2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
15 #include <isl_dim_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
20 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
25 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
26 closed = isl_map_is_subset(map2, map);
32 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
37 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
38 isl_union_map_copy(umap));
39 closed = isl_union_map_is_subset(umap2, umap);
40 isl_union_map_free(umap2);
45 /* Given a map that represents a path with the length of the path
46 * encoded as the difference between the last output coordindate
47 * and the last input coordinate, set this length to either
48 * exactly "length" (if "exactly" is set) or at least "length"
49 * (if "exactly" is not set).
51 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
52 int exactly, int length)
55 struct isl_basic_map *bmap;
64 dim = isl_map_get_dim(map);
65 d = isl_dim_size(dim, isl_dim_in);
66 nparam = isl_dim_size(dim, isl_dim_param);
67 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
69 k = isl_basic_map_alloc_equality(bmap);
72 k = isl_basic_map_alloc_inequality(bmap);
77 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
78 isl_int_set_si(c[0], -length);
79 isl_int_set_si(c[1 + nparam + d - 1], -1);
80 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
82 bmap = isl_basic_map_finalize(bmap);
83 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
87 isl_basic_map_free(bmap);
92 /* Check whether the overapproximation of the power of "map" is exactly
93 * the power of "map". Let R be "map" and A_k the overapproximation.
94 * The approximation is exact if
97 * A_k = A_{k-1} \circ R k >= 2
99 * Since A_k is known to be an overapproximation, we only need to check
102 * A_k \subset A_{k-1} \circ R k >= 2
104 * In practice, "app" has an extra input and output coordinate
105 * to encode the length of the path. So, we first need to add
106 * this coordinate to "map" and set the length of the path to
109 static int check_power_exactness(__isl_take isl_map *map,
110 __isl_take isl_map *app)
116 map = isl_map_add_dims(map, isl_dim_in, 1);
117 map = isl_map_add_dims(map, isl_dim_out, 1);
118 map = set_path_length(map, 1, 1);
120 app_1 = set_path_length(isl_map_copy(app), 1, 1);
122 exact = isl_map_is_subset(app_1, map);
125 if (!exact || exact < 0) {
131 app_1 = set_path_length(isl_map_copy(app), 0, 1);
132 app_2 = set_path_length(app, 0, 2);
133 app_1 = isl_map_apply_range(map, app_1);
135 exact = isl_map_is_subset(app_2, app_1);
143 /* Check whether the overapproximation of the power of "map" is exactly
144 * the power of "map", possibly after projecting out the power (if "project"
147 * If "project" is set and if "steps" can only result in acyclic paths,
150 * A = R \cup (A \circ R)
152 * where A is the overapproximation with the power projected out, i.e.,
153 * an overapproximation of the transitive closure.
154 * More specifically, since A is known to be an overapproximation, we check
156 * A \subset R \cup (A \circ R)
158 * Otherwise, we check if the power is exact.
160 * Note that "app" has an extra input and output coordinate to encode
161 * the length of the part. If we are only interested in the transitive
162 * closure, then we can simply project out these coordinates first.
164 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
172 return check_power_exactness(map, app);
174 d = isl_map_dim(map, isl_dim_in);
175 app = set_path_length(app, 0, 1);
176 app = isl_map_project_out(app, isl_dim_in, d, 1);
177 app = isl_map_project_out(app, isl_dim_out, d, 1);
179 app = isl_map_reset_dim(app, isl_map_get_dim(map));
181 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
182 test = isl_map_union(test, isl_map_copy(map));
184 exact = isl_map_is_subset(app, test);
195 * The transitive closure implementation is based on the paper
196 * "Computing the Transitive Closure of a Union of Affine Integer
197 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
201 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
202 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
203 * that maps an element x to any element that can be reached
204 * by taking a non-negative number of steps along any of
205 * the extended offsets v'_i = [v_i 1].
208 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
210 * For any element in this relation, the number of steps taken
211 * is equal to the difference in the final coordinates.
213 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
214 __isl_keep isl_mat *steps)
217 struct isl_basic_map *path = NULL;
225 d = isl_dim_size(dim, isl_dim_in);
227 nparam = isl_dim_size(dim, isl_dim_param);
229 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
231 for (i = 0; i < n; ++i) {
232 k = isl_basic_map_alloc_div(path);
235 isl_assert(steps->ctx, i == k, goto error);
236 isl_int_set_si(path->div[k][0], 0);
239 for (i = 0; i < d; ++i) {
240 k = isl_basic_map_alloc_equality(path);
243 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
244 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
245 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
247 for (j = 0; j < n; ++j)
248 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
250 for (j = 0; j < n; ++j)
251 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
255 for (i = 0; i < n; ++i) {
256 k = isl_basic_map_alloc_inequality(path);
259 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
260 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
265 path = isl_basic_map_simplify(path);
266 path = isl_basic_map_finalize(path);
267 return isl_map_from_basic_map(path);
270 isl_basic_map_free(path);
279 /* Check whether the parametric constant term of constraint c is never
280 * positive in "bset".
282 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
283 isl_int *c, int *div_purity)
292 n_div = isl_basic_set_dim(bset, isl_dim_div);
293 d = isl_basic_set_dim(bset, isl_dim_set);
294 nparam = isl_basic_set_dim(bset, isl_dim_param);
296 bset = isl_basic_set_copy(bset);
297 bset = isl_basic_set_cow(bset);
298 bset = isl_basic_set_extend_constraints(bset, 0, 1);
299 k = isl_basic_set_alloc_inequality(bset);
302 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
303 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
304 for (i = 0; i < n_div; ++i) {
305 if (div_purity[i] != PURE_PARAM)
307 isl_int_set(bset->ineq[k][1 + nparam + d + i],
308 c[1 + nparam + d + i]);
310 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
311 empty = isl_basic_set_is_empty(bset);
312 isl_basic_set_free(bset);
316 isl_basic_set_free(bset);
320 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
321 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
322 * Return MIXED if only the coefficients of the parameters and the set
323 * variables are non-zero and if moreover the parametric constant
324 * can never attain positive values.
325 * Return IMPURE otherwise.
327 * If div_purity is NULL then we are dealing with a non-parametric set
328 * and so the constraint is obviously PURE_VAR.
330 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
343 n_div = isl_basic_set_dim(bset, isl_dim_div);
344 d = isl_basic_set_dim(bset, isl_dim_set);
345 nparam = isl_basic_set_dim(bset, isl_dim_param);
347 for (i = 0; i < n_div; ++i) {
348 if (isl_int_is_zero(c[1 + nparam + d + i]))
350 switch (div_purity[i]) {
351 case PURE_PARAM: p = 1; break;
352 case PURE_VAR: v = 1; break;
353 default: return IMPURE;
356 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
358 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
361 empty = parametric_constant_never_positive(bset, c, div_purity);
362 if (eq && empty >= 0 && !empty) {
363 isl_seq_neg(c, c, 1 + nparam + d + n_div);
364 empty = parametric_constant_never_positive(bset, c, div_purity);
367 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
370 /* Return an array of integers indicating the type of each div in bset.
371 * If the div is (recursively) defined in terms of only the parameters,
372 * then the type is PURE_PARAM.
373 * If the div is (recursively) defined in terms of only the set variables,
374 * then the type is PURE_VAR.
375 * Otherwise, the type is IMPURE.
377 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
388 n_div = isl_basic_set_dim(bset, isl_dim_div);
389 d = isl_basic_set_dim(bset, isl_dim_set);
390 nparam = isl_basic_set_dim(bset, isl_dim_param);
392 div_purity = isl_alloc_array(bset->ctx, int, n_div);
396 for (i = 0; i < bset->n_div; ++i) {
398 if (isl_int_is_zero(bset->div[i][0])) {
399 div_purity[i] = IMPURE;
402 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
404 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
406 for (j = 0; j < i; ++j) {
407 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
409 switch (div_purity[j]) {
410 case PURE_PARAM: p = 1; break;
411 case PURE_VAR: v = 1; break;
412 default: p = v = 1; break;
415 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
421 /* Given a path with the as yet unconstrained length at position "pos",
422 * check if setting the length to zero results in only the identity
425 static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
427 isl_basic_map *test = NULL;
428 isl_basic_map *id = NULL;
432 test = isl_basic_map_copy(path);
433 test = isl_basic_map_extend_constraints(test, 1, 0);
434 k = isl_basic_map_alloc_equality(test);
437 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
438 isl_int_set_si(test->eq[k][pos], 1);
439 id = isl_basic_map_identity(isl_basic_map_get_dim(path));
440 is_id = isl_basic_map_is_equal(test, id);
441 isl_basic_map_free(test);
442 isl_basic_map_free(id);
445 isl_basic_map_free(test);
449 /* If any of the constraints is found to be impure then this function
450 * sets *impurity to 1.
452 static __isl_give isl_basic_map *add_delta_constraints(
453 __isl_take isl_basic_map *path,
454 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
455 unsigned d, int *div_purity, int eq, int *impurity)
458 int n = eq ? delta->n_eq : delta->n_ineq;
459 isl_int **delta_c = eq ? delta->eq : delta->ineq;
462 n_div = isl_basic_set_dim(delta, isl_dim_div);
464 for (i = 0; i < n; ++i) {
466 int p = purity(delta, delta_c[i], div_purity, eq);
469 if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
473 if (eq && p != MIXED) {
474 k = isl_basic_map_alloc_equality(path);
475 path_c = path->eq[k];
477 k = isl_basic_map_alloc_inequality(path);
478 path_c = path->ineq[k];
482 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
484 isl_seq_cpy(path_c + off,
485 delta_c[i] + 1 + nparam, d);
486 isl_int_set(path_c[off + d], delta_c[i][0]);
487 } else if (p == PURE_PARAM) {
488 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
490 isl_seq_cpy(path_c + off,
491 delta_c[i] + 1 + nparam, d);
492 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
494 isl_seq_cpy(path_c + off - n_div,
495 delta_c[i] + 1 + nparam + d, n_div);
500 isl_basic_map_free(path);
504 /* Given a set of offsets "delta", construct a relation of the
505 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
506 * is an overapproximation of the relations that
507 * maps an element x to any element that can be reached
508 * by taking a non-negative number of steps along any of
509 * the elements in "delta".
510 * That is, construct an approximation of
512 * { [x] -> [y] : exists f \in \delta, k \in Z :
513 * y = x + k [f, 1] and k >= 0 }
515 * For any element in this relation, the number of steps taken
516 * is equal to the difference in the final coordinates.
518 * In particular, let delta be defined as
520 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
521 * C x + C'p + c >= 0 and
522 * D x + D'p + d >= 0 }
524 * where the constraints C x + C'p + c >= 0 are such that the parametric
525 * constant term of each constraint j, "C_j x + C'_j p + c_j",
526 * can never attain positive values, then the relation is constructed as
528 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
529 * A f + k a >= 0 and B p + b >= 0 and
530 * C f + C'p + c >= 0 and k >= 1 }
531 * union { [x] -> [x] }
533 * If the zero-length paths happen to correspond exactly to the identity
534 * mapping, then we return
536 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
537 * A f + k a >= 0 and B p + b >= 0 and
538 * C f + C'p + c >= 0 and k >= 0 }
542 * Existentially quantified variables in \delta are handled by
543 * classifying them as independent of the parameters, purely
544 * parameter dependent and others. Constraints containing
545 * any of the other existentially quantified variables are removed.
546 * This is safe, but leads to an additional overapproximation.
548 * If there are any impure constraints, then we also eliminate
549 * the parameters from \delta, resulting in a set
551 * \delta' = { [x] : E x + e >= 0 }
553 * and add the constraints
557 * to the constructed relation.
559 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
560 __isl_take isl_basic_set *delta)
562 isl_basic_map *path = NULL;
569 int *div_purity = NULL;
574 n_div = isl_basic_set_dim(delta, isl_dim_div);
575 d = isl_basic_set_dim(delta, isl_dim_set);
576 nparam = isl_basic_set_dim(delta, isl_dim_param);
577 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
578 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
579 off = 1 + nparam + 2 * (d + 1) + n_div;
581 for (i = 0; i < n_div + d + 1; ++i) {
582 k = isl_basic_map_alloc_div(path);
585 isl_int_set_si(path->div[k][0], 0);
588 for (i = 0; i < d + 1; ++i) {
589 k = isl_basic_map_alloc_equality(path);
592 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
593 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
594 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
595 isl_int_set_si(path->eq[k][off + i], 1);
598 div_purity = get_div_purity(delta);
602 path = add_delta_constraints(path, delta, off, nparam, d,
603 div_purity, 1, &impurity);
604 path = add_delta_constraints(path, delta, off, nparam, d,
605 div_purity, 0, &impurity);
607 isl_dim *dim = isl_basic_set_get_dim(delta);
608 delta = isl_basic_set_project_out(delta,
609 isl_dim_param, 0, nparam);
610 delta = isl_basic_set_add(delta, isl_dim_param, nparam);
611 delta = isl_basic_set_reset_dim(delta, dim);
614 path = isl_basic_map_extend_constraints(path, delta->n_eq,
616 path = add_delta_constraints(path, delta, off, nparam, d,
618 path = add_delta_constraints(path, delta, off, nparam, d,
620 path = isl_basic_map_gauss(path, NULL);
623 is_id = empty_path_is_identity(path, off + d);
627 k = isl_basic_map_alloc_inequality(path);
630 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
632 isl_int_set_si(path->ineq[k][0], -1);
633 isl_int_set_si(path->ineq[k][off + d], 1);
636 isl_basic_set_free(delta);
637 path = isl_basic_map_finalize(path);
640 return isl_map_from_basic_map(path);
642 return isl_basic_map_union(path, isl_basic_map_identity(dim));
646 isl_basic_set_free(delta);
647 isl_basic_map_free(path);
651 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
652 * construct a map that equates the parameter to the difference
653 * in the final coordinates and imposes that this difference is positive.
656 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
658 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
661 struct isl_basic_map *bmap;
666 d = isl_dim_size(dim, isl_dim_in);
667 nparam = isl_dim_size(dim, isl_dim_param);
668 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
669 k = isl_basic_map_alloc_equality(bmap);
672 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
673 isl_int_set_si(bmap->eq[k][1 + param], -1);
674 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
675 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
677 k = isl_basic_map_alloc_inequality(bmap);
680 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
681 isl_int_set_si(bmap->ineq[k][1 + param], 1);
682 isl_int_set_si(bmap->ineq[k][0], -1);
684 bmap = isl_basic_map_finalize(bmap);
685 return isl_map_from_basic_map(bmap);
687 isl_basic_map_free(bmap);
691 /* Check whether "path" is acyclic, where the last coordinates of domain
692 * and range of path encode the number of steps taken.
693 * That is, check whether
695 * { d | d = y - x and (x,y) in path }
697 * does not contain any element with positive last coordinate (positive length)
698 * and zero remaining coordinates (cycle).
700 static int is_acyclic(__isl_take isl_map *path)
705 struct isl_set *delta;
707 delta = isl_map_deltas(path);
708 dim = isl_set_dim(delta, isl_dim_set);
709 for (i = 0; i < dim; ++i) {
711 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
713 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
716 acyclic = isl_set_is_empty(delta);
722 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
723 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
724 * construct a map that is an overapproximation of the map
725 * that takes an element from the space D \times Z to another
726 * element from the same space, such that the first n coordinates of the
727 * difference between them is a sum of differences between images
728 * and pre-images in one of the R_i and such that the last coordinate
729 * is equal to the number of steps taken.
732 * \Delta_i = { y - x | (x, y) in R_i }
734 * then the constructed map is an overapproximation of
736 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
737 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
739 * The elements of the singleton \Delta_i's are collected as the
740 * rows of the steps matrix. For all these \Delta_i's together,
741 * a single path is constructed.
742 * For each of the other \Delta_i's, we compute an overapproximation
743 * of the paths along elements of \Delta_i.
744 * Since each of these paths performs an addition, composition is
745 * symmetric and we can simply compose all resulting paths in any order.
747 static __isl_give isl_map *construct_extended_path(__isl_take isl_dim *dim,
748 __isl_keep isl_map *map, int *project)
750 struct isl_mat *steps = NULL;
751 struct isl_map *path = NULL;
755 d = isl_map_dim(map, isl_dim_in);
757 path = isl_map_identity(isl_dim_copy(dim));
759 steps = isl_mat_alloc(map->ctx, map->n, d);
764 for (i = 0; i < map->n; ++i) {
765 struct isl_basic_set *delta;
767 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
769 for (j = 0; j < d; ++j) {
772 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
775 isl_basic_set_free(delta);
784 path = isl_map_apply_range(path,
785 path_along_delta(isl_dim_copy(dim), delta));
786 path = isl_map_coalesce(path);
788 isl_basic_set_free(delta);
795 path = isl_map_apply_range(path,
796 path_along_steps(isl_dim_copy(dim), steps));
799 if (project && *project) {
800 *project = is_acyclic(isl_map_copy(path));
815 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
820 if (!isl_dim_tuple_match(set1->dim, isl_dim_set, set2->dim, isl_dim_set))
823 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
824 no_overlap = isl_set_is_empty(i);
827 return no_overlap < 0 ? -1 : !no_overlap;
830 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
831 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
832 * construct a map that is an overapproximation of the map
833 * that takes an element from the dom R \times Z to an
834 * element from ran R \times Z, such that the first n coordinates of the
835 * difference between them is a sum of differences between images
836 * and pre-images in one of the R_i and such that the last coordinate
837 * is equal to the number of steps taken.
840 * \Delta_i = { y - x | (x, y) in R_i }
842 * then the constructed map is an overapproximation of
844 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
845 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
846 * x in dom R and x + d in ran R and
849 static __isl_give isl_map *construct_component(__isl_take isl_dim *dim,
850 __isl_keep isl_map *map, int *exact, int project)
852 struct isl_set *domain = NULL;
853 struct isl_set *range = NULL;
854 struct isl_map *app = NULL;
855 struct isl_map *path = NULL;
857 domain = isl_map_domain(isl_map_copy(map));
858 domain = isl_set_coalesce(domain);
859 range = isl_map_range(isl_map_copy(map));
860 range = isl_set_coalesce(range);
861 if (!isl_set_overlaps(domain, range)) {
862 isl_set_free(domain);
866 map = isl_map_copy(map);
867 map = isl_map_add_dims(map, isl_dim_in, 1);
868 map = isl_map_add_dims(map, isl_dim_out, 1);
869 map = set_path_length(map, 1, 1);
872 app = isl_map_from_domain_and_range(domain, range);
873 app = isl_map_add_dims(app, isl_dim_in, 1);
874 app = isl_map_add_dims(app, isl_dim_out, 1);
876 path = construct_extended_path(isl_dim_copy(dim), map,
877 exact && *exact ? &project : NULL);
878 app = isl_map_intersect(app, path);
880 if (exact && *exact &&
881 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
886 app = set_path_length(app, 0, 1);
894 /* Call construct_component and, if "project" is set, project out
895 * the final coordinates.
897 static __isl_give isl_map *construct_projected_component(
898 __isl_take isl_dim *dim,
899 __isl_keep isl_map *map, int *exact, int project)
906 d = isl_dim_size(dim, isl_dim_in);
908 app = construct_component(dim, map, exact, project);
910 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
911 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
916 /* Compute an extended version, i.e., with path lengths, of
917 * an overapproximation of the transitive closure of "bmap"
918 * with path lengths greater than or equal to zero and with
919 * domain and range equal to "dom".
921 static __isl_give isl_map *q_closure(__isl_take isl_dim *dim,
922 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
929 dom = isl_set_add_dims(dom, isl_dim_set, 1);
930 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
931 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
932 path = construct_extended_path(dim, map, &project);
933 app = isl_map_intersect(app, path);
935 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
944 /* Check whether qc has any elements of length at least one
945 * with domain and/or range outside of dom and ran.
947 static int has_spurious_elements(__isl_keep isl_map *qc,
948 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
954 if (!qc || !dom || !ran)
957 d = isl_map_dim(qc, isl_dim_in);
959 qc = isl_map_copy(qc);
960 qc = set_path_length(qc, 0, 1);
961 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
962 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
964 s = isl_map_domain(isl_map_copy(qc));
965 subset = isl_set_is_subset(s, dom);
974 s = isl_map_range(qc);
975 subset = isl_set_is_subset(s, ran);
978 return subset < 0 ? -1 : !subset;
987 /* For each basic map in "map", except i, check whether it combines
988 * with the transitive closure that is reflexive on C combines
989 * to the left and to the right.
993 * dom map_j \subseteq C
995 * then right[j] is set to 1. Otherwise, if
997 * ran map_i \cap dom map_j = \emptyset
999 * then right[j] is set to 0. Otherwise, composing to the right
1002 * Similar, for composing to the left, we have if
1004 * ran map_j \subseteq C
1006 * then left[j] is set to 1. Otherwise, if
1008 * dom map_i \cap ran map_j = \emptyset
1010 * then left[j] is set to 0. Otherwise, composing to the left
1013 * The return value is or'd with LEFT if composing to the left
1014 * is possible and with RIGHT if composing to the right is possible.
1016 static int composability(__isl_keep isl_set *C, int i,
1017 isl_set **dom, isl_set **ran, int *left, int *right,
1018 __isl_keep isl_map *map)
1024 for (j = 0; j < map->n && ok; ++j) {
1025 int overlaps, subset;
1031 dom[j] = isl_set_from_basic_set(
1032 isl_basic_map_domain(
1033 isl_basic_map_copy(map->p[j])));
1036 overlaps = isl_set_overlaps(ran[i], dom[j]);
1042 subset = isl_set_is_subset(dom[j], C);
1054 ran[j] = isl_set_from_basic_set(
1055 isl_basic_map_range(
1056 isl_basic_map_copy(map->p[j])));
1059 overlaps = isl_set_overlaps(dom[i], ran[j]);
1065 subset = isl_set_is_subset(ran[j], C);
1079 static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1081 map = isl_map_reset(map, isl_dim_in);
1082 map = isl_map_reset(map, isl_dim_out);
1086 /* Return a map that is a union of the basic maps in "map", except i,
1087 * composed to left and right with qc based on the entries of "left"
1090 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1091 __isl_take isl_map *qc, int *left, int *right)
1096 comp = isl_map_empty(isl_map_get_dim(map));
1097 for (j = 0; j < map->n; ++j) {
1103 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1104 map_j = anonymize(map_j);
1105 if (left && left[j])
1106 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1107 if (right && right[j])
1108 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1109 comp = isl_map_union(comp, map_j);
1112 comp = isl_map_compute_divs(comp);
1113 comp = isl_map_coalesce(comp);
1120 /* Compute the transitive closure of "map" incrementally by
1127 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1131 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1133 * depending on whether left or right are NULL.
1135 static __isl_give isl_map *compute_incremental(
1136 __isl_take isl_dim *dim, __isl_keep isl_map *map,
1137 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1141 isl_map *rtc = NULL;
1145 isl_assert(map->ctx, left || right, goto error);
1147 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1148 tc = construct_projected_component(isl_dim_copy(dim), map_i,
1150 isl_map_free(map_i);
1153 qc = isl_map_transitive_closure(qc, exact);
1159 return isl_map_universe(isl_map_get_dim(map));
1162 if (!left || !right)
1163 rtc = isl_map_union(isl_map_copy(tc),
1164 isl_map_identity(isl_map_get_dim(tc)));
1166 qc = isl_map_apply_range(rtc, qc);
1168 qc = isl_map_apply_range(qc, rtc);
1169 qc = isl_map_union(tc, qc);
1180 /* Given a map "map", try to find a basic map such that
1181 * map^+ can be computed as
1183 * map^+ = map_i^+ \cup
1184 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1186 * with C the simple hull of the domain and range of the input map.
1187 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1188 * and by intersecting domain and range with C.
1189 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1190 * Also, we only use the incremental computation if all the transitive
1191 * closures are exact and if the number of basic maps in the union,
1192 * after computing the integer divisions, is smaller than the number
1193 * of basic maps in the input map.
1195 static int incemental_on_entire_domain(__isl_keep isl_dim *dim,
1196 __isl_keep isl_map *map,
1197 isl_set **dom, isl_set **ran, int *left, int *right,
1198 __isl_give isl_map **res)
1206 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1207 isl_map_range(isl_map_copy(map)));
1208 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1216 d = isl_map_dim(map, isl_dim_in);
1218 for (i = 0; i < map->n; ++i) {
1220 int exact_i, spurious;
1222 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1223 isl_basic_map_copy(map->p[i])));
1224 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1225 isl_basic_map_copy(map->p[i])));
1226 qc = q_closure(isl_dim_copy(dim), isl_set_copy(C),
1227 map->p[i], &exact_i);
1234 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1241 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1242 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1243 qc = isl_map_compute_divs(qc);
1244 for (j = 0; j < map->n; ++j)
1245 left[j] = right[j] = 1;
1246 qc = compose(map, i, qc, left, right);
1249 if (qc->n >= map->n) {
1253 *res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1254 left, right, &exact_i);
1265 return *res != NULL;
1271 /* Try and compute the transitive closure of "map" as
1273 * map^+ = map_i^+ \cup
1274 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1276 * with C either the simple hull of the domain and range of the entire
1277 * map or the simple hull of domain and range of map_i.
1279 static __isl_give isl_map *incremental_closure(__isl_take isl_dim *dim,
1280 __isl_keep isl_map *map, int *exact, int project)
1283 isl_set **dom = NULL;
1284 isl_set **ran = NULL;
1289 isl_map *res = NULL;
1292 return construct_projected_component(dim, map, exact, project);
1297 return construct_projected_component(dim, map, exact, project);
1299 d = isl_map_dim(map, isl_dim_in);
1301 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1302 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1303 left = isl_calloc_array(map->ctx, int, map->n);
1304 right = isl_calloc_array(map->ctx, int, map->n);
1305 if (!ran || !dom || !left || !right)
1308 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1311 for (i = 0; !res && i < map->n; ++i) {
1313 int exact_i, spurious, comp;
1315 dom[i] = isl_set_from_basic_set(
1316 isl_basic_map_domain(
1317 isl_basic_map_copy(map->p[i])));
1321 ran[i] = isl_set_from_basic_set(
1322 isl_basic_map_range(
1323 isl_basic_map_copy(map->p[i])));
1326 C = isl_set_union(isl_set_copy(dom[i]),
1327 isl_set_copy(ran[i]));
1328 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1335 comp = composability(C, i, dom, ran, left, right, map);
1336 if (!comp || comp < 0) {
1342 qc = q_closure(isl_dim_copy(dim), C, map->p[i], &exact_i);
1349 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1356 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1357 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1358 qc = isl_map_compute_divs(qc);
1359 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1360 (comp & RIGHT) ? right : NULL);
1363 if (qc->n >= map->n) {
1367 res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1368 (comp & LEFT) ? left : NULL,
1369 (comp & RIGHT) ? right : NULL, &exact_i);
1378 for (i = 0; i < map->n; ++i) {
1379 isl_set_free(dom[i]);
1380 isl_set_free(ran[i]);
1392 return construct_projected_component(dim, map, exact, project);
1395 for (i = 0; i < map->n; ++i)
1396 isl_set_free(dom[i]);
1399 for (i = 0; i < map->n; ++i)
1400 isl_set_free(ran[i]);
1408 /* Given an array of sets "set", add "dom" at position "pos"
1409 * and search for elements at earlier positions that overlap with "dom".
1410 * If any can be found, then merge all of them, together with "dom", into
1411 * a single set and assign the union to the first in the array,
1412 * which becomes the new group leader for all groups involved in the merge.
1413 * During the search, we only consider group leaders, i.e., those with
1414 * group[i] = i, as the other sets have already been combined
1415 * with one of the group leaders.
1417 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1422 set[pos] = isl_set_copy(dom);
1424 for (i = pos - 1; i >= 0; --i) {
1430 o = isl_set_overlaps(set[i], dom);
1436 set[i] = isl_set_union(set[i], set[group[pos]]);
1437 set[group[pos]] = NULL;
1440 group[group[pos]] = i;
1451 /* Replace each entry in the n by n grid of maps by the cross product
1452 * with the relation { [i] -> [i + 1] }.
1454 static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1458 isl_basic_map *bstep;
1465 dim = isl_map_get_dim(map);
1466 nparam = isl_dim_size(dim, isl_dim_param);
1467 dim = isl_dim_drop(dim, isl_dim_in, 0, isl_dim_size(dim, isl_dim_in));
1468 dim = isl_dim_drop(dim, isl_dim_out, 0, isl_dim_size(dim, isl_dim_out));
1469 dim = isl_dim_add(dim, isl_dim_in, 1);
1470 dim = isl_dim_add(dim, isl_dim_out, 1);
1471 bstep = isl_basic_map_alloc_dim(dim, 0, 1, 0);
1472 k = isl_basic_map_alloc_equality(bstep);
1474 isl_basic_map_free(bstep);
1477 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1478 isl_int_set_si(bstep->eq[k][0], 1);
1479 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1480 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1481 bstep = isl_basic_map_finalize(bstep);
1482 step = isl_map_from_basic_map(bstep);
1484 for (i = 0; i < n; ++i)
1485 for (j = 0; j < n; ++j)
1486 grid[i][j] = isl_map_product(grid[i][j],
1487 isl_map_copy(step));
1494 /* The core of the Floyd-Warshall algorithm.
1495 * Updates the given n x x matrix of relations in place.
1497 * The algorithm iterates over all vertices. In each step, the whole
1498 * matrix is updated to include all paths that go to the current vertex,
1499 * possibly stay there a while (including passing through earlier vertices)
1500 * and then come back. At the start of each iteration, the diagonal
1501 * element corresponding to the current vertex is replaced by its
1502 * transitive closure to account for all indirect paths that stay
1503 * in the current vertex.
1505 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1509 for (r = 0; r < n; ++r) {
1511 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1512 (exact && *exact) ? &r_exact : NULL);
1513 if (exact && *exact && !r_exact)
1516 for (p = 0; p < n; ++p)
1517 for (q = 0; q < n; ++q) {
1519 if (p == r && q == r)
1521 loop = isl_map_apply_range(
1522 isl_map_copy(grid[p][r]),
1523 isl_map_copy(grid[r][q]));
1524 grid[p][q] = isl_map_union(grid[p][q], loop);
1525 loop = isl_map_apply_range(
1526 isl_map_copy(grid[p][r]),
1527 isl_map_apply_range(
1528 isl_map_copy(grid[r][r]),
1529 isl_map_copy(grid[r][q])));
1530 grid[p][q] = isl_map_union(grid[p][q], loop);
1531 grid[p][q] = isl_map_coalesce(grid[p][q]);
1536 /* Given a partition of the domains and ranges of the basic maps in "map",
1537 * apply the Floyd-Warshall algorithm with the elements in the partition
1540 * In particular, there are "n" elements in the partition and "group" is
1541 * an array of length 2 * map->n with entries in [0,n-1].
1543 * We first construct a matrix of relations based on the partition information,
1544 * apply Floyd-Warshall on this matrix of relations and then take the
1545 * union of all entries in the matrix as the final result.
1547 * If we are actually computing the power instead of the transitive closure,
1548 * i.e., when "project" is not set, then the result should have the
1549 * path lengths encoded as the difference between an extra pair of
1550 * coordinates. We therefore apply the nested transitive closures
1551 * to relations that include these lengths. In particular, we replace
1552 * the input relation by the cross product with the unit length relation
1553 * { [i] -> [i + 1] }.
1555 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_dim *dim,
1556 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1559 isl_map ***grid = NULL;
1567 return incremental_closure(dim, map, exact, project);
1570 grid = isl_calloc_array(map->ctx, isl_map **, n);
1573 for (i = 0; i < n; ++i) {
1574 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1577 for (j = 0; j < n; ++j)
1578 grid[i][j] = isl_map_empty(isl_map_get_dim(map));
1581 for (k = 0; k < map->n; ++k) {
1583 j = group[2 * k + 1];
1584 grid[i][j] = isl_map_union(grid[i][j],
1585 isl_map_from_basic_map(
1586 isl_basic_map_copy(map->p[k])));
1589 if (!project && add_length(map, grid, n) < 0)
1592 floyd_warshall_iterate(grid, n, exact);
1594 app = isl_map_empty(isl_map_get_dim(map));
1596 for (i = 0; i < n; ++i) {
1597 for (j = 0; j < n; ++j)
1598 app = isl_map_union(app, grid[i][j]);
1609 for (i = 0; i < n; ++i) {
1612 for (j = 0; j < n; ++j)
1613 isl_map_free(grid[i][j]);
1622 /* Partition the domains and ranges of the n basic relations in list
1623 * into disjoint cells.
1625 * To find the partition, we simply consider all of the domains
1626 * and ranges in turn and combine those that overlap.
1627 * "set" contains the partition elements and "group" indicates
1628 * to which partition element a given domain or range belongs.
1629 * The domain of basic map i corresponds to element 2 * i in these arrays,
1630 * while the domain corresponds to element 2 * i + 1.
1631 * During the construction group[k] is either equal to k,
1632 * in which case set[k] contains the union of all the domains and
1633 * ranges in the corresponding group, or is equal to some l < k,
1634 * with l another domain or range in the same group.
1636 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1637 isl_set ***set, int *n_group)
1643 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1644 group = isl_alloc_array(ctx, int, 2 * n);
1646 if (!*set || !group)
1649 for (i = 0; i < n; ++i) {
1651 dom = isl_set_from_basic_set(isl_basic_map_domain(
1652 isl_basic_map_copy(list[i])));
1653 if (merge(*set, group, dom, 2 * i) < 0)
1655 dom = isl_set_from_basic_set(isl_basic_map_range(
1656 isl_basic_map_copy(list[i])));
1657 if (merge(*set, group, dom, 2 * i + 1) < 0)
1662 for (i = 0; i < 2 * n; ++i)
1663 if (group[i] == i) {
1665 (*set)[g] = (*set)[i];
1670 group[i] = group[group[i]];
1677 for (i = 0; i < 2 * n; ++i)
1678 isl_set_free((*set)[i]);
1686 /* Check if the domains and ranges of the basic maps in "map" can
1687 * be partitioned, and if so, apply Floyd-Warshall on the elements
1688 * of the partition. Note that we also apply this algorithm
1689 * if we want to compute the power, i.e., when "project" is not set.
1690 * However, the results are unlikely to be exact since the recursive
1691 * calls inside the Floyd-Warshall algorithm typically result in
1692 * non-linear path lengths quite quickly.
1694 static __isl_give isl_map *floyd_warshall(__isl_take isl_dim *dim,
1695 __isl_keep isl_map *map, int *exact, int project)
1698 isl_set **set = NULL;
1705 return incremental_closure(dim, map, exact, project);
1707 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1711 for (i = 0; i < 2 * map->n; ++i)
1712 isl_set_free(set[i]);
1716 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1722 /* Structure for representing the nodes in the graph being traversed
1723 * using Tarjan's algorithm.
1724 * index represents the order in which nodes are visited.
1725 * min_index is the index of the root of a (sub)component.
1726 * on_stack indicates whether the node is currently on the stack.
1728 struct basic_map_sort_node {
1733 /* Structure for representing the graph being traversed
1734 * using Tarjan's algorithm.
1735 * len is the number of nodes
1736 * node is an array of nodes
1737 * stack contains the nodes on the path from the root to the current node
1738 * sp is the stack pointer
1739 * index is the index of the last node visited
1740 * order contains the elements of the components separated by -1
1741 * op represents the current position in order
1743 * check_closed is set if we may have used the fact that
1744 * a pair of basic maps can be interchanged
1746 struct basic_map_sort {
1748 struct basic_map_sort_node *node;
1757 static void basic_map_sort_free(struct basic_map_sort *s)
1767 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
1769 struct basic_map_sort *s;
1772 s = isl_calloc_type(ctx, struct basic_map_sort);
1776 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
1779 for (i = 0; i < len; ++i)
1780 s->node[i].index = -1;
1781 s->stack = isl_alloc_array(ctx, int, len);
1784 s->order = isl_alloc_array(ctx, int, 2 * len);
1792 s->check_closed = 0;
1796 basic_map_sort_free(s);
1800 /* Check whether in the computation of the transitive closure
1801 * "bmap1" (R_1) should follow (or be part of the same component as)
1804 * That is check whether
1812 * If so, then there is no reason for R_1 to immediately follow R_2
1815 * *check_closed is set if the subset relation holds while
1816 * R_1 \circ R_2 is not empty.
1818 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
1819 __isl_keep isl_basic_map *bmap2, int *check_closed)
1821 struct isl_map *map12 = NULL;
1822 struct isl_map *map21 = NULL;
1825 if (!isl_dim_tuple_match(bmap1->dim, isl_dim_in, bmap2->dim, isl_dim_out))
1828 map21 = isl_map_from_basic_map(
1829 isl_basic_map_apply_range(
1830 isl_basic_map_copy(bmap2),
1831 isl_basic_map_copy(bmap1)));
1832 subset = isl_map_is_empty(map21);
1836 isl_map_free(map21);
1840 if (!isl_dim_tuple_match(bmap1->dim, isl_dim_in, bmap1->dim, isl_dim_out) ||
1841 !isl_dim_tuple_match(bmap2->dim, isl_dim_in, bmap2->dim, isl_dim_out)) {
1842 isl_map_free(map21);
1846 map12 = isl_map_from_basic_map(
1847 isl_basic_map_apply_range(
1848 isl_basic_map_copy(bmap1),
1849 isl_basic_map_copy(bmap2)));
1851 subset = isl_map_is_subset(map21, map12);
1853 isl_map_free(map12);
1854 isl_map_free(map21);
1859 return subset < 0 ? -1 : !subset;
1861 isl_map_free(map21);
1865 /* Perform Tarjan's algorithm for computing the strongly connected components
1866 * in the graph with the disjuncts of "map" as vertices and with an
1867 * edge between any pair of disjuncts such that the first has
1868 * to be applied after the second.
1870 static int power_components_tarjan(struct basic_map_sort *s,
1871 __isl_keep isl_basic_map **list, int i)
1875 s->node[i].index = s->index;
1876 s->node[i].min_index = s->index;
1877 s->node[i].on_stack = 1;
1879 s->stack[s->sp++] = i;
1881 for (j = s->len - 1; j >= 0; --j) {
1886 if (s->node[j].index >= 0 &&
1887 (!s->node[j].on_stack ||
1888 s->node[j].index > s->node[i].min_index))
1891 f = basic_map_follows(list[i], list[j], &s->check_closed);
1897 if (s->node[j].index < 0) {
1898 power_components_tarjan(s, list, j);
1899 if (s->node[j].min_index < s->node[i].min_index)
1900 s->node[i].min_index = s->node[j].min_index;
1901 } else if (s->node[j].index < s->node[i].min_index)
1902 s->node[i].min_index = s->node[j].index;
1905 if (s->node[i].index != s->node[i].min_index)
1909 j = s->stack[--s->sp];
1910 s->node[j].on_stack = 0;
1911 s->order[s->op++] = j;
1913 s->order[s->op++] = -1;
1918 /* Decompose the "len" basic relations in "list" into strongly connected
1921 static struct basic_map_sort *basic_map_sort_init(isl_ctx *ctx, int len,
1922 __isl_keep isl_basic_map **list)
1925 struct basic_map_sort *s = NULL;
1927 s = basic_map_sort_alloc(ctx, len);
1930 for (i = len - 1; i >= 0; --i) {
1931 if (s->node[i].index >= 0)
1933 if (power_components_tarjan(s, list, i) < 0)
1939 basic_map_sort_free(s);
1943 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1944 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1945 * construct a map that is an overapproximation of the map
1946 * that takes an element from the dom R \times Z to an
1947 * element from ran R \times Z, such that the first n coordinates of the
1948 * difference between them is a sum of differences between images
1949 * and pre-images in one of the R_i and such that the last coordinate
1950 * is equal to the number of steps taken.
1951 * If "project" is set, then these final coordinates are not included,
1952 * i.e., a relation of type Z^n -> Z^n is returned.
1955 * \Delta_i = { y - x | (x, y) in R_i }
1957 * then the constructed map is an overapproximation of
1959 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1960 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1961 * x in dom R and x + d in ran R }
1965 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1966 * d = (\sum_i k_i \delta_i) and
1967 * x in dom R and x + d in ran R }
1969 * if "project" is set.
1971 * We first split the map into strongly connected components, perform
1972 * the above on each component and then join the results in the correct
1973 * order, at each join also taking in the union of both arguments
1974 * to allow for paths that do not go through one of the two arguments.
1976 static __isl_give isl_map *construct_power_components(__isl_take isl_dim *dim,
1977 __isl_keep isl_map *map, int *exact, int project)
1980 struct isl_map *path = NULL;
1981 struct basic_map_sort *s = NULL;
1988 return floyd_warshall(dim, map, exact, project);
1990 s = basic_map_sort_init(map->ctx, map->n, map->p);
1995 if (s->check_closed && !exact)
1996 exact = &local_exact;
2002 path = isl_map_empty(isl_map_get_dim(map));
2004 path = isl_map_empty(isl_dim_copy(dim));
2005 path = anonymize(path);
2007 struct isl_map *comp;
2008 isl_map *path_comp, *path_comb;
2009 comp = isl_map_alloc_dim(isl_map_get_dim(map), n, 0);
2010 while (s->order[i] != -1) {
2011 comp = isl_map_add_basic_map(comp,
2012 isl_basic_map_copy(map->p[s->order[i]]));
2016 path_comp = floyd_warshall(isl_dim_copy(dim),
2017 comp, exact, project);
2018 path_comp = anonymize(path_comp);
2019 path_comb = isl_map_apply_range(isl_map_copy(path),
2020 isl_map_copy(path_comp));
2021 path = isl_map_union(path, path_comp);
2022 path = isl_map_union(path, path_comb);
2028 if (c > 1 && s->check_closed && !*exact) {
2031 closed = isl_map_is_transitively_closed(path);
2035 basic_map_sort_free(s);
2037 return floyd_warshall(dim, map, orig_exact, project);
2041 basic_map_sort_free(s);
2046 basic_map_sort_free(s);
2052 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
2053 * construct a map that is an overapproximation of the map
2054 * that takes an element from the space D to another
2055 * element from the same space, such that the difference between
2056 * them is a strictly positive sum of differences between images
2057 * and pre-images in one of the R_i.
2058 * The number of differences in the sum is equated to parameter "param".
2061 * \Delta_i = { y - x | (x, y) in R_i }
2063 * then the constructed map is an overapproximation of
2065 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2066 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
2069 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2070 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
2072 * if "project" is set.
2074 * If "project" is not set, then
2075 * we construct an extended mapping with an extra coordinate
2076 * that indicates the number of steps taken. In particular,
2077 * the difference in the last coordinate is equal to the number
2078 * of steps taken to move from a domain element to the corresponding
2081 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
2082 int *exact, int project)
2084 struct isl_map *app = NULL;
2085 struct isl_dim *dim = NULL;
2091 dim = isl_map_get_dim(map);
2093 d = isl_dim_size(dim, isl_dim_in);
2094 dim = isl_dim_add(dim, isl_dim_in, 1);
2095 dim = isl_dim_add(dim, isl_dim_out, 1);
2097 app = construct_power_components(isl_dim_copy(dim), map,
2105 /* Compute the positive powers of "map", or an overapproximation.
2106 * If the result is exact, then *exact is set to 1.
2108 * If project is set, then we are actually interested in the transitive
2109 * closure, so we can use a more relaxed exactness check.
2110 * The lengths of the paths are also projected out instead of being
2111 * encoded as the difference between an extra pair of final coordinates.
2113 static __isl_give isl_map *map_power(__isl_take isl_map *map,
2114 int *exact, int project)
2116 struct isl_map *app = NULL;
2124 isl_assert(map->ctx,
2125 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
2128 app = construct_power(map, exact, project);
2138 /* Compute the positive powers of "map", or an overapproximation.
2139 * The result maps the exponent to a nested copy of the corresponding power.
2140 * If the result is exact, then *exact is set to 1.
2141 * map_power constructs an extended relation with the path lengths
2142 * encoded as the difference between the final coordinates.
2143 * In the final step, this difference is equated to an extra parameter
2144 * and made positive. The extra coordinates are subsequently projected out
2145 * and the parameter is turned into the domain of the result.
2147 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact)
2149 isl_dim *target_dim;
2158 d = isl_map_dim(map, isl_dim_in);
2159 param = isl_map_dim(map, isl_dim_param);
2161 map = isl_map_compute_divs(map);
2162 map = isl_map_coalesce(map);
2164 if (isl_map_fast_is_empty(map)) {
2165 map = isl_map_from_range(isl_map_wrap(map));
2166 map = isl_map_add_dims(map, isl_dim_in, 1);
2167 map = isl_map_set_dim_name(map, isl_dim_in, 0, "k");
2171 target_dim = isl_map_get_dim(map);
2172 target_dim = isl_dim_from_range(isl_dim_wrap(target_dim));
2173 target_dim = isl_dim_add(target_dim, isl_dim_in, 1);
2174 target_dim = isl_dim_set_name(target_dim, isl_dim_in, 0, "k");
2176 map = map_power(map, exact, 0);
2178 map = isl_map_add_dims(map, isl_dim_param, 1);
2179 dim = isl_map_get_dim(map);
2180 diff = equate_parameter_to_length(dim, param);
2181 map = isl_map_intersect(map, diff);
2182 map = isl_map_project_out(map, isl_dim_in, d, 1);
2183 map = isl_map_project_out(map, isl_dim_out, d, 1);
2184 map = isl_map_from_range(isl_map_wrap(map));
2185 map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1);
2187 map = isl_map_reset_dim(map, target_dim);
2192 /* Compute a relation that maps each element in the range of the input
2193 * relation to the lengths of all paths composed of edges in the input
2194 * relation that end up in the given range element.
2195 * The result may be an overapproximation, in which case *exact is set to 0.
2196 * The resulting relation is very similar to the power relation.
2197 * The difference are that the domain has been projected out, the
2198 * range has become the domain and the exponent is the range instead
2201 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2212 d = isl_map_dim(map, isl_dim_in);
2213 param = isl_map_dim(map, isl_dim_param);
2215 map = isl_map_compute_divs(map);
2216 map = isl_map_coalesce(map);
2218 if (isl_map_fast_is_empty(map)) {
2221 map = isl_map_project_out(map, isl_dim_out, 0, d);
2222 map = isl_map_add_dims(map, isl_dim_out, 1);
2226 map = map_power(map, exact, 0);
2228 map = isl_map_add_dims(map, isl_dim_param, 1);
2229 dim = isl_map_get_dim(map);
2230 diff = equate_parameter_to_length(dim, param);
2231 map = isl_map_intersect(map, diff);
2232 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2233 map = isl_map_project_out(map, isl_dim_out, d, 1);
2234 map = isl_map_reverse(map);
2235 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2240 /* Check whether equality i of bset is a pure stride constraint
2241 * on a single dimensions, i.e., of the form
2245 * with k a constant and e an existentially quantified variable.
2247 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
2259 if (!isl_int_is_zero(bset->eq[i][0]))
2262 nparam = isl_basic_set_dim(bset, isl_dim_param);
2263 d = isl_basic_set_dim(bset, isl_dim_set);
2264 n_div = isl_basic_set_dim(bset, isl_dim_div);
2266 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
2268 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
2271 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
2272 d - pos1 - 1) != -1)
2275 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
2278 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
2279 n_div - pos2 - 1) != -1)
2281 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
2282 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
2288 /* Given a map, compute the smallest superset of this map that is of the form
2290 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2292 * (where p ranges over the (non-parametric) dimensions),
2293 * compute the transitive closure of this map, i.e.,
2295 * { i -> j : exists k > 0:
2296 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2298 * and intersect domain and range of this transitive closure with
2299 * the given domain and range.
2301 * If with_id is set, then try to include as much of the identity mapping
2302 * as possible, by computing
2304 * { i -> j : exists k >= 0:
2305 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2307 * instead (i.e., allow k = 0).
2309 * In practice, we compute the difference set
2311 * delta = { j - i | i -> j in map },
2313 * look for stride constraint on the individual dimensions and compute
2314 * (constant) lower and upper bounds for each individual dimension,
2315 * adding a constraint for each bound not equal to infinity.
2317 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2318 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2327 isl_map *app = NULL;
2328 isl_basic_set *aff = NULL;
2329 isl_basic_map *bmap = NULL;
2330 isl_vec *obj = NULL;
2335 delta = isl_map_deltas(isl_map_copy(map));
2337 aff = isl_set_affine_hull(isl_set_copy(delta));
2340 dim = isl_map_get_dim(map);
2341 d = isl_dim_size(dim, isl_dim_in);
2342 nparam = isl_dim_size(dim, isl_dim_param);
2343 total = isl_dim_total(dim);
2344 bmap = isl_basic_map_alloc_dim(dim,
2345 aff->n_div + 1, aff->n_div, 2 * d + 1);
2346 for (i = 0; i < aff->n_div + 1; ++i) {
2347 k = isl_basic_map_alloc_div(bmap);
2350 isl_int_set_si(bmap->div[k][0], 0);
2352 for (i = 0; i < aff->n_eq; ++i) {
2353 if (!is_eq_stride(aff, i))
2355 k = isl_basic_map_alloc_equality(bmap);
2358 isl_seq_clr(bmap->eq[k], 1 + nparam);
2359 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2360 aff->eq[i] + 1 + nparam, d);
2361 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2362 aff->eq[i] + 1 + nparam, d);
2363 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2364 aff->eq[i] + 1 + nparam + d, aff->n_div);
2365 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2367 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2370 isl_seq_clr(obj->el, 1 + nparam + d);
2371 for (i = 0; i < d; ++ i) {
2372 enum isl_lp_result res;
2374 isl_int_set_si(obj->el[1 + nparam + i], 1);
2376 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2378 if (res == isl_lp_error)
2380 if (res == isl_lp_ok) {
2381 k = isl_basic_map_alloc_inequality(bmap);
2384 isl_seq_clr(bmap->ineq[k],
2385 1 + nparam + 2 * d + bmap->n_div);
2386 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2387 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2388 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2391 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2393 if (res == isl_lp_error)
2395 if (res == isl_lp_ok) {
2396 k = isl_basic_map_alloc_inequality(bmap);
2399 isl_seq_clr(bmap->ineq[k],
2400 1 + nparam + 2 * d + bmap->n_div);
2401 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2402 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2403 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2406 isl_int_set_si(obj->el[1 + nparam + i], 0);
2408 k = isl_basic_map_alloc_inequality(bmap);
2411 isl_seq_clr(bmap->ineq[k],
2412 1 + nparam + 2 * d + bmap->n_div);
2414 isl_int_set_si(bmap->ineq[k][0], -1);
2415 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2417 app = isl_map_from_domain_and_range(dom, ran);
2420 isl_basic_set_free(aff);
2422 bmap = isl_basic_map_finalize(bmap);
2423 isl_set_free(delta);
2426 map = isl_map_from_basic_map(bmap);
2427 map = isl_map_intersect(map, app);
2432 isl_basic_map_free(bmap);
2433 isl_basic_set_free(aff);
2437 isl_set_free(delta);
2442 /* Given a map, compute the smallest superset of this map that is of the form
2444 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2446 * (where p ranges over the (non-parametric) dimensions),
2447 * compute the transitive closure of this map, i.e.,
2449 * { i -> j : exists k > 0:
2450 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2452 * and intersect domain and range of this transitive closure with
2453 * domain and range of the original map.
2455 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2460 domain = isl_map_domain(isl_map_copy(map));
2461 domain = isl_set_coalesce(domain);
2462 range = isl_map_range(isl_map_copy(map));
2463 range = isl_set_coalesce(range);
2465 return box_closure_on_domain(map, domain, range, 0);
2468 /* Given a map, compute the smallest superset of this map that is of the form
2470 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2472 * (where p ranges over the (non-parametric) dimensions),
2473 * compute the transitive and partially reflexive closure of this map, i.e.,
2475 * { i -> j : exists k >= 0:
2476 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2478 * and intersect domain and range of this transitive closure with
2481 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2482 __isl_take isl_set *dom)
2484 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2487 /* Check whether app is the transitive closure of map.
2488 * In particular, check that app is acyclic and, if so,
2491 * app \subset (map \cup (map \circ app))
2493 static int check_exactness_omega(__isl_keep isl_map *map,
2494 __isl_keep isl_map *app)
2498 int is_empty, is_exact;
2502 delta = isl_map_deltas(isl_map_copy(app));
2503 d = isl_set_dim(delta, isl_dim_set);
2504 for (i = 0; i < d; ++i)
2505 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2506 is_empty = isl_set_is_empty(delta);
2507 isl_set_free(delta);
2513 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2514 test = isl_map_union(test, isl_map_copy(map));
2515 is_exact = isl_map_is_subset(app, test);
2521 /* Check if basic map M_i can be combined with all the other
2522 * basic maps such that
2526 * can be computed as
2528 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2530 * In particular, check if we can compute a compact representation
2533 * M_i^* \circ M_j \circ M_i^*
2536 * Let M_i^? be an extension of M_i^+ that allows paths
2537 * of length zero, i.e., the result of box_closure(., 1).
2538 * The criterion, as proposed by Kelly et al., is that
2539 * id = M_i^? - M_i^+ can be represented as a basic map
2542 * id \circ M_j \circ id = M_j
2546 * If this function returns 1, then tc and qc are set to
2547 * M_i^+ and M_i^?, respectively.
2549 static int can_be_split_off(__isl_keep isl_map *map, int i,
2550 __isl_give isl_map **tc, __isl_give isl_map **qc)
2552 isl_map *map_i, *id = NULL;
2559 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2560 isl_map_range(isl_map_copy(map)));
2561 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2565 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2566 *tc = box_closure(isl_map_copy(map_i));
2567 *qc = box_closure_with_identity(map_i, C);
2568 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2572 if (id->n != 1 || (*qc)->n != 1)
2575 for (j = 0; j < map->n; ++j) {
2576 isl_map *map_j, *test;
2581 map_j = isl_map_from_basic_map(
2582 isl_basic_map_copy(map->p[j]));
2583 test = isl_map_apply_range(isl_map_copy(id),
2584 isl_map_copy(map_j));
2585 test = isl_map_apply_range(test, isl_map_copy(id));
2586 is_ok = isl_map_is_equal(test, map_j);
2587 isl_map_free(map_j);
2615 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2620 app = box_closure(isl_map_copy(map));
2622 *exact = check_exactness_omega(map, app);
2628 /* Compute an overapproximation of the transitive closure of "map"
2629 * using a variation of the algorithm from
2630 * "Transitive Closure of Infinite Graphs and its Applications"
2633 * We first check whether we can can split of any basic map M_i and
2640 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2642 * using a recursive call on the remaining map.
2644 * If not, we simply call box_closure on the whole map.
2646 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2656 return box_closure_with_check(map, exact);
2658 for (i = 0; i < map->n; ++i) {
2661 ok = can_be_split_off(map, i, &tc, &qc);
2667 app = isl_map_alloc_dim(isl_map_get_dim(map), map->n - 1, 0);
2669 for (j = 0; j < map->n; ++j) {
2672 app = isl_map_add_basic_map(app,
2673 isl_basic_map_copy(map->p[j]));
2676 app = isl_map_apply_range(isl_map_copy(qc), app);
2677 app = isl_map_apply_range(app, qc);
2679 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2680 exact_i = check_exactness_omega(map, app);
2692 return box_closure_with_check(map, exact);
2698 /* Compute the transitive closure of "map", or an overapproximation.
2699 * If the result is exact, then *exact is set to 1.
2700 * Simply use map_power to compute the powers of map, but tell
2701 * it to project out the lengths of the paths instead of equating
2702 * the length to a parameter.
2704 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2707 isl_dim *target_dim;
2713 if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
2714 return transitive_closure_omega(map, exact);
2716 map = isl_map_compute_divs(map);
2717 map = isl_map_coalesce(map);
2718 closed = isl_map_is_transitively_closed(map);
2727 target_dim = isl_map_get_dim(map);
2728 map = map_power(map, exact, 1);
2729 map = isl_map_reset_dim(map, target_dim);
2737 static int inc_count(__isl_take isl_map *map, void *user)
2748 static int collect_basic_map(__isl_take isl_map *map, void *user)
2751 isl_basic_map ***next = user;
2753 for (i = 0; i < map->n; ++i) {
2754 **next = isl_basic_map_copy(map->p[i]);
2767 /* Perform Floyd-Warshall on the given list of basic relations.
2768 * The basic relations may live in different dimensions,
2769 * but basic relations that get assigned to the diagonal of the
2770 * grid have domains and ranges of the same dimension and so
2771 * the standard algorithm can be used because the nested transitive
2772 * closures are only applied to diagonal elements and because all
2773 * compositions are peformed on relations with compatible domains and ranges.
2775 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2776 __isl_keep isl_basic_map **list, int n, int *exact)
2781 isl_set **set = NULL;
2782 isl_map ***grid = NULL;
2785 group = setup_groups(ctx, list, n, &set, &n_group);
2789 grid = isl_calloc_array(ctx, isl_map **, n_group);
2792 for (i = 0; i < n_group; ++i) {
2793 grid[i] = isl_calloc_array(map->ctx, isl_map *, n_group);
2796 for (j = 0; j < n_group; ++j) {
2797 isl_dim *dim1, *dim2, *dim;
2798 dim1 = isl_dim_reverse(isl_set_get_dim(set[i]));
2799 dim2 = isl_set_get_dim(set[j]);
2800 dim = isl_dim_join(dim1, dim2);
2801 grid[i][j] = isl_map_empty(dim);
2805 for (k = 0; k < n; ++k) {
2807 j = group[2 * k + 1];
2808 grid[i][j] = isl_map_union(grid[i][j],
2809 isl_map_from_basic_map(
2810 isl_basic_map_copy(list[k])));
2813 floyd_warshall_iterate(grid, n_group, exact);
2815 app = isl_union_map_empty(isl_map_get_dim(grid[0][0]));
2817 for (i = 0; i < n_group; ++i) {
2818 for (j = 0; j < n_group; ++j)
2819 app = isl_union_map_add_map(app, grid[i][j]);
2824 for (i = 0; i < 2 * n; ++i)
2825 isl_set_free(set[i]);
2832 for (i = 0; i < n_group; ++i) {
2835 for (j = 0; j < n_group; ++j)
2836 isl_map_free(grid[i][j]);
2841 for (i = 0; i < 2 * n; ++i)
2842 isl_set_free(set[i]);
2849 /* Perform Floyd-Warshall on the given union relation.
2850 * The implementation is very similar to that for non-unions.
2851 * The main difference is that it is applied unconditionally.
2852 * We first extract a list of basic maps from the union map
2853 * and then perform the algorithm on this list.
2855 static __isl_give isl_union_map *union_floyd_warshall(
2856 __isl_take isl_union_map *umap, int *exact)
2860 isl_basic_map **list;
2861 isl_basic_map **next;
2865 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2868 ctx = isl_union_map_get_ctx(umap);
2869 list = isl_calloc_array(ctx, isl_basic_map *, n);
2874 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2877 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2880 for (i = 0; i < n; ++i)
2881 isl_basic_map_free(list[i]);
2885 isl_union_map_free(umap);
2889 for (i = 0; i < n; ++i)
2890 isl_basic_map_free(list[i]);
2893 isl_union_map_free(umap);
2897 /* Decompose the give union relation into strongly connected components.
2898 * The implementation is essentially the same as that of
2899 * construct_power_components with the major difference that all
2900 * operations are performed on union maps.
2902 static __isl_give isl_union_map *union_components(
2903 __isl_take isl_union_map *umap, int *exact)
2908 isl_basic_map **list;
2909 isl_basic_map **next;
2910 isl_union_map *path = NULL;
2911 struct basic_map_sort *s = NULL;
2916 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2920 return union_floyd_warshall(umap, exact);
2922 ctx = isl_union_map_get_ctx(umap);
2923 list = isl_calloc_array(ctx, isl_basic_map *, n);
2928 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2931 s = basic_map_sort_init(ctx, n, list);
2938 path = isl_union_map_empty(isl_union_map_get_dim(umap));
2940 isl_union_map *comp;
2941 isl_union_map *path_comp, *path_comb;
2942 comp = isl_union_map_empty(isl_union_map_get_dim(umap));
2943 while (s->order[i] != -1) {
2944 comp = isl_union_map_add_map(comp,
2945 isl_map_from_basic_map(
2946 isl_basic_map_copy(list[s->order[i]])));
2950 path_comp = union_floyd_warshall(comp, exact);
2951 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2952 isl_union_map_copy(path_comp));
2953 path = isl_union_map_union(path, path_comp);
2954 path = isl_union_map_union(path, path_comb);
2959 if (c > 1 && s->check_closed && !*exact) {
2962 closed = isl_union_map_is_transitively_closed(path);
2968 basic_map_sort_free(s);
2970 for (i = 0; i < n; ++i)
2971 isl_basic_map_free(list[i]);
2975 isl_union_map_free(path);
2976 return union_floyd_warshall(umap, exact);
2979 isl_union_map_free(umap);
2983 basic_map_sort_free(s);
2985 for (i = 0; i < n; ++i)
2986 isl_basic_map_free(list[i]);
2989 isl_union_map_free(umap);
2990 isl_union_map_free(path);
2994 /* Compute the transitive closure of "umap", or an overapproximation.
2995 * If the result is exact, then *exact is set to 1.
2997 __isl_give isl_union_map *isl_union_map_transitive_closure(
2998 __isl_take isl_union_map *umap, int *exact)
3008 umap = isl_union_map_compute_divs(umap);
3009 umap = isl_union_map_coalesce(umap);
3010 closed = isl_union_map_is_transitively_closed(umap);
3015 umap = union_components(umap, exact);
3018 isl_union_map_free(umap);
3022 struct isl_union_power {
3027 static int power(__isl_take isl_map *map, void *user)
3029 struct isl_union_power *up = user;
3031 map = isl_map_power(map, up->exact);
3032 up->pow = isl_union_map_from_map(map);
3037 /* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
3039 static __isl_give isl_union_map *increment(__isl_take isl_dim *dim)
3042 isl_basic_map *bmap;
3044 dim = isl_dim_add(dim, isl_dim_in, 1);
3045 dim = isl_dim_add(dim, isl_dim_out, 1);
3046 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 0);
3047 k = isl_basic_map_alloc_equality(bmap);
3050 isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap));
3051 isl_int_set_si(bmap->eq[k][0], 1);
3052 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1);
3053 isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1);
3054 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
3056 isl_basic_map_free(bmap);
3060 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
3062 static __isl_give isl_union_map *deltas_map(__isl_take isl_dim *dim)
3064 isl_basic_map *bmap;
3066 dim = isl_dim_add(dim, isl_dim_in, 1);
3067 dim = isl_dim_add(dim, isl_dim_out, 1);
3068 bmap = isl_basic_map_universe(dim);
3069 bmap = isl_basic_map_deltas_map(bmap);
3071 return isl_union_map_from_map(isl_map_from_basic_map(bmap));
3074 /* Compute the positive powers of "map", or an overapproximation.
3075 * The result maps the exponent to a nested copy of the corresponding power.
3076 * If the result is exact, then *exact is set to 1.
3078 __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap,
3087 n = isl_union_map_n_map(umap);
3091 struct isl_union_power up = { NULL, exact };
3092 isl_union_map_foreach_map(umap, &power, &up);
3093 isl_union_map_free(umap);
3096 inc = increment(isl_union_map_get_dim(umap));
3097 umap = isl_union_map_product(inc, umap);
3098 umap = isl_union_map_transitive_closure(umap, exact);
3099 umap = isl_union_map_zip(umap);
3100 dm = deltas_map(isl_union_map_get_dim(umap));
3101 umap = isl_union_map_apply_domain(umap, dm);