2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include "isl_map_private.h"
14 #include <isl_dim_private.h>
16 #include <isl_union_map.h>
17 #include <isl_mat_private.h>
19 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
24 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
25 closed = isl_map_is_subset(map2, map);
31 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
36 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
37 isl_union_map_copy(umap));
38 closed = isl_union_map_is_subset(umap2, umap);
39 isl_union_map_free(umap2);
44 /* Given a map that represents a path with the length of the path
45 * encoded as the difference between the last output coordindate
46 * and the last input coordinate, set this length to either
47 * exactly "length" (if "exactly" is set) or at least "length"
48 * (if "exactly" is not set).
50 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
51 int exactly, int length)
54 struct isl_basic_map *bmap;
63 dim = isl_map_get_dim(map);
64 d = isl_dim_size(dim, isl_dim_in);
65 nparam = isl_dim_size(dim, isl_dim_param);
66 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
68 k = isl_basic_map_alloc_equality(bmap);
71 k = isl_basic_map_alloc_inequality(bmap);
76 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
77 isl_int_set_si(c[0], -length);
78 isl_int_set_si(c[1 + nparam + d - 1], -1);
79 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
81 bmap = isl_basic_map_finalize(bmap);
82 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
86 isl_basic_map_free(bmap);
91 /* Check whether the overapproximation of the power of "map" is exactly
92 * the power of "map". Let R be "map" and A_k the overapproximation.
93 * The approximation is exact if
96 * A_k = A_{k-1} \circ R k >= 2
98 * Since A_k is known to be an overapproximation, we only need to check
101 * A_k \subset A_{k-1} \circ R k >= 2
103 * In practice, "app" has an extra input and output coordinate
104 * to encode the length of the path. So, we first need to add
105 * this coordinate to "map" and set the length of the path to
108 static int check_power_exactness(__isl_take isl_map *map,
109 __isl_take isl_map *app)
115 map = isl_map_add(map, isl_dim_in, 1);
116 map = isl_map_add(map, isl_dim_out, 1);
117 map = set_path_length(map, 1, 1);
119 app_1 = set_path_length(isl_map_copy(app), 1, 1);
121 exact = isl_map_is_subset(app_1, map);
124 if (!exact || exact < 0) {
130 app_1 = set_path_length(isl_map_copy(app), 0, 1);
131 app_2 = set_path_length(app, 0, 2);
132 app_1 = isl_map_apply_range(map, app_1);
134 exact = isl_map_is_subset(app_2, app_1);
142 /* Check whether the overapproximation of the power of "map" is exactly
143 * the power of "map", possibly after projecting out the power (if "project"
146 * If "project" is set and if "steps" can only result in acyclic paths,
149 * A = R \cup (A \circ R)
151 * where A is the overapproximation with the power projected out, i.e.,
152 * an overapproximation of the transitive closure.
153 * More specifically, since A is known to be an overapproximation, we check
155 * A \subset R \cup (A \circ R)
157 * Otherwise, we check if the power is exact.
159 * Note that "app" has an extra input and output coordinate to encode
160 * the length of the part. If we are only interested in the transitive
161 * closure, then we can simply project out these coordinates first.
163 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
171 return check_power_exactness(map, app);
173 d = isl_map_dim(map, isl_dim_in);
174 app = set_path_length(app, 0, 1);
175 app = isl_map_project_out(app, isl_dim_in, d, 1);
176 app = isl_map_project_out(app, isl_dim_out, d, 1);
178 app = isl_map_reset_dim(app, isl_map_get_dim(map));
180 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
181 test = isl_map_union(test, isl_map_copy(map));
183 exact = isl_map_is_subset(app, test);
194 * The transitive closure implementation is based on the paper
195 * "Computing the Transitive Closure of a Union of Affine Integer
196 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
200 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
201 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
202 * that maps an element x to any element that can be reached
203 * by taking a non-negative number of steps along any of
204 * the extended offsets v'_i = [v_i 1].
207 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
209 * For any element in this relation, the number of steps taken
210 * is equal to the difference in the final coordinates.
212 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
213 __isl_keep isl_mat *steps)
216 struct isl_basic_map *path = NULL;
224 d = isl_dim_size(dim, isl_dim_in);
226 nparam = isl_dim_size(dim, isl_dim_param);
228 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
230 for (i = 0; i < n; ++i) {
231 k = isl_basic_map_alloc_div(path);
234 isl_assert(steps->ctx, i == k, goto error);
235 isl_int_set_si(path->div[k][0], 0);
238 for (i = 0; i < d; ++i) {
239 k = isl_basic_map_alloc_equality(path);
242 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
243 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
244 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
246 for (j = 0; j < n; ++j)
247 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
249 for (j = 0; j < n; ++j)
250 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
254 for (i = 0; i < n; ++i) {
255 k = isl_basic_map_alloc_inequality(path);
258 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
259 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
264 path = isl_basic_map_simplify(path);
265 path = isl_basic_map_finalize(path);
266 return isl_map_from_basic_map(path);
269 isl_basic_map_free(path);
278 /* Check whether the parametric constant term of constraint c is never
279 * positive in "bset".
281 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
282 isl_int *c, int *div_purity)
291 n_div = isl_basic_set_dim(bset, isl_dim_div);
292 d = isl_basic_set_dim(bset, isl_dim_set);
293 nparam = isl_basic_set_dim(bset, isl_dim_param);
295 bset = isl_basic_set_copy(bset);
296 bset = isl_basic_set_cow(bset);
297 bset = isl_basic_set_extend_constraints(bset, 0, 1);
298 k = isl_basic_set_alloc_inequality(bset);
301 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
302 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
303 for (i = 0; i < n_div; ++i) {
304 if (div_purity[i] != PURE_PARAM)
306 isl_int_set(bset->ineq[k][1 + nparam + d + i],
307 c[1 + nparam + d + i]);
309 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
310 empty = isl_basic_set_is_empty(bset);
311 isl_basic_set_free(bset);
315 isl_basic_set_free(bset);
319 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
320 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
321 * Return MIXED if only the coefficients of the parameters and the set
322 * variables are non-zero and if moreover the parametric constant
323 * can never attain positive values.
324 * Return IMPURE otherwise.
326 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
336 n_div = isl_basic_set_dim(bset, isl_dim_div);
337 d = isl_basic_set_dim(bset, isl_dim_set);
338 nparam = isl_basic_set_dim(bset, isl_dim_param);
340 for (i = 0; i < n_div; ++i) {
341 if (isl_int_is_zero(c[1 + nparam + d + i]))
343 switch (div_purity[i]) {
344 case PURE_PARAM: p = 1; break;
345 case PURE_VAR: v = 1; break;
346 default: return IMPURE;
349 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
351 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
354 empty = parametric_constant_never_positive(bset, c, div_purity);
355 if (eq && empty >= 0 && !empty) {
356 isl_seq_neg(c, c, 1 + nparam + d + n_div);
357 empty = parametric_constant_never_positive(bset, c, div_purity);
360 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
363 /* Return an array of integers indicating the type of each div in bset.
364 * If the div is (recursively) defined in terms of only the parameters,
365 * then the type is PURE_PARAM.
366 * If the div is (recursively) defined in terms of only the set variables,
367 * then the type is PURE_VAR.
368 * Otherwise, the type is IMPURE.
370 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
381 n_div = isl_basic_set_dim(bset, isl_dim_div);
382 d = isl_basic_set_dim(bset, isl_dim_set);
383 nparam = isl_basic_set_dim(bset, isl_dim_param);
385 div_purity = isl_alloc_array(bset->ctx, int, n_div);
389 for (i = 0; i < bset->n_div; ++i) {
391 if (isl_int_is_zero(bset->div[i][0])) {
392 div_purity[i] = IMPURE;
395 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
397 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
399 for (j = 0; j < i; ++j) {
400 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
402 switch (div_purity[j]) {
403 case PURE_PARAM: p = 1; break;
404 case PURE_VAR: v = 1; break;
405 default: p = v = 1; break;
408 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
414 /* Given a path with the as yet unconstrained length at position "pos",
415 * check if setting the length to zero results in only the identity
418 int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
420 isl_basic_map *test = NULL;
421 isl_basic_map *id = NULL;
425 test = isl_basic_map_copy(path);
426 test = isl_basic_map_extend_constraints(test, 1, 0);
427 k = isl_basic_map_alloc_equality(test);
430 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
431 isl_int_set_si(test->eq[k][pos], 1);
432 id = isl_basic_map_identity(isl_dim_domain(isl_basic_map_get_dim(path)));
433 is_id = isl_basic_map_is_equal(test, id);
434 isl_basic_map_free(test);
435 isl_basic_map_free(id);
438 isl_basic_map_free(test);
442 __isl_give isl_basic_map *add_delta_constraints(__isl_take isl_basic_map *path,
443 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
444 unsigned d, int *div_purity, int eq)
447 int n = eq ? delta->n_eq : delta->n_ineq;
448 isl_int **delta_c = eq ? delta->eq : delta->ineq;
451 n_div = isl_basic_set_dim(delta, isl_dim_div);
453 for (i = 0; i < n; ++i) {
455 int p = purity(delta, delta_c[i], div_purity, eq);
460 if (eq && p != MIXED) {
461 k = isl_basic_map_alloc_equality(path);
462 path_c = path->eq[k];
464 k = isl_basic_map_alloc_inequality(path);
465 path_c = path->ineq[k];
469 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
471 isl_seq_cpy(path_c + off,
472 delta_c[i] + 1 + nparam, d);
473 isl_int_set(path_c[off + d], delta_c[i][0]);
474 } else if (p == PURE_PARAM) {
475 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
477 isl_seq_cpy(path_c + off,
478 delta_c[i] + 1 + nparam, d);
479 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
481 isl_seq_cpy(path_c + off - n_div,
482 delta_c[i] + 1 + nparam + d, n_div);
487 isl_basic_map_free(path);
491 /* Given a set of offsets "delta", construct a relation of the
492 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
493 * is an overapproximation of the relations that
494 * maps an element x to any element that can be reached
495 * by taking a non-negative number of steps along any of
496 * the elements in "delta".
497 * That is, construct an approximation of
499 * { [x] -> [y] : exists f \in \delta, k \in Z :
500 * y = x + k [f, 1] and k >= 0 }
502 * For any element in this relation, the number of steps taken
503 * is equal to the difference in the final coordinates.
505 * In particular, let delta be defined as
507 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
508 * C x + C'p + c >= 0 and
509 * D x + D'p + d >= 0 }
511 * where the constraints C x + C'p + c >= 0 are such that the parametric
512 * constant term of each constraint j, "C_j x + C'_j p + c_j",
513 * can never attain positive values, then the relation is constructed as
515 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
516 * A f + k a >= 0 and B p + b >= 0 and
517 * C f + C'p + c >= 0 and k >= 1 }
518 * union { [x] -> [x] }
520 * If the zero-length paths happen to correspond exactly to the identity
521 * mapping, then we return
523 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
524 * A f + k a >= 0 and B p + b >= 0 and
525 * C f + C'p + c >= 0 and k >= 0 }
529 * Existentially quantified variables in \delta are handled by
530 * classifying them as independent of the parameters, purely
531 * parameter dependent and others. Constraints containing
532 * any of the other existentially quantified variables are removed.
533 * This is safe, but leads to an additional overapproximation.
535 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
536 __isl_take isl_basic_set *delta)
538 isl_basic_map *path = NULL;
545 int *div_purity = NULL;
549 n_div = isl_basic_set_dim(delta, isl_dim_div);
550 d = isl_basic_set_dim(delta, isl_dim_set);
551 nparam = isl_basic_set_dim(delta, isl_dim_param);
552 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
553 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
554 off = 1 + nparam + 2 * (d + 1) + n_div;
556 for (i = 0; i < n_div + d + 1; ++i) {
557 k = isl_basic_map_alloc_div(path);
560 isl_int_set_si(path->div[k][0], 0);
563 for (i = 0; i < d + 1; ++i) {
564 k = isl_basic_map_alloc_equality(path);
567 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
568 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
569 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
570 isl_int_set_si(path->eq[k][off + i], 1);
573 div_purity = get_div_purity(delta);
577 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 1);
578 path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 0);
580 is_id = empty_path_is_identity(path, off + d);
584 k = isl_basic_map_alloc_inequality(path);
587 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
589 isl_int_set_si(path->ineq[k][0], -1);
590 isl_int_set_si(path->ineq[k][off + d], 1);
593 isl_basic_set_free(delta);
594 path = isl_basic_map_finalize(path);
597 return isl_map_from_basic_map(path);
599 return isl_basic_map_union(path,
600 isl_basic_map_identity(isl_dim_domain(dim)));
604 isl_basic_set_free(delta);
605 isl_basic_map_free(path);
609 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
610 * construct a map that equates the parameter to the difference
611 * in the final coordinates and imposes that this difference is positive.
614 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
616 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
619 struct isl_basic_map *bmap;
624 d = isl_dim_size(dim, isl_dim_in);
625 nparam = isl_dim_size(dim, isl_dim_param);
626 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
627 k = isl_basic_map_alloc_equality(bmap);
630 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
631 isl_int_set_si(bmap->eq[k][1 + param], -1);
632 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
633 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
635 k = isl_basic_map_alloc_inequality(bmap);
638 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
639 isl_int_set_si(bmap->ineq[k][1 + param], 1);
640 isl_int_set_si(bmap->ineq[k][0], -1);
642 bmap = isl_basic_map_finalize(bmap);
643 return isl_map_from_basic_map(bmap);
645 isl_basic_map_free(bmap);
649 /* Check whether "path" is acyclic, where the last coordinates of domain
650 * and range of path encode the number of steps taken.
651 * That is, check whether
653 * { d | d = y - x and (x,y) in path }
655 * does not contain any element with positive last coordinate (positive length)
656 * and zero remaining coordinates (cycle).
658 static int is_acyclic(__isl_take isl_map *path)
663 struct isl_set *delta;
665 delta = isl_map_deltas(path);
666 dim = isl_set_dim(delta, isl_dim_set);
667 for (i = 0; i < dim; ++i) {
669 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
671 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
674 acyclic = isl_set_is_empty(delta);
680 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
681 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
682 * construct a map that is an overapproximation of the map
683 * that takes an element from the space D \times Z to another
684 * element from the same space, such that the first n coordinates of the
685 * difference between them is a sum of differences between images
686 * and pre-images in one of the R_i and such that the last coordinate
687 * is equal to the number of steps taken.
690 * \Delta_i = { y - x | (x, y) in R_i }
692 * then the constructed map is an overapproximation of
694 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
695 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
697 * The elements of the singleton \Delta_i's are collected as the
698 * rows of the steps matrix. For all these \Delta_i's together,
699 * a single path is constructed.
700 * For each of the other \Delta_i's, we compute an overapproximation
701 * of the paths along elements of \Delta_i.
702 * Since each of these paths performs an addition, composition is
703 * symmetric and we can simply compose all resulting paths in any order.
705 static __isl_give isl_map *construct_extended_path(__isl_take isl_dim *dim,
706 __isl_keep isl_map *map, int *project)
708 struct isl_mat *steps = NULL;
709 struct isl_map *path = NULL;
713 d = isl_map_dim(map, isl_dim_in);
715 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
717 steps = isl_mat_alloc(map->ctx, map->n, d);
722 for (i = 0; i < map->n; ++i) {
723 struct isl_basic_set *delta;
725 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
727 for (j = 0; j < d; ++j) {
730 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
733 isl_basic_set_free(delta);
742 path = isl_map_apply_range(path,
743 path_along_delta(isl_dim_copy(dim), delta));
744 path = isl_map_coalesce(path);
746 isl_basic_set_free(delta);
753 path = isl_map_apply_range(path,
754 path_along_steps(isl_dim_copy(dim), steps));
757 if (project && *project) {
758 *project = is_acyclic(isl_map_copy(path));
773 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
778 if (!isl_dim_tuple_match(set1->dim, isl_dim_set, set2->dim, isl_dim_set))
781 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
782 no_overlap = isl_set_is_empty(i);
785 return no_overlap < 0 ? -1 : !no_overlap;
788 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
789 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
790 * construct a map that is an overapproximation of the map
791 * that takes an element from the dom R \times Z to an
792 * element from ran R \times Z, such that the first n coordinates of the
793 * difference between them is a sum of differences between images
794 * and pre-images in one of the R_i and such that the last coordinate
795 * is equal to the number of steps taken.
798 * \Delta_i = { y - x | (x, y) in R_i }
800 * then the constructed map is an overapproximation of
802 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
803 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
804 * x in dom R and x + d in ran R and
807 static __isl_give isl_map *construct_component(__isl_take isl_dim *dim,
808 __isl_keep isl_map *map, int *exact, int project)
810 struct isl_set *domain = NULL;
811 struct isl_set *range = NULL;
812 struct isl_map *app = NULL;
813 struct isl_map *path = NULL;
815 domain = isl_map_domain(isl_map_copy(map));
816 domain = isl_set_coalesce(domain);
817 range = isl_map_range(isl_map_copy(map));
818 range = isl_set_coalesce(range);
819 if (!isl_set_overlaps(domain, range)) {
820 isl_set_free(domain);
824 map = isl_map_copy(map);
825 map = isl_map_add(map, isl_dim_in, 1);
826 map = isl_map_add(map, isl_dim_out, 1);
827 map = set_path_length(map, 1, 1);
830 app = isl_map_from_domain_and_range(domain, range);
831 app = isl_map_add(app, isl_dim_in, 1);
832 app = isl_map_add(app, isl_dim_out, 1);
834 path = construct_extended_path(isl_dim_copy(dim), map,
835 exact && *exact ? &project : NULL);
836 app = isl_map_intersect(app, path);
838 if (exact && *exact &&
839 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
844 app = set_path_length(app, 0, 1);
852 /* Call construct_component and, if "project" is set, project out
853 * the final coordinates.
855 static __isl_give isl_map *construct_projected_component(
856 __isl_take isl_dim *dim,
857 __isl_keep isl_map *map, int *exact, int project)
864 d = isl_dim_size(dim, isl_dim_in);
866 app = construct_component(dim, map, exact, project);
868 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
869 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
874 /* Compute an extended version, i.e., with path lengths, of
875 * an overapproximation of the transitive closure of "bmap"
876 * with path lengths greater than or equal to zero and with
877 * domain and range equal to "dom".
879 static __isl_give isl_map *q_closure(__isl_take isl_dim *dim,
880 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
887 dom = isl_set_add(dom, isl_dim_set, 1);
888 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
889 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
890 path = construct_extended_path(dim, map, &project);
891 app = isl_map_intersect(app, path);
893 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
902 /* Check whether qc has any elements of length at least one
903 * with domain and/or range outside of dom and ran.
905 static int has_spurious_elements(__isl_keep isl_map *qc,
906 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
912 if (!qc || !dom || !ran)
915 d = isl_map_dim(qc, isl_dim_in);
917 qc = isl_map_copy(qc);
918 qc = set_path_length(qc, 0, 1);
919 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
920 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
922 s = isl_map_domain(isl_map_copy(qc));
923 subset = isl_set_is_subset(s, dom);
932 s = isl_map_range(qc);
933 subset = isl_set_is_subset(s, ran);
936 return subset < 0 ? -1 : !subset;
945 /* For each basic map in "map", except i, check whether it combines
946 * with the transitive closure that is reflexive on C combines
947 * to the left and to the right.
951 * dom map_j \subseteq C
953 * then right[j] is set to 1. Otherwise, if
955 * ran map_i \cap dom map_j = \emptyset
957 * then right[j] is set to 0. Otherwise, composing to the right
960 * Similar, for composing to the left, we have if
962 * ran map_j \subseteq C
964 * then left[j] is set to 1. Otherwise, if
966 * dom map_i \cap ran map_j = \emptyset
968 * then left[j] is set to 0. Otherwise, composing to the left
971 * The return value is or'd with LEFT if composing to the left
972 * is possible and with RIGHT if composing to the right is possible.
974 static int composability(__isl_keep isl_set *C, int i,
975 isl_set **dom, isl_set **ran, int *left, int *right,
976 __isl_keep isl_map *map)
982 for (j = 0; j < map->n && ok; ++j) {
983 int overlaps, subset;
989 dom[j] = isl_set_from_basic_set(
990 isl_basic_map_domain(
991 isl_basic_map_copy(map->p[j])));
994 overlaps = isl_set_overlaps(ran[i], dom[j]);
1000 subset = isl_set_is_subset(dom[j], C);
1012 ran[j] = isl_set_from_basic_set(
1013 isl_basic_map_range(
1014 isl_basic_map_copy(map->p[j])));
1017 overlaps = isl_set_overlaps(dom[i], ran[j]);
1023 subset = isl_set_is_subset(ran[j], C);
1037 static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1039 map = isl_map_reset(map, isl_dim_in);
1040 map = isl_map_reset(map, isl_dim_out);
1044 /* Return a map that is a union of the basic maps in "map", except i,
1045 * composed to left and right with qc based on the entries of "left"
1048 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1049 __isl_take isl_map *qc, int *left, int *right)
1054 comp = isl_map_empty(isl_map_get_dim(map));
1055 for (j = 0; j < map->n; ++j) {
1061 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1062 map_j = anonymize(map_j);
1063 if (left && left[j])
1064 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1065 if (right && right[j])
1066 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1067 comp = isl_map_union(comp, map_j);
1070 comp = isl_map_compute_divs(comp);
1071 comp = isl_map_coalesce(comp);
1078 /* Compute the transitive closure of "map" incrementally by
1085 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1089 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1091 * depending on whether left or right are NULL.
1093 static __isl_give isl_map *compute_incremental(
1094 __isl_take isl_dim *dim, __isl_keep isl_map *map,
1095 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1099 isl_map *rtc = NULL;
1103 isl_assert(map->ctx, left || right, goto error);
1105 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1106 tc = construct_projected_component(isl_dim_copy(dim), map_i,
1108 isl_map_free(map_i);
1111 qc = isl_map_transitive_closure(qc, exact);
1117 return isl_map_universe(isl_map_get_dim(map));
1120 if (!left || !right)
1121 rtc = isl_map_union(isl_map_copy(tc),
1122 isl_map_identity(isl_dim_domain(isl_map_get_dim(tc))));
1124 qc = isl_map_apply_range(rtc, qc);
1126 qc = isl_map_apply_range(qc, rtc);
1127 qc = isl_map_union(tc, qc);
1138 /* Given a map "map", try to find a basic map such that
1139 * map^+ can be computed as
1141 * map^+ = map_i^+ \cup
1142 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1144 * with C the simple hull of the domain and range of the input map.
1145 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1146 * and by intersecting domain and range with C.
1147 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1148 * Also, we only use the incremental computation if all the transitive
1149 * closures are exact and if the number of basic maps in the union,
1150 * after computing the integer divisions, is smaller than the number
1151 * of basic maps in the input map.
1153 static int incemental_on_entire_domain(__isl_keep isl_dim *dim,
1154 __isl_keep isl_map *map,
1155 isl_set **dom, isl_set **ran, int *left, int *right,
1156 __isl_give isl_map **res)
1164 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1165 isl_map_range(isl_map_copy(map)));
1166 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1174 d = isl_map_dim(map, isl_dim_in);
1176 for (i = 0; i < map->n; ++i) {
1178 int exact_i, spurious;
1180 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1181 isl_basic_map_copy(map->p[i])));
1182 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1183 isl_basic_map_copy(map->p[i])));
1184 qc = q_closure(isl_dim_copy(dim), isl_set_copy(C),
1185 map->p[i], &exact_i);
1192 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1199 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1200 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1201 qc = isl_map_compute_divs(qc);
1202 for (j = 0; j < map->n; ++j)
1203 left[j] = right[j] = 1;
1204 qc = compose(map, i, qc, left, right);
1207 if (qc->n >= map->n) {
1211 *res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1212 left, right, &exact_i);
1223 return *res != NULL;
1229 /* Try and compute the transitive closure of "map" as
1231 * map^+ = map_i^+ \cup
1232 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1234 * with C either the simple hull of the domain and range of the entire
1235 * map or the simple hull of domain and range of map_i.
1237 static __isl_give isl_map *incremental_closure(__isl_take isl_dim *dim,
1238 __isl_keep isl_map *map, int *exact, int project)
1241 isl_set **dom = NULL;
1242 isl_set **ran = NULL;
1247 isl_map *res = NULL;
1250 return construct_projected_component(dim, map, exact, project);
1255 return construct_projected_component(dim, map, exact, project);
1257 d = isl_map_dim(map, isl_dim_in);
1259 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1260 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1261 left = isl_calloc_array(map->ctx, int, map->n);
1262 right = isl_calloc_array(map->ctx, int, map->n);
1263 if (!ran || !dom || !left || !right)
1266 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1269 for (i = 0; !res && i < map->n; ++i) {
1271 int exact_i, spurious, comp;
1273 dom[i] = isl_set_from_basic_set(
1274 isl_basic_map_domain(
1275 isl_basic_map_copy(map->p[i])));
1279 ran[i] = isl_set_from_basic_set(
1280 isl_basic_map_range(
1281 isl_basic_map_copy(map->p[i])));
1284 C = isl_set_union(isl_set_copy(dom[i]),
1285 isl_set_copy(ran[i]));
1286 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1293 comp = composability(C, i, dom, ran, left, right, map);
1294 if (!comp || comp < 0) {
1300 qc = q_closure(isl_dim_copy(dim), C, map->p[i], &exact_i);
1307 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1314 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1315 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1316 qc = isl_map_compute_divs(qc);
1317 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1318 (comp & RIGHT) ? right : NULL);
1321 if (qc->n >= map->n) {
1325 res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1326 (comp & LEFT) ? left : NULL,
1327 (comp & RIGHT) ? right : NULL, &exact_i);
1336 for (i = 0; i < map->n; ++i) {
1337 isl_set_free(dom[i]);
1338 isl_set_free(ran[i]);
1350 return construct_projected_component(dim, map, exact, project);
1353 for (i = 0; i < map->n; ++i)
1354 isl_set_free(dom[i]);
1357 for (i = 0; i < map->n; ++i)
1358 isl_set_free(ran[i]);
1366 /* Given an array of sets "set", add "dom" at position "pos"
1367 * and search for elements at earlier positions that overlap with "dom".
1368 * If any can be found, then merge all of them, together with "dom", into
1369 * a single set and assign the union to the first in the array,
1370 * which becomes the new group leader for all groups involved in the merge.
1371 * During the search, we only consider group leaders, i.e., those with
1372 * group[i] = i, as the other sets have already been combined
1373 * with one of the group leaders.
1375 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1380 set[pos] = isl_set_copy(dom);
1382 for (i = pos - 1; i >= 0; --i) {
1388 o = isl_set_overlaps(set[i], dom);
1394 set[i] = isl_set_union(set[i], set[group[pos]]);
1395 set[group[pos]] = NULL;
1398 group[group[pos]] = i;
1409 /* Replace each entry in the n by n grid of maps by the cross product
1410 * with the relation { [i] -> [i + 1] }.
1412 static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1416 isl_basic_map *bstep;
1423 dim = isl_map_get_dim(map);
1424 nparam = isl_dim_size(dim, isl_dim_param);
1425 dim = isl_dim_drop(dim, isl_dim_in, 0, isl_dim_size(dim, isl_dim_in));
1426 dim = isl_dim_drop(dim, isl_dim_out, 0, isl_dim_size(dim, isl_dim_out));
1427 dim = isl_dim_add(dim, isl_dim_in, 1);
1428 dim = isl_dim_add(dim, isl_dim_out, 1);
1429 bstep = isl_basic_map_alloc_dim(dim, 0, 1, 0);
1430 k = isl_basic_map_alloc_equality(bstep);
1432 isl_basic_map_free(bstep);
1435 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1436 isl_int_set_si(bstep->eq[k][0], 1);
1437 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1438 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1439 bstep = isl_basic_map_finalize(bstep);
1440 step = isl_map_from_basic_map(bstep);
1442 for (i = 0; i < n; ++i)
1443 for (j = 0; j < n; ++j)
1444 grid[i][j] = isl_map_product(grid[i][j],
1445 isl_map_copy(step));
1452 /* The core of the Floyd-Warshall algorithm.
1453 * Updates the given n x x matrix of relations in place.
1455 * The algorithm iterates over all vertices. In each step, the whole
1456 * matrix is updated to include all paths that go to the current vertex,
1457 * possibly stay there a while (including passing through earlier vertices)
1458 * and then come back. At the start of each iteration, the diagonal
1459 * element corresponding to the current vertex is replaced by its
1460 * transitive closure to account for all indirect paths that stay
1461 * in the current vertex.
1463 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1467 for (r = 0; r < n; ++r) {
1469 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1470 (exact && *exact) ? &r_exact : NULL);
1471 if (exact && *exact && !r_exact)
1474 for (p = 0; p < n; ++p)
1475 for (q = 0; q < n; ++q) {
1477 if (p == r && q == r)
1479 loop = isl_map_apply_range(
1480 isl_map_copy(grid[p][r]),
1481 isl_map_copy(grid[r][q]));
1482 grid[p][q] = isl_map_union(grid[p][q], loop);
1483 loop = isl_map_apply_range(
1484 isl_map_copy(grid[p][r]),
1485 isl_map_apply_range(
1486 isl_map_copy(grid[r][r]),
1487 isl_map_copy(grid[r][q])));
1488 grid[p][q] = isl_map_union(grid[p][q], loop);
1489 grid[p][q] = isl_map_coalesce(grid[p][q]);
1494 /* Given a partition of the domains and ranges of the basic maps in "map",
1495 * apply the Floyd-Warshall algorithm with the elements in the partition
1498 * In particular, there are "n" elements in the partition and "group" is
1499 * an array of length 2 * map->n with entries in [0,n-1].
1501 * We first construct a matrix of relations based on the partition information,
1502 * apply Floyd-Warshall on this matrix of relations and then take the
1503 * union of all entries in the matrix as the final result.
1505 * If we are actually computing the power instead of the transitive closure,
1506 * i.e., when "project" is not set, then the result should have the
1507 * path lengths encoded as the difference between an extra pair of
1508 * coordinates. We therefore apply the nested transitive closures
1509 * to relations that include these lengths. In particular, we replace
1510 * the input relation by the cross product with the unit length relation
1511 * { [i] -> [i + 1] }.
1513 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_dim *dim,
1514 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1517 isl_map ***grid = NULL;
1525 return incremental_closure(dim, map, exact, project);
1528 grid = isl_calloc_array(map->ctx, isl_map **, n);
1531 for (i = 0; i < n; ++i) {
1532 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1535 for (j = 0; j < n; ++j)
1536 grid[i][j] = isl_map_empty(isl_map_get_dim(map));
1539 for (k = 0; k < map->n; ++k) {
1541 j = group[2 * k + 1];
1542 grid[i][j] = isl_map_union(grid[i][j],
1543 isl_map_from_basic_map(
1544 isl_basic_map_copy(map->p[k])));
1547 if (!project && add_length(map, grid, n) < 0)
1550 floyd_warshall_iterate(grid, n, exact);
1552 app = isl_map_empty(isl_map_get_dim(map));
1554 for (i = 0; i < n; ++i) {
1555 for (j = 0; j < n; ++j)
1556 app = isl_map_union(app, grid[i][j]);
1567 for (i = 0; i < n; ++i) {
1570 for (j = 0; j < n; ++j)
1571 isl_map_free(grid[i][j]);
1580 /* Partition the domains and ranges of the n basic relations in list
1581 * into disjoint cells.
1583 * To find the partition, we simply consider all of the domains
1584 * and ranges in turn and combine those that overlap.
1585 * "set" contains the partition elements and "group" indicates
1586 * to which partition element a given domain or range belongs.
1587 * The domain of basic map i corresponds to element 2 * i in these arrays,
1588 * while the domain corresponds to element 2 * i + 1.
1589 * During the construction group[k] is either equal to k,
1590 * in which case set[k] contains the union of all the domains and
1591 * ranges in the corresponding group, or is equal to some l < k,
1592 * with l another domain or range in the same group.
1594 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1595 isl_set ***set, int *n_group)
1601 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1602 group = isl_alloc_array(ctx, int, 2 * n);
1604 if (!*set || !group)
1607 for (i = 0; i < n; ++i) {
1609 dom = isl_set_from_basic_set(isl_basic_map_domain(
1610 isl_basic_map_copy(list[i])));
1611 if (merge(*set, group, dom, 2 * i) < 0)
1613 dom = isl_set_from_basic_set(isl_basic_map_range(
1614 isl_basic_map_copy(list[i])));
1615 if (merge(*set, group, dom, 2 * i + 1) < 0)
1620 for (i = 0; i < 2 * n; ++i)
1621 if (group[i] == i) {
1623 (*set)[g] = (*set)[i];
1628 group[i] = group[group[i]];
1635 for (i = 0; i < 2 * n; ++i)
1636 isl_set_free((*set)[i]);
1644 /* Check if the domains and ranges of the basic maps in "map" can
1645 * be partitioned, and if so, apply Floyd-Warshall on the elements
1646 * of the partition. Note that we also apply this algorithm
1647 * if we want to compute the power, i.e., when "project" is not set.
1648 * However, the results are unlikely to be exact since the recursive
1649 * calls inside the Floyd-Warshall algorithm typically result in
1650 * non-linear path lengths quite quickly.
1652 static __isl_give isl_map *floyd_warshall(__isl_take isl_dim *dim,
1653 __isl_keep isl_map *map, int *exact, int project)
1656 isl_set **set = NULL;
1663 return incremental_closure(dim, map, exact, project);
1665 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1669 for (i = 0; i < 2 * map->n; ++i)
1670 isl_set_free(set[i]);
1674 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1680 /* Structure for representing the nodes in the graph being traversed
1681 * using Tarjan's algorithm.
1682 * index represents the order in which nodes are visited.
1683 * min_index is the index of the root of a (sub)component.
1684 * on_stack indicates whether the node is currently on the stack.
1686 struct basic_map_sort_node {
1691 /* Structure for representing the graph being traversed
1692 * using Tarjan's algorithm.
1693 * len is the number of nodes
1694 * node is an array of nodes
1695 * stack contains the nodes on the path from the root to the current node
1696 * sp is the stack pointer
1697 * index is the index of the last node visited
1698 * order contains the elements of the components separated by -1
1699 * op represents the current position in order
1701 * check_closed is set if we may have used the fact that
1702 * a pair of basic maps can be interchanged
1704 struct basic_map_sort {
1706 struct basic_map_sort_node *node;
1715 static void basic_map_sort_free(struct basic_map_sort *s)
1725 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
1727 struct basic_map_sort *s;
1730 s = isl_calloc_type(ctx, struct basic_map_sort);
1734 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
1737 for (i = 0; i < len; ++i)
1738 s->node[i].index = -1;
1739 s->stack = isl_alloc_array(ctx, int, len);
1742 s->order = isl_alloc_array(ctx, int, 2 * len);
1750 s->check_closed = 0;
1754 basic_map_sort_free(s);
1758 /* Check whether in the computation of the transitive closure
1759 * "bmap1" (R_1) should follow (or be part of the same component as)
1762 * That is check whether
1770 * If so, then there is no reason for R_1 to immediately follow R_2
1773 * *check_closed is set if the subset relation holds while
1774 * R_1 \circ R_2 is not empty.
1776 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
1777 __isl_keep isl_basic_map *bmap2, int *check_closed)
1779 struct isl_map *map12 = NULL;
1780 struct isl_map *map21 = NULL;
1783 if (!isl_dim_tuple_match(bmap1->dim, isl_dim_in, bmap2->dim, isl_dim_out))
1786 map21 = isl_map_from_basic_map(
1787 isl_basic_map_apply_range(
1788 isl_basic_map_copy(bmap2),
1789 isl_basic_map_copy(bmap1)));
1790 subset = isl_map_is_empty(map21);
1794 isl_map_free(map21);
1798 if (!isl_dim_tuple_match(bmap1->dim, isl_dim_in, bmap1->dim, isl_dim_out) ||
1799 !isl_dim_tuple_match(bmap2->dim, isl_dim_in, bmap2->dim, isl_dim_out)) {
1800 isl_map_free(map21);
1804 map12 = isl_map_from_basic_map(
1805 isl_basic_map_apply_range(
1806 isl_basic_map_copy(bmap1),
1807 isl_basic_map_copy(bmap2)));
1809 subset = isl_map_is_subset(map21, map12);
1811 isl_map_free(map12);
1812 isl_map_free(map21);
1817 return subset < 0 ? -1 : !subset;
1819 isl_map_free(map21);
1823 /* Perform Tarjan's algorithm for computing the strongly connected components
1824 * in the graph with the disjuncts of "map" as vertices and with an
1825 * edge between any pair of disjuncts such that the first has
1826 * to be applied after the second.
1828 static int power_components_tarjan(struct basic_map_sort *s,
1829 __isl_keep isl_basic_map **list, int i)
1833 s->node[i].index = s->index;
1834 s->node[i].min_index = s->index;
1835 s->node[i].on_stack = 1;
1837 s->stack[s->sp++] = i;
1839 for (j = s->len - 1; j >= 0; --j) {
1844 if (s->node[j].index >= 0 &&
1845 (!s->node[j].on_stack ||
1846 s->node[j].index > s->node[i].min_index))
1849 f = basic_map_follows(list[i], list[j], &s->check_closed);
1855 if (s->node[j].index < 0) {
1856 power_components_tarjan(s, list, j);
1857 if (s->node[j].min_index < s->node[i].min_index)
1858 s->node[i].min_index = s->node[j].min_index;
1859 } else if (s->node[j].index < s->node[i].min_index)
1860 s->node[i].min_index = s->node[j].index;
1863 if (s->node[i].index != s->node[i].min_index)
1867 j = s->stack[--s->sp];
1868 s->node[j].on_stack = 0;
1869 s->order[s->op++] = j;
1871 s->order[s->op++] = -1;
1876 /* Decompose the "len" basic relations in "list" into strongly connected
1879 static struct basic_map_sort *basic_map_sort_init(isl_ctx *ctx, int len,
1880 __isl_keep isl_basic_map **list)
1883 struct basic_map_sort *s = NULL;
1885 s = basic_map_sort_alloc(ctx, len);
1888 for (i = len - 1; i >= 0; --i) {
1889 if (s->node[i].index >= 0)
1891 if (power_components_tarjan(s, list, i) < 0)
1897 basic_map_sort_free(s);
1901 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1902 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1903 * construct a map that is an overapproximation of the map
1904 * that takes an element from the dom R \times Z to an
1905 * element from ran R \times Z, such that the first n coordinates of the
1906 * difference between them is a sum of differences between images
1907 * and pre-images in one of the R_i and such that the last coordinate
1908 * is equal to the number of steps taken.
1909 * If "project" is set, then these final coordinates are not included,
1910 * i.e., a relation of type Z^n -> Z^n is returned.
1913 * \Delta_i = { y - x | (x, y) in R_i }
1915 * then the constructed map is an overapproximation of
1917 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1918 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1919 * x in dom R and x + d in ran R }
1923 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1924 * d = (\sum_i k_i \delta_i) and
1925 * x in dom R and x + d in ran R }
1927 * if "project" is set.
1929 * We first split the map into strongly connected components, perform
1930 * the above on each component and then join the results in the correct
1931 * order, at each join also taking in the union of both arguments
1932 * to allow for paths that do not go through one of the two arguments.
1934 static __isl_give isl_map *construct_power_components(__isl_take isl_dim *dim,
1935 __isl_keep isl_map *map, int *exact, int project)
1938 struct isl_map *path = NULL;
1939 struct basic_map_sort *s = NULL;
1946 return floyd_warshall(dim, map, exact, project);
1948 s = basic_map_sort_init(map->ctx, map->n, map->p);
1953 if (s->check_closed && !exact)
1954 exact = &local_exact;
1960 path = isl_map_empty(isl_map_get_dim(map));
1962 path = isl_map_empty(isl_dim_copy(dim));
1963 path = anonymize(path);
1965 struct isl_map *comp;
1966 isl_map *path_comp, *path_comb;
1967 comp = isl_map_alloc_dim(isl_map_get_dim(map), n, 0);
1968 while (s->order[i] != -1) {
1969 comp = isl_map_add_basic_map(comp,
1970 isl_basic_map_copy(map->p[s->order[i]]));
1974 path_comp = floyd_warshall(isl_dim_copy(dim),
1975 comp, exact, project);
1976 path_comb = isl_map_apply_range(isl_map_copy(path),
1977 isl_map_copy(path_comp));
1978 path = isl_map_union(path, path_comp);
1979 path = isl_map_union(path, path_comb);
1985 if (c > 1 && s->check_closed && !*exact) {
1988 closed = isl_map_is_transitively_closed(path);
1992 basic_map_sort_free(s);
1994 return floyd_warshall(dim, map, orig_exact, project);
1998 basic_map_sort_free(s);
2003 basic_map_sort_free(s);
2009 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
2010 * construct a map that is an overapproximation of the map
2011 * that takes an element from the space D to another
2012 * element from the same space, such that the difference between
2013 * them is a strictly positive sum of differences between images
2014 * and pre-images in one of the R_i.
2015 * The number of differences in the sum is equated to parameter "param".
2018 * \Delta_i = { y - x | (x, y) in R_i }
2020 * then the constructed map is an overapproximation of
2022 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2023 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
2026 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2027 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
2029 * if "project" is set.
2031 * If "project" is not set, then
2032 * we construct an extended mapping with an extra coordinate
2033 * that indicates the number of steps taken. In particular,
2034 * the difference in the last coordinate is equal to the number
2035 * of steps taken to move from a domain element to the corresponding
2038 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
2039 int *exact, int project)
2041 struct isl_map *app = NULL;
2042 struct isl_dim *dim = NULL;
2048 dim = isl_map_get_dim(map);
2050 d = isl_dim_size(dim, isl_dim_in);
2051 dim = isl_dim_add(dim, isl_dim_in, 1);
2052 dim = isl_dim_add(dim, isl_dim_out, 1);
2054 app = construct_power_components(isl_dim_copy(dim), map,
2062 /* Compute the positive powers of "map", or an overapproximation.
2063 * If the result is exact, then *exact is set to 1.
2065 * If project is set, then we are actually interested in the transitive
2066 * closure, so we can use a more relaxed exactness check.
2067 * The lengths of the paths are also projected out instead of being
2068 * encoded as the difference between an extra pair of final coordinates.
2070 static __isl_give isl_map *map_power(__isl_take isl_map *map,
2071 int *exact, int project)
2073 struct isl_map *app = NULL;
2081 isl_assert(map->ctx,
2082 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
2085 app = construct_power(map, exact, project);
2095 /* Compute the positive powers of "map", or an overapproximation.
2096 * The power is given by parameter "param". If the result is exact,
2097 * then *exact is set to 1.
2098 * map_power constructs an extended relation with the path lengths
2099 * encoded as the difference between the final coordinates.
2100 * In the final step, this difference is equated to the parameter "param"
2101 * and made positive. The extra coordinates are subsequently projected out.
2103 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, unsigned param,
2106 isl_dim *target_dim;
2114 isl_assert(map->ctx, param < isl_map_dim(map, isl_dim_param),
2117 d = isl_map_dim(map, isl_dim_in);
2119 map = isl_map_compute_divs(map);
2120 map = isl_map_coalesce(map);
2122 if (isl_map_fast_is_empty(map))
2125 target_dim = isl_map_get_dim(map);
2126 map = map_power(map, exact, 0);
2128 dim = isl_map_get_dim(map);
2129 diff = equate_parameter_to_length(dim, param);
2130 map = isl_map_intersect(map, diff);
2131 map = isl_map_project_out(map, isl_dim_in, d, 1);
2132 map = isl_map_project_out(map, isl_dim_out, d, 1);
2134 map = isl_map_reset_dim(map, target_dim);
2142 /* Compute a relation that maps each element in the range of the input
2143 * relation to the lengths of all paths composed of edges in the input
2144 * relation that end up in the given range element.
2145 * The result may be an overapproximation, in which case *exact is set to 0.
2146 * The resulting relation is very similar to the power relation.
2147 * The difference are that the domain has been projected out, the
2148 * range has become the domain and the exponent is the range instead
2151 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2162 d = isl_map_dim(map, isl_dim_in);
2163 param = isl_map_dim(map, isl_dim_param);
2165 map = isl_map_compute_divs(map);
2166 map = isl_map_coalesce(map);
2168 if (isl_map_fast_is_empty(map)) {
2171 map = isl_map_project_out(map, isl_dim_out, 0, d);
2172 map = isl_map_add(map, isl_dim_out, 1);
2176 map = map_power(map, exact, 0);
2178 map = isl_map_add(map, isl_dim_param, 1);
2179 dim = isl_map_get_dim(map);
2180 diff = equate_parameter_to_length(dim, param);
2181 map = isl_map_intersect(map, diff);
2182 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2183 map = isl_map_project_out(map, isl_dim_out, d, 1);
2184 map = isl_map_reverse(map);
2185 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2190 /* Check whether equality i of bset is a pure stride constraint
2191 * on a single dimensions, i.e., of the form
2195 * with k a constant and e an existentially quantified variable.
2197 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
2209 if (!isl_int_is_zero(bset->eq[i][0]))
2212 nparam = isl_basic_set_dim(bset, isl_dim_param);
2213 d = isl_basic_set_dim(bset, isl_dim_set);
2214 n_div = isl_basic_set_dim(bset, isl_dim_div);
2216 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
2218 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
2221 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
2222 d - pos1 - 1) != -1)
2225 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
2228 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
2229 n_div - pos2 - 1) != -1)
2231 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
2232 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
2238 /* Given a map, compute the smallest superset of this map that is of the form
2240 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2242 * (where p ranges over the (non-parametric) dimensions),
2243 * compute the transitive closure of this map, i.e.,
2245 * { i -> j : exists k > 0:
2246 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2248 * and intersect domain and range of this transitive closure with
2249 * the given domain and range.
2251 * If with_id is set, then try to include as much of the identity mapping
2252 * as possible, by computing
2254 * { i -> j : exists k >= 0:
2255 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2257 * instead (i.e., allow k = 0).
2259 * In practice, we compute the difference set
2261 * delta = { j - i | i -> j in map },
2263 * look for stride constraint on the individual dimensions and compute
2264 * (constant) lower and upper bounds for each individual dimension,
2265 * adding a constraint for each bound not equal to infinity.
2267 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2268 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2277 isl_map *app = NULL;
2278 isl_basic_set *aff = NULL;
2279 isl_basic_map *bmap = NULL;
2280 isl_vec *obj = NULL;
2285 delta = isl_map_deltas(isl_map_copy(map));
2287 aff = isl_set_affine_hull(isl_set_copy(delta));
2290 dim = isl_map_get_dim(map);
2291 d = isl_dim_size(dim, isl_dim_in);
2292 nparam = isl_dim_size(dim, isl_dim_param);
2293 total = isl_dim_total(dim);
2294 bmap = isl_basic_map_alloc_dim(dim,
2295 aff->n_div + 1, aff->n_div, 2 * d + 1);
2296 for (i = 0; i < aff->n_div + 1; ++i) {
2297 k = isl_basic_map_alloc_div(bmap);
2300 isl_int_set_si(bmap->div[k][0], 0);
2302 for (i = 0; i < aff->n_eq; ++i) {
2303 if (!is_eq_stride(aff, i))
2305 k = isl_basic_map_alloc_equality(bmap);
2308 isl_seq_clr(bmap->eq[k], 1 + nparam);
2309 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2310 aff->eq[i] + 1 + nparam, d);
2311 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2312 aff->eq[i] + 1 + nparam, d);
2313 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2314 aff->eq[i] + 1 + nparam + d, aff->n_div);
2315 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2317 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2320 isl_seq_clr(obj->el, 1 + nparam + d);
2321 for (i = 0; i < d; ++ i) {
2322 enum isl_lp_result res;
2324 isl_int_set_si(obj->el[1 + nparam + i], 1);
2326 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2328 if (res == isl_lp_error)
2330 if (res == isl_lp_ok) {
2331 k = isl_basic_map_alloc_inequality(bmap);
2334 isl_seq_clr(bmap->ineq[k],
2335 1 + nparam + 2 * d + bmap->n_div);
2336 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2337 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2338 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2341 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2343 if (res == isl_lp_error)
2345 if (res == isl_lp_ok) {
2346 k = isl_basic_map_alloc_inequality(bmap);
2349 isl_seq_clr(bmap->ineq[k],
2350 1 + nparam + 2 * d + bmap->n_div);
2351 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2352 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2353 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2356 isl_int_set_si(obj->el[1 + nparam + i], 0);
2358 k = isl_basic_map_alloc_inequality(bmap);
2361 isl_seq_clr(bmap->ineq[k],
2362 1 + nparam + 2 * d + bmap->n_div);
2364 isl_int_set_si(bmap->ineq[k][0], -1);
2365 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2367 app = isl_map_from_domain_and_range(dom, ran);
2370 isl_basic_set_free(aff);
2372 bmap = isl_basic_map_finalize(bmap);
2373 isl_set_free(delta);
2376 map = isl_map_from_basic_map(bmap);
2377 map = isl_map_intersect(map, app);
2382 isl_basic_map_free(bmap);
2383 isl_basic_set_free(aff);
2387 isl_set_free(delta);
2392 /* Given a map, compute the smallest superset of this map that is of the form
2394 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2396 * (where p ranges over the (non-parametric) dimensions),
2397 * compute the transitive closure of this map, i.e.,
2399 * { i -> j : exists k > 0:
2400 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2402 * and intersect domain and range of this transitive closure with
2403 * domain and range of the original map.
2405 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2410 domain = isl_map_domain(isl_map_copy(map));
2411 domain = isl_set_coalesce(domain);
2412 range = isl_map_range(isl_map_copy(map));
2413 range = isl_set_coalesce(range);
2415 return box_closure_on_domain(map, domain, range, 0);
2418 /* Given a map, compute the smallest superset of this map that is of the form
2420 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2422 * (where p ranges over the (non-parametric) dimensions),
2423 * compute the transitive and partially reflexive closure of this map, i.e.,
2425 * { i -> j : exists k >= 0:
2426 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2428 * and intersect domain and range of this transitive closure with
2431 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2432 __isl_take isl_set *dom)
2434 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2437 /* Check whether app is the transitive closure of map.
2438 * In particular, check that app is acyclic and, if so,
2441 * app \subset (map \cup (map \circ app))
2443 static int check_exactness_omega(__isl_keep isl_map *map,
2444 __isl_keep isl_map *app)
2448 int is_empty, is_exact;
2452 delta = isl_map_deltas(isl_map_copy(app));
2453 d = isl_set_dim(delta, isl_dim_set);
2454 for (i = 0; i < d; ++i)
2455 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2456 is_empty = isl_set_is_empty(delta);
2457 isl_set_free(delta);
2463 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2464 test = isl_map_union(test, isl_map_copy(map));
2465 is_exact = isl_map_is_subset(app, test);
2471 /* Check if basic map M_i can be combined with all the other
2472 * basic maps such that
2476 * can be computed as
2478 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2480 * In particular, check if we can compute a compact representation
2483 * M_i^* \circ M_j \circ M_i^*
2486 * Let M_i^? be an extension of M_i^+ that allows paths
2487 * of length zero, i.e., the result of box_closure(., 1).
2488 * The criterion, as proposed by Kelly et al., is that
2489 * id = M_i^? - M_i^+ can be represented as a basic map
2492 * id \circ M_j \circ id = M_j
2496 * If this function returns 1, then tc and qc are set to
2497 * M_i^+ and M_i^?, respectively.
2499 static int can_be_split_off(__isl_keep isl_map *map, int i,
2500 __isl_give isl_map **tc, __isl_give isl_map **qc)
2502 isl_map *map_i, *id = NULL;
2509 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2510 isl_map_range(isl_map_copy(map)));
2511 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2515 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2516 *tc = box_closure(isl_map_copy(map_i));
2517 *qc = box_closure_with_identity(map_i, C);
2518 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2522 if (id->n != 1 || (*qc)->n != 1)
2525 for (j = 0; j < map->n; ++j) {
2526 isl_map *map_j, *test;
2531 map_j = isl_map_from_basic_map(
2532 isl_basic_map_copy(map->p[j]));
2533 test = isl_map_apply_range(isl_map_copy(id),
2534 isl_map_copy(map_j));
2535 test = isl_map_apply_range(test, isl_map_copy(id));
2536 is_ok = isl_map_is_equal(test, map_j);
2537 isl_map_free(map_j);
2565 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2570 app = box_closure(isl_map_copy(map));
2572 *exact = check_exactness_omega(map, app);
2578 /* Compute an overapproximation of the transitive closure of "map"
2579 * using a variation of the algorithm from
2580 * "Transitive Closure of Infinite Graphs and its Applications"
2583 * We first check whether we can can split of any basic map M_i and
2590 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2592 * using a recursive call on the remaining map.
2594 * If not, we simply call box_closure on the whole map.
2596 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2606 return box_closure_with_check(map, exact);
2608 for (i = 0; i < map->n; ++i) {
2611 ok = can_be_split_off(map, i, &tc, &qc);
2617 app = isl_map_alloc_dim(isl_map_get_dim(map), map->n - 1, 0);
2619 for (j = 0; j < map->n; ++j) {
2622 app = isl_map_add_basic_map(app,
2623 isl_basic_map_copy(map->p[j]));
2626 app = isl_map_apply_range(isl_map_copy(qc), app);
2627 app = isl_map_apply_range(app, qc);
2629 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2630 exact_i = check_exactness_omega(map, app);
2642 return box_closure_with_check(map, exact);
2648 /* Compute the transitive closure of "map", or an overapproximation.
2649 * If the result is exact, then *exact is set to 1.
2650 * Simply use map_power to compute the powers of map, but tell
2651 * it to project out the lengths of the paths instead of equating
2652 * the length to a parameter.
2654 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2657 isl_dim *target_dim;
2663 if (map->ctx->opt->closure == ISL_CLOSURE_OMEGA)
2664 return transitive_closure_omega(map, exact);
2666 map = isl_map_compute_divs(map);
2667 map = isl_map_coalesce(map);
2668 closed = isl_map_is_transitively_closed(map);
2677 target_dim = isl_map_get_dim(map);
2678 map = map_power(map, exact, 1);
2679 map = isl_map_reset_dim(map, target_dim);
2687 static int inc_count(__isl_take isl_map *map, void *user)
2698 static int collect_basic_map(__isl_take isl_map *map, void *user)
2701 isl_basic_map ***next = user;
2703 for (i = 0; i < map->n; ++i) {
2704 **next = isl_basic_map_copy(map->p[i]);
2717 /* Perform Floyd-Warshall on the given list of basic relations.
2718 * The basic relations may live in different dimensions,
2719 * but basic relations that get assigned to the diagonal of the
2720 * grid have domains and ranges of the same dimension and so
2721 * the standard algorithm can be used because the nested transitive
2722 * closures are only applied to diagonal elements and because all
2723 * compositions are peformed on relations with compatible domains and ranges.
2725 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2726 __isl_keep isl_basic_map **list, int n, int *exact)
2731 isl_set **set = NULL;
2732 isl_map ***grid = NULL;
2735 group = setup_groups(ctx, list, n, &set, &n_group);
2739 grid = isl_calloc_array(ctx, isl_map **, n_group);
2742 for (i = 0; i < n_group; ++i) {
2743 grid[i] = isl_calloc_array(map->ctx, isl_map *, n_group);
2746 for (j = 0; j < n_group; ++j) {
2747 isl_dim *dim1, *dim2, *dim;
2748 dim1 = isl_dim_reverse(isl_set_get_dim(set[i]));
2749 dim2 = isl_set_get_dim(set[j]);
2750 dim = isl_dim_join(dim1, dim2);
2751 grid[i][j] = isl_map_empty(dim);
2755 for (k = 0; k < n; ++k) {
2757 j = group[2 * k + 1];
2758 grid[i][j] = isl_map_union(grid[i][j],
2759 isl_map_from_basic_map(
2760 isl_basic_map_copy(list[k])));
2763 floyd_warshall_iterate(grid, n_group, exact);
2765 app = isl_union_map_empty(isl_map_get_dim(grid[0][0]));
2767 for (i = 0; i < n_group; ++i) {
2768 for (j = 0; j < n_group; ++j)
2769 app = isl_union_map_add_map(app, grid[i][j]);
2774 for (i = 0; i < 2 * n; ++i)
2775 isl_set_free(set[i]);
2782 for (i = 0; i < n_group; ++i) {
2785 for (j = 0; j < n_group; ++j)
2786 isl_map_free(grid[i][j]);
2791 for (i = 0; i < 2 * n; ++i)
2792 isl_set_free(set[i]);
2799 /* Perform Floyd-Warshall on the given union relation.
2800 * The implementation is very similar to that for non-unions.
2801 * The main difference is that it is applied unconditionally.
2802 * We first extract a list of basic maps from the union map
2803 * and then perform the algorithm on this list.
2805 static __isl_give isl_union_map *union_floyd_warshall(
2806 __isl_take isl_union_map *umap, int *exact)
2810 isl_basic_map **list;
2811 isl_basic_map **next;
2815 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2818 ctx = isl_union_map_get_ctx(umap);
2819 list = isl_calloc_array(ctx, isl_basic_map *, n);
2824 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2827 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2830 for (i = 0; i < n; ++i)
2831 isl_basic_map_free(list[i]);
2835 isl_union_map_free(umap);
2839 for (i = 0; i < n; ++i)
2840 isl_basic_map_free(list[i]);
2843 isl_union_map_free(umap);
2847 /* Decompose the give union relation into strongly connected components.
2848 * The implementation is essentially the same as that of
2849 * construct_power_components with the major difference that all
2850 * operations are performed on union maps.
2852 static __isl_give isl_union_map *union_components(
2853 __isl_take isl_union_map *umap, int *exact)
2858 isl_basic_map **list;
2859 isl_basic_map **next;
2860 isl_union_map *path = NULL;
2861 struct basic_map_sort *s = NULL;
2866 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2870 return union_floyd_warshall(umap, exact);
2872 ctx = isl_union_map_get_ctx(umap);
2873 list = isl_calloc_array(ctx, isl_basic_map *, n);
2878 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2881 s = basic_map_sort_init(ctx, n, list);
2888 path = isl_union_map_empty(isl_union_map_get_dim(umap));
2890 isl_union_map *comp;
2891 isl_union_map *path_comp, *path_comb;
2892 comp = isl_union_map_empty(isl_union_map_get_dim(umap));
2893 while (s->order[i] != -1) {
2894 comp = isl_union_map_add_map(comp,
2895 isl_map_from_basic_map(
2896 isl_basic_map_copy(list[s->order[i]])));
2900 path_comp = union_floyd_warshall(comp, exact);
2901 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2902 isl_union_map_copy(path_comp));
2903 path = isl_union_map_union(path, path_comp);
2904 path = isl_union_map_union(path, path_comb);
2909 if (c > 1 && s->check_closed && !*exact) {
2912 closed = isl_union_map_is_transitively_closed(path);
2918 basic_map_sort_free(s);
2920 for (i = 0; i < n; ++i)
2921 isl_basic_map_free(list[i]);
2925 isl_union_map_free(path);
2926 return union_floyd_warshall(umap, exact);
2929 isl_union_map_free(umap);
2933 basic_map_sort_free(s);
2935 for (i = 0; i < n; ++i)
2936 isl_basic_map_free(list[i]);
2939 isl_union_map_free(umap);
2940 isl_union_map_free(path);
2944 /* Compute the transitive closure of "umap", or an overapproximation.
2945 * If the result is exact, then *exact is set to 1.
2947 __isl_give isl_union_map *isl_union_map_transitive_closure(
2948 __isl_take isl_union_map *umap, int *exact)
2958 umap = isl_union_map_compute_divs(umap);
2959 umap = isl_union_map_coalesce(umap);
2960 closed = isl_union_map_is_transitively_closed(umap);
2965 umap = union_components(umap, exact);
2968 isl_union_map_free(umap);