected components
1671 * in the graph with the disjuncts of "map" as vertices and with an
1672 * edge between any pair of disjuncts such that the first has
1673 * to be applied after the second.
1675 static int power_components_tarjan(struct basic_map_sort *s,
1676 __isl_keep isl_map *map, int i)
1680 s->node[i].index = s->index;
1681 s->node[i].min_index = s->index;
1682 s->node[i].on_stack = 1;
1684 s->stack[s->sp++] = i;
1686 for (j = s->len - 1; j >= 0; --j) {
1691 if (s->node[j].index >= 0 &&
1692 (!s->node[j].on_stack ||
1693 s->node[j].index > s->node[i].min_index))
1696 f = basic_map_follows(map->p[i], map->p[j]);
1702 if (s->node[j].index < 0) {
1703 power_components_tarjan(s, map, j);
1704 if (s->node[j].min_index < s->node[i].min_index)
1705 s->node[i].min_index = s->node[j].min_index;
1706 } else if (s->node[j].index < s->node[i].min_index)
1707 s->node[i].min_index = s->node[j].index;
1710 if (s->node[i].index != s->node[i].min_index)
1714 j = s->stack[--s->sp];
1715 s->node[j].on_stack = 0;
1716 s->order[s->op++] = j;
1718 s->order[s->op++] = -1;
1723 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1724 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1725 * construct a map that is an overapproximation of the map
1726 * that takes an element from the dom R \times Z to an
1727 * element from ran R \times Z, such that the first n coordinates of the
1728 * difference between them is a sum of differences between images
1729 * and pre-images in one of the R_i and such that the last coordinate
1730 * is equal to the number of steps taken.
1731 * If "project" is set, then these final coordinates are not included,
1732 * i.e., a relation of type Z^n -> Z^n is returned.
1735 * \Delta_i = { y - x | (x, y) in R_i }
1737 * then the constructed map is an overapproximation of
1739 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1740 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1741 * x in dom R and x + d in ran R }
1745 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1746 * d = (\sum_i k_i \delta_i) and
1747 * x in dom R and x + d in ran R }
1749 * if "project" is set.
1751 * We first split the map into strongly connected components, perform
1752 * the above on each component and then join the results in the correct
1753 * order, at each join also taking in the union of both arguments
1754 * to allow for paths that do not go through one of the two arguments.
1756 static __isl_give isl_map *construct_power_components(__isl_take isl_dim *dim,
1757 __isl_keep isl_map *map, int *exact, int project)
1760 struct isl_map *path = NULL;
1761 struct basic_map_sort *s = NULL;
1766 return floyd_warshall(dim, map, exact, project);
1768 s = basic_map_sort_alloc(map->ctx, map->n);
1771 for (i = map->n - 1; i >= 0; --i) {
1772 if (s->node[i].index >= 0)
1774 if (power_components_tarjan(s, map, i) < 0)
1781 path = isl_map_empty(isl_map_get_dim(map));
1783 path = isl_map_empty(isl_dim_copy(dim));
1785 struct isl_map *comp;
1786 isl_map *path_comp, *path_comb;
1787 comp = isl_map_alloc_dim(isl_map_get_dim(map), n, 0);
1788 while (s->order[i] != -1) {
1789 comp = isl_map_add_basic_map(comp,
1790 isl_basic_map_copy(map->p[s->order[i]]));
1794 path_comp = floyd_warshall(isl_dim_copy(dim),
1795 comp, exact, project);
1796 path_comb = isl_map_apply_range(isl_map_copy(path),
1797 isl_map_copy(path_comp));
1798 path = isl_map_union(path, path_comp);
1799 path = isl_map_union(path, path_comb);
1804 basic_map_sort_free(s);
1809 basic_map_sort_free(s);
1814 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1815 * construct a map that is an overapproximation of the map
1816 * that takes an element from the space D to another
1817 * element from the same space, such that the difference between
1818 * them is a strictly positive sum of differences between images
1819 * and pre-images in one of the R_i.
1820 * The number of differences in the sum is equated to parameter "param".
1823 * \Delta_i = { y - x | (x, y) in R_i }
1825 * then the constructed map is an overapproximation of
1827 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1828 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1831 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1832 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1834 * if "project" is set.
1836 * If "project" is not set, then
1837 * we first construct an extended mapping with an extra coordinate
1838 * that indicates the number of steps taken. In particular,
1839 * the difference in the last coordinate is equal to the number
1840 * of steps taken to move from a domain element to the corresponding
1842 * In the final step, this difference is equated to the parameter "param"
1843 * and made positive. The extra coordinates are subsequently projected out.
1845 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1846 unsigned param, int *exact, int project)
1848 struct isl_map *app = NULL;
1849 struct isl_map *diff;
1850 struct isl_dim *dim = NULL;
1856 dim = isl_map_get_dim(map);
1858 d = isl_dim_size(dim, isl_dim_in);
1859 dim = isl_dim_add(dim, isl_dim_in, 1);
1860 dim = isl_dim_add(dim, isl_dim_out, 1);
1862 app = construct_power_components(isl_dim_copy(dim), map,
1868 diff = equate_parameter_to_length(dim, param);
1869 app = isl_map_intersect(app, diff);
1870 app = isl_map_project_out(app, isl_dim_in, d, 1);
1871 app = isl_map_project_out(app, isl_dim_out, d, 1);
1877 /* Compute the positive powers of "map", or an overapproximation.
1878 * The power is given by parameter "param". If the result is exact,
1879 * then *exact is set to 1.
1881 * If project is set, then we are actually interested in the transitive
1882 * closure, so we can use a more relaxed exactness check.
1883 * The lengths of the paths are also projected out instead of being
1884 * equated to "param" (which is then ignored in this case).
1886 static __isl_give isl_map *map_power(__isl_take isl_map *map, unsigned param,
1887 int *exact, int project)
1889 struct isl_map *app = NULL;
1897 if (isl_map_fast_is_empty(map))
1900 isl_assert(map->ctx, project || param < isl_map_dim(map, isl_dim_param),
1902 isl_assert(map->ctx,
1903 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
1906 app = construct_power(map, param, exact, project);
1916 /* Compute the positive powers of "map", or an overapproximation.
1917 * The power is given by parameter "param". If the result is exact,
1918 * then *exact is set to 1.
1920 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, unsigned param,
1923 map = isl_map_compute_divs(map);
1924 map = isl_map_coalesce(map);
1925 return map_power(map, param, exact, 0);
1928 /* Check whether equality i of bset is a pure stride constraint
1929 * on a single dimensions, i.e., of the form
1933 * with k a constant and e an existentially quantified variable.
1935 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
1947 if (!isl_int_is_zero(bset->eq[i][0]))
1950 nparam = isl_basic_set_dim(bset, isl_dim_param);
1951 d = isl_basic_set_dim(bset, isl_dim_set);
1952 n_div = isl_basic_set_dim(bset, isl_dim_div);
1954 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
1956 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
1959 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
1960 d - pos1 - 1) != -1)
1963 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
1966 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
1967 n_div - pos2 - 1) != -1)
1969 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
1970 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
1976 /* Given a map, compute the smallest superset of this map that is of the form
1978 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
1980 * (where p ranges over the (non-parametric) dimensions),
1981 * compute the transitive closure of this map, i.e.,
1983 * { i -> j : exists k > 0:
1984 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1986 * and intersect domain and range of this transitive closure with
1987 * the given domain and range.
1989 * If with_id is set, then try to include as much of the identity mapping
1990 * as possible, by computing
1992 * { i -> j : exists k >= 0:
1993 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
1995 * instead (i.e., allow k = 0).
1997 * In practice, we compute the difference set
1999 * delta = { j - i | i -> j in map },
2001 * look for stride constraint on the individual dimensions and compute
2002 * (constant) lower and upper bounds for each individual dimension,
2003 * adding a constraint for each bound not equal to infinity.
2005 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2006 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2015 isl_map *app = NULL;
2016 isl_basic_set *aff = NULL;
2017 isl_basic_map *bmap = NULL;
2018 isl_vec *obj = NULL;
2023 delta = isl_map_deltas(isl_map_copy(map));
2025 aff = isl_set_affine_hull(isl_set_copy(delta));
2028 dim = isl_map_get_dim(map);
2029 d = isl_dim_size(dim, isl_dim_in);
2030 nparam = isl_dim_size(dim, isl_dim_param);
2031 total = isl_dim_total(dim);
2032 bmap = isl_basic_map_alloc_dim(dim,
2033 aff->n_div + 1, aff->n_div, 2 * d + 1);
2034 for (i = 0; i < aff->n_div + 1; ++i) {
2035 k = isl_basic_map_alloc_div(bmap);
2038 isl_int_set_si(bmap->div[k][0], 0);
2040 for (i = 0; i < aff->n_eq; ++i) {
2041 if (!is_eq_stride(aff, i))
2043 k = isl_basic_map_alloc_equality(bmap);
2046 isl_seq_clr(bmap->eq[k], 1 + nparam);
2047 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2048 aff->eq[i] + 1 + nparam, d);
2049 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2050 aff->eq[i] + 1 + nparam, d);
2051 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2052 aff->eq[i] + 1 + nparam + d, aff->n_div);
2053 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2055 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2058 isl_seq_clr(obj->el, 1 + nparam + d);
2059 for (i = 0; i < d; ++ i) {
2060 enum isl_lp_result res;
2062 isl_int_set_si(obj->el[1 + nparam + i], 1);
2064 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2066 if (res == isl_lp_error)
2068 if (res == isl_lp_ok) {
2069 k = isl_basic_map_alloc_inequality(bmap);
2072 isl_seq_clr(bmap->ineq[k],
2073 1 + nparam + 2 * d + bmap->n_div);
2074 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2075 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2076 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2079 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2081 if (res == isl_lp_error)
2083 if (res == isl_lp_ok) {
2084 k = isl_basic_map_alloc_inequality(bmap);
2087 isl_seq_clr(bmap->ineq[k],
2088 1 + nparam + 2 * d + bmap->n_div);
2089 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2090 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2091 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2094 isl_int_set_si(obj->el[1 + nparam + i], 0);
2096 k = isl_basic_map_alloc_inequality(bmap);
2099 isl_seq_clr(bmap->ineq[k],
2100 1 + nparam + 2 * d + bmap->n_div);
2102 isl_int_set_si(bmap->ineq[k][0], -1);
2103 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2105 app = isl_map_from_domain_and_range(dom, ran);
2108 isl_basic_set_free(aff);
2110 bmap = isl_basic_map_finalize(bmap);
2111 isl_set_free(delta);
2114 map = isl_map_from_basic_map(bmap);
2115 map = isl_map_intersect(map, app);
2120 isl_basic_map_free(bmap);
2121 isl_basic_set_free(aff);
2125 isl_set_free(delta);
2130 /* Given a map, compute the smallest superset of this map that is of the form
2132 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2134 * (where p ranges over the (non-parametric) dimensions),
2135 * compute the transitive closure of this map, i.e.,
2137 * { i -> j : exists k > 0:
2138 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2140 * and intersect domain and range of this transitive closure with
2141 * domain and range of the original map.
2143 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2148 domain = isl_map_domain(isl_map_copy(map));
2149 domain = isl_set_coalesce(domain);
2150 range = isl_map_range(isl_map_copy(map));
2151 range = isl_set_coalesce(range);
2153 return box_closure_on_domain(map, domain, range, 0);
2156 /* Given a map, compute the smallest superset of this map that is of the form
2158 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2160 * (where p ranges over the (non-parametric) dimensions),
2161 * compute the transitive and partially reflexive closure of this map, i.e.,
2163 * { i -> j : exists k >= 0:
2164 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2166 * and intersect domain and range of this transitive closure with
2169 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2170 __isl_take isl_set *dom)
2172 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2175 /* Check whether app is the transitive closure of map.
2176 * In particular, check that app is acyclic and, if so,
2179 * app \subset (map \cup (map \circ app))
2181 static int check_exactness_omega(__isl_keep isl_map *map,
2182 __isl_keep isl_map *app)
2186 int is_empty, is_exact;
2190 delta = isl_map_deltas(isl_map_copy(app));
2191 d = isl_set_dim(delta, isl_dim_set);
2192 for (i = 0; i < d; ++i)
2193 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2194 is_empty = isl_set_is_empty(delta);
2195 isl_set_free(delta);
2201 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2202 test = isl_map_union(test, isl_map_copy(map));
2203 is_exact = isl_map_is_subset(app, test);
2209 /* Check if basic map M_i can be combined with all the other
2210 * basic maps such that
2214 * can be computed as
2216 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2218 * In particular, check if we can compute a compact representation
2221 * M_i^* \circ M_j \circ M_i^*
2224 * Let M_i^? be an extension of M_i^+ that allows paths
2225 * of length zero, i.e., the result of box_closure(., 1).
2226 * The criterion, as proposed by Kelly et al., is that
2227 * id = M_i^? - M_i^+ can be represented as a basic map
2230 * id \circ M_j \circ id = M_j
2234 * If this function returns 1, then tc and qc are set to
2235 * M_i^+ and M_i^?, respectively.
2237 static int can_be_split_off(__isl_keep isl_map *map, int i,
2238 __isl_give isl_map **tc, __isl_give isl_map **qc)
2240 isl_map *map_i, *id = NULL;
2247 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2248 isl_map_range(isl_map_copy(map)));
2249 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2253 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2254 *tc = box_closure(isl_map_copy(map_i));
2255 *qc = box_closure_with_identity(map_i, C);
2256 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2260 if (id->n != 1 || (*qc)->n != 1)
2263 for (j = 0; j < map->n; ++j) {
2264 isl_map *map_j, *test;
2269 map_j = isl_map_from_basic_map(
2270 isl_basic_map_copy(map->p[j]));
2271 test = isl_map_apply_range(isl_map_copy(id),
2272 isl_map_copy(map_j));
2273 test = isl_map_apply_range(test, isl_map_copy(id));
2274 is_ok = isl_map_is_equal(test, map_j);
2275 isl_map_free(map_j);
2303 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2308 app = box_closure(isl_map_copy(map));
2310 *exact = check_exactness_omega(map, app);
2316 /* Compute an overapproximation of the transitive closure of "map"
2317 * using a variation of the algorithm from
2318 * "Transitive Closure of Infinite Graphs and its Applications"
2321 * We first check whether we can can split of any basic map M_i and
2328 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2330 * using a recursive call on the remaining map.
2332 * If not, we simply call box_closure on the whole map.
2334 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2344 return box_closure_with_check(map, exact);
2346 for (i = 0; i < map->n; ++i) {
2349 ok = can_be_split_off(map, i, &tc, &qc);
2355 app = isl_map_alloc_dim(isl_map_get_dim(map), map->n - 1, 0);
2357 for (j = 0; j < map->n; ++j) {
2360 app = isl_map_add_basic_map(app,
2361 isl_basic_map_copy(map->p[j]));
2364 app = isl_map_apply_range(isl_map_copy(qc), app);
2365 app = isl_map_apply_range(app, qc);
2367 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2368 exact_i = check_exactness_omega(map, app);
2380 return box_closure_with_check(map, exact);
2386 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
2391 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
2392 closed = isl_map_is_subset(map2, map);
2398 /* Compute the transitive closure of "map", or an overapproximation.
2399 * If the result is exact, then *exact is set to 1.
2400 * Simply use map_power to compute the powers of map, but tell
2401 * it to project out the lengths of the paths instead of equating
2402 * the length to a parameter.
2404 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2413 if (map->ctx->opt->closure == ISL_CLOSURE_OMEGA)
2414 return transitive_closure_omega(map, exact);
2416 map = isl_map_compute_divs(map);
2417 map = isl_map_coalesce(map);
2418 closed = isl_map_is_transitively_closed(map);
2427 param = isl_map_dim(map, isl_dim_param);
2428 map = map_power(map, param, exact, 1);