2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_map_private.h"
13 #include "isl_sample.h"
16 * The implementation of parametric integer linear programming in this file
17 * was inspired by the paper "Parametric Integer Programming" and the
18 * report "Solving systems of affine (in)equalities" by Paul Feautrier
21 * The strategy used for obtaining a feasible solution is different
22 * from the one used in isl_tab.c. In particular, in isl_tab.c,
23 * upon finding a constraint that is not yet satisfied, we pivot
24 * in a row that increases the constant term of row holding the
25 * constraint, making sure the sample solution remains feasible
26 * for all the constraints it already satisfied.
27 * Here, we always pivot in the row holding the constraint,
28 * choosing a column that induces the lexicographically smallest
29 * increment to the sample solution.
31 * By starting out from a sample value that is lexicographically
32 * smaller than any integer point in the problem space, the first
33 * feasible integer sample point we find will also be the lexicographically
34 * smallest. If all variables can be assumed to be non-negative,
35 * then the initial sample value may be chosen equal to zero.
36 * However, we will not make this assumption. Instead, we apply
37 * the "big parameter" trick. Any variable x is then not directly
38 * used in the tableau, but instead it its represented by another
39 * variable x' = M + x, where M is an arbitrarily large (positive)
40 * value. x' is therefore always non-negative, whatever the value of x.
41 * Taking as initial smaple value x' = 0 corresponds to x = -M,
42 * which is always smaller than any possible value of x.
44 * The big parameter trick is used in the main tableau and
45 * also in the context tableau if isl_context_lex is used.
46 * In this case, each tableaus has its own big parameter.
47 * Before doing any real work, we check if all the parameters
48 * happen to be non-negative. If so, we drop the column corresponding
49 * to M from the initial context tableau.
50 * If isl_context_gbr is used, then the big parameter trick is only
51 * used in the main tableau.
55 struct isl_context_op {
56 /* detect nonnegative parameters in context and mark them in tab */
57 struct isl_tab *(*detect_nonnegative_parameters)(
58 struct isl_context *context, struct isl_tab *tab);
59 /* return temporary reference to basic set representation of context */
60 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
61 /* return temporary reference to tableau representation of context */
62 struct isl_tab *(*peek_tab)(struct isl_context *context);
63 /* add equality; check is 1 if eq may not be valid;
64 * update is 1 if we may want to call ineq_sign on context later.
66 void (*add_eq)(struct isl_context *context, isl_int *eq,
67 int check, int update);
68 /* add inequality; check is 1 if ineq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
72 int check, int update);
73 /* check sign of ineq based on previous information.
74 * strict is 1 if saturation should be treated as a positive sign.
76 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
77 isl_int *ineq, int strict);
78 /* check if inequality maintains feasibility */
79 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
80 /* return index of a div that corresponds to "div" */
81 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
83 /* add div "div" to context and return index and non-negativity */
84 int (*add_div)(struct isl_context *context, struct isl_vec *div,
86 int (*detect_equalities)(struct isl_context *context,
88 /* return row index of "best" split */
89 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
90 /* check if context has already been determined to be empty */
91 int (*is_empty)(struct isl_context *context);
92 /* check if context is still usable */
93 int (*is_ok)(struct isl_context *context);
94 /* save a copy/snapshot of context */
95 void *(*save)(struct isl_context *context);
96 /* restore saved context */
97 void (*restore)(struct isl_context *context, void *);
98 /* invalidate context */
99 void (*invalidate)(struct isl_context *context);
101 void (*free)(struct isl_context *context);
105 struct isl_context_op *op;
108 struct isl_context_lex {
109 struct isl_context context;
113 struct isl_partial_sol {
115 struct isl_basic_set *dom;
118 struct isl_partial_sol *next;
122 struct isl_sol_callback {
123 struct isl_tab_callback callback;
127 /* isl_sol is an interface for constructing a solution to
128 * a parametric integer linear programming problem.
129 * Every time the algorithm reaches a state where a solution
130 * can be read off from the tableau (including cases where the tableau
131 * is empty), the function "add" is called on the isl_sol passed
132 * to find_solutions_main.
134 * The context tableau is owned by isl_sol and is updated incrementally.
136 * There are currently two implementations of this interface,
137 * isl_sol_map, which simply collects the solutions in an isl_map
138 * and (optionally) the parts of the context where there is no solution
140 * isl_sol_for, which calls a user-defined function for each part of
149 struct isl_context *context;
150 struct isl_partial_sol *partial;
151 void (*add)(struct isl_sol *sol,
152 struct isl_basic_set *dom, struct isl_mat *M);
153 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
154 void (*free)(struct isl_sol *sol);
155 struct isl_sol_callback dec_level;
158 static void sol_free(struct isl_sol *sol)
160 struct isl_partial_sol *partial, *next;
163 for (partial = sol->partial; partial; partial = next) {
164 next = partial->next;
165 isl_basic_set_free(partial->dom);
166 isl_mat_free(partial->M);
172 /* Push a partial solution represented by a domain and mapping M
173 * onto the stack of partial solutions.
175 static void sol_push_sol(struct isl_sol *sol,
176 struct isl_basic_set *dom, struct isl_mat *M)
178 struct isl_partial_sol *partial;
180 if (sol->error || !dom)
183 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
187 partial->level = sol->level;
190 partial->next = sol->partial;
192 sol->partial = partial;
196 isl_basic_set_free(dom);
200 /* Pop one partial solution from the partial solution stack and
201 * pass it on to sol->add or sol->add_empty.
203 static void sol_pop_one(struct isl_sol *sol)
205 struct isl_partial_sol *partial;
207 partial = sol->partial;
208 sol->partial = partial->next;
211 sol->add(sol, partial->dom, partial->M);
213 sol->add_empty(sol, partial->dom);
217 /* Return a fresh copy of the domain represented by the context tableau.
219 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
221 struct isl_basic_set *bset;
226 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
227 bset = isl_basic_set_update_from_tab(bset,
228 sol->context->op->peek_tab(sol->context));
233 /* Check whether two partial solutions have the same mapping, where n_div
234 * is the number of divs that the two partial solutions have in common.
236 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
242 if (!s1->M != !s2->M)
247 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
249 for (i = 0; i < s1->M->n_row; ++i) {
250 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
251 s1->M->n_col-1-dim-n_div) != -1)
253 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
254 s2->M->n_col-1-dim-n_div) != -1)
256 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
262 /* Pop all solutions from the partial solution stack that were pushed onto
263 * the stack at levels that are deeper than the current level.
264 * If the two topmost elements on the stack have the same level
265 * and represent the same solution, then their domains are combined.
266 * This combined domain is the same as the current context domain
267 * as sol_pop is called each time we move back to a higher level.
269 static void sol_pop(struct isl_sol *sol)
271 struct isl_partial_sol *partial;
277 if (sol->level == 0) {
278 for (partial = sol->partial; partial; partial = sol->partial)
283 partial = sol->partial;
287 if (partial->level <= sol->level)
290 if (partial->next && partial->next->level == partial->level) {
291 n_div = isl_basic_set_dim(
292 sol->context->op->peek_basic_set(sol->context),
295 if (!same_solution(partial, partial->next, n_div)) {
299 struct isl_basic_set *bset;
301 bset = sol_domain(sol);
303 isl_basic_set_free(partial->next->dom);
304 partial->next->dom = bset;
305 partial->next->level = sol->level;
307 sol->partial = partial->next;
308 isl_basic_set_free(partial->dom);
309 isl_mat_free(partial->M);
316 static void sol_dec_level(struct isl_sol *sol)
326 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
328 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
330 sol_dec_level(callback->sol);
332 return callback->sol->error ? -1 : 0;
335 /* Move down to next level and push callback onto context tableau
336 * to decrease the level again when it gets rolled back across
337 * the current state. That is, dec_level will be called with
338 * the context tableau in the same state as it is when inc_level
341 static void sol_inc_level(struct isl_sol *sol)
349 tab = sol->context->op->peek_tab(sol->context);
350 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
354 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
358 if (isl_int_is_one(m))
361 for (i = 0; i < n_row; ++i)
362 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
365 /* Add the solution identified by the tableau and the context tableau.
367 * The layout of the variables is as follows.
368 * tab->n_var is equal to the total number of variables in the input
369 * map (including divs that were copied from the context)
370 * + the number of extra divs constructed
371 * Of these, the first tab->n_param and the last tab->n_div variables
372 * correspond to the variables in the context, i.e.,
373 * tab->n_param + tab->n_div = context_tab->n_var
374 * tab->n_param is equal to the number of parameters and input
375 * dimensions in the input map
376 * tab->n_div is equal to the number of divs in the context
378 * If there is no solution, then call add_empty with a basic set
379 * that corresponds to the context tableau. (If add_empty is NULL,
382 * If there is a solution, then first construct a matrix that maps
383 * all dimensions of the context to the output variables, i.e.,
384 * the output dimensions in the input map.
385 * The divs in the input map (if any) that do not correspond to any
386 * div in the context do not appear in the solution.
387 * The algorithm will make sure that they have an integer value,
388 * but these values themselves are of no interest.
389 * We have to be careful not to drop or rearrange any divs in the
390 * context because that would change the meaning of the matrix.
392 * To extract the value of the output variables, it should be noted
393 * that we always use a big parameter M in the main tableau and so
394 * the variable stored in this tableau is not an output variable x itself, but
395 * x' = M + x (in case of minimization)
397 * x' = M - x (in case of maximization)
398 * If x' appears in a column, then its optimal value is zero,
399 * which means that the optimal value of x is an unbounded number
400 * (-M for minimization and M for maximization).
401 * We currently assume that the output dimensions in the original map
402 * are bounded, so this cannot occur.
403 * Similarly, when x' appears in a row, then the coefficient of M in that
404 * row is necessarily 1.
405 * If the row in the tableau represents
406 * d x' = c + d M + e(y)
407 * then, in case of minimization, the corresponding row in the matrix
410 * with a d = m, the (updated) common denominator of the matrix.
411 * In case of maximization, the row will be
414 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
416 struct isl_basic_set *bset = NULL;
417 struct isl_mat *mat = NULL;
422 if (sol->error || !tab)
425 if (tab->empty && !sol->add_empty)
428 bset = sol_domain(sol);
431 sol_push_sol(sol, bset, NULL);
437 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
438 1 + tab->n_param + tab->n_div);
444 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
445 isl_int_set_si(mat->row[0][0], 1);
446 for (row = 0; row < sol->n_out; ++row) {
447 int i = tab->n_param + row;
450 isl_seq_clr(mat->row[1 + row], mat->n_col);
451 if (!tab->var[i].is_row) {
453 isl_assert(mat->ctx, !tab->M, goto error2);
457 r = tab->var[i].index;
460 isl_assert(mat->ctx, isl_int_eq(tab->mat->row[r][2],
461 tab->mat->row[r][0]),
463 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
464 isl_int_divexact(m, tab->mat->row[r][0], m);
465 scale_rows(mat, m, 1 + row);
466 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
467 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
468 for (j = 0; j < tab->n_param; ++j) {
470 if (tab->var[j].is_row)
472 col = tab->var[j].index;
473 isl_int_mul(mat->row[1 + row][1 + j], m,
474 tab->mat->row[r][off + col]);
476 for (j = 0; j < tab->n_div; ++j) {
478 if (tab->var[tab->n_var - tab->n_div+j].is_row)
480 col = tab->var[tab->n_var - tab->n_div+j].index;
481 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
482 tab->mat->row[r][off + col]);
485 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
491 sol_push_sol(sol, bset, mat);
496 isl_basic_set_free(bset);
504 struct isl_set *empty;
507 static void sol_map_free(struct isl_sol_map *sol_map)
509 if (sol_map->sol.context)
510 sol_map->sol.context->op->free(sol_map->sol.context);
511 isl_map_free(sol_map->map);
512 isl_set_free(sol_map->empty);
516 static void sol_map_free_wrap(struct isl_sol *sol)
518 sol_map_free((struct isl_sol_map *)sol);
521 /* This function is called for parts of the context where there is
522 * no solution, with "bset" corresponding to the context tableau.
523 * Simply add the basic set to the set "empty".
525 static void sol_map_add_empty(struct isl_sol_map *sol,
526 struct isl_basic_set *bset)
530 isl_assert(bset->ctx, sol->empty, goto error);
532 sol->empty = isl_set_grow(sol->empty, 1);
533 bset = isl_basic_set_simplify(bset);
534 bset = isl_basic_set_finalize(bset);
535 sol->empty = isl_set_add(sol->empty, isl_basic_set_copy(bset));
538 isl_basic_set_free(bset);
541 isl_basic_set_free(bset);
545 static void sol_map_add_empty_wrap(struct isl_sol *sol,
546 struct isl_basic_set *bset)
548 sol_map_add_empty((struct isl_sol_map *)sol, bset);
551 /* Given a basic map "dom" that represents the context and an affine
552 * matrix "M" that maps the dimensions of the context to the
553 * output variables, construct a basic map with the same parameters
554 * and divs as the context, the dimensions of the context as input
555 * dimensions and a number of output dimensions that is equal to
556 * the number of output dimensions in the input map.
558 * The constraints and divs of the context are simply copied
559 * from "dom". For each row
563 * is added, with d the common denominator of M.
565 static void sol_map_add(struct isl_sol_map *sol,
566 struct isl_basic_set *dom, struct isl_mat *M)
569 struct isl_basic_map *bmap = NULL;
570 isl_basic_set *context_bset;
578 if (sol->sol.error || !dom || !M)
581 n_out = sol->sol.n_out;
582 n_eq = dom->n_eq + n_out;
583 n_ineq = dom->n_ineq;
585 nparam = isl_basic_set_total_dim(dom) - n_div;
586 total = isl_map_dim(sol->map, isl_dim_all);
587 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
588 n_div, n_eq, 2 * n_div + n_ineq);
591 if (sol->sol.rational)
592 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
593 for (i = 0; i < dom->n_div; ++i) {
594 int k = isl_basic_map_alloc_div(bmap);
597 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
598 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
599 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
600 dom->div[i] + 1 + 1 + nparam, i);
602 for (i = 0; i < dom->n_eq; ++i) {
603 int k = isl_basic_map_alloc_equality(bmap);
606 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
607 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
608 isl_seq_cpy(bmap->eq[k] + 1 + total,
609 dom->eq[i] + 1 + nparam, n_div);
611 for (i = 0; i < dom->n_ineq; ++i) {
612 int k = isl_basic_map_alloc_inequality(bmap);
615 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
616 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
617 isl_seq_cpy(bmap->ineq[k] + 1 + total,
618 dom->ineq[i] + 1 + nparam, n_div);
620 for (i = 0; i < M->n_row - 1; ++i) {
621 int k = isl_basic_map_alloc_equality(bmap);
624 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
625 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
626 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
627 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
628 M->row[1 + i] + 1 + nparam, n_div);
630 bmap = isl_basic_map_simplify(bmap);
631 bmap = isl_basic_map_finalize(bmap);
632 sol->map = isl_map_grow(sol->map, 1);
633 sol->map = isl_map_add(sol->map, bmap);
636 isl_basic_set_free(dom);
640 isl_basic_set_free(dom);
642 isl_basic_map_free(bmap);
646 static void sol_map_add_wrap(struct isl_sol *sol,
647 struct isl_basic_set *dom, struct isl_mat *M)
649 sol_map_add((struct isl_sol_map *)sol, dom, M);
653 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
654 * i.e., the constant term and the coefficients of all variables that
655 * appear in the context tableau.
656 * Note that the coefficient of the big parameter M is NOT copied.
657 * The context tableau may not have a big parameter and even when it
658 * does, it is a different big parameter.
660 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
663 unsigned off = 2 + tab->M;
665 isl_int_set(line[0], tab->mat->row[row][1]);
666 for (i = 0; i < tab->n_param; ++i) {
667 if (tab->var[i].is_row)
668 isl_int_set_si(line[1 + i], 0);
670 int col = tab->var[i].index;
671 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
674 for (i = 0; i < tab->n_div; ++i) {
675 if (tab->var[tab->n_var - tab->n_div + i].is_row)
676 isl_int_set_si(line[1 + tab->n_param + i], 0);
678 int col = tab->var[tab->n_var - tab->n_div + i].index;
679 isl_int_set(line[1 + tab->n_param + i],
680 tab->mat->row[row][off + col]);
685 /* Check if rows "row1" and "row2" have identical "parametric constants",
686 * as explained above.
687 * In this case, we also insist that the coefficients of the big parameter
688 * be the same as the values of the constants will only be the same
689 * if these coefficients are also the same.
691 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
694 unsigned off = 2 + tab->M;
696 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
699 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
700 tab->mat->row[row2][2]))
703 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
704 int pos = i < tab->n_param ? i :
705 tab->n_var - tab->n_div + i - tab->n_param;
708 if (tab->var[pos].is_row)
710 col = tab->var[pos].index;
711 if (isl_int_ne(tab->mat->row[row1][off + col],
712 tab->mat->row[row2][off + col]))
718 /* Return an inequality that expresses that the "parametric constant"
719 * should be non-negative.
720 * This function is only called when the coefficient of the big parameter
723 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
725 struct isl_vec *ineq;
727 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
731 get_row_parameter_line(tab, row, ineq->el);
733 ineq = isl_vec_normalize(ineq);
738 /* Return a integer division for use in a parametric cut based on the given row.
739 * In particular, let the parametric constant of the row be
743 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
744 * The div returned is equal to
746 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
748 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
752 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
756 isl_int_set(div->el[0], tab->mat->row[row][0]);
757 get_row_parameter_line(tab, row, div->el + 1);
758 div = isl_vec_normalize(div);
759 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
760 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
765 /* Return a integer division for use in transferring an integrality constraint
767 * In particular, let the parametric constant of the row be
771 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
772 * The the returned div is equal to
774 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
776 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
780 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
784 isl_int_set(div->el[0], tab->mat->row[row][0]);
785 get_row_parameter_line(tab, row, div->el + 1);
786 div = isl_vec_normalize(div);
787 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
792 /* Construct and return an inequality that expresses an upper bound
794 * In particular, if the div is given by
798 * then the inequality expresses
802 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
806 struct isl_vec *ineq;
811 total = isl_basic_set_total_dim(bset);
812 div_pos = 1 + total - bset->n_div + div;
814 ineq = isl_vec_alloc(bset->ctx, 1 + total);
818 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
819 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
823 /* Given a row in the tableau and a div that was created
824 * using get_row_split_div and that been constrained to equality, i.e.,
826 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
828 * replace the expression "\sum_i {a_i} y_i" in the row by d,
829 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
830 * The coefficients of the non-parameters in the tableau have been
831 * verified to be integral. We can therefore simply replace coefficient b
832 * by floor(b). For the coefficients of the parameters we have
833 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
836 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
838 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
839 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
841 isl_int_set_si(tab->mat->row[row][0], 1);
843 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
844 int drow = tab->var[tab->n_var - tab->n_div + div].index;
846 isl_assert(tab->mat->ctx,
847 isl_int_is_one(tab->mat->row[drow][0]), goto error);
848 isl_seq_combine(tab->mat->row[row] + 1,
849 tab->mat->ctx->one, tab->mat->row[row] + 1,
850 tab->mat->ctx->one, tab->mat->row[drow] + 1,
851 1 + tab->M + tab->n_col);
853 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
855 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
864 /* Check if the (parametric) constant of the given row is obviously
865 * negative, meaning that we don't need to consult the context tableau.
866 * If there is a big parameter and its coefficient is non-zero,
867 * then this coefficient determines the outcome.
868 * Otherwise, we check whether the constant is negative and
869 * all non-zero coefficients of parameters are negative and
870 * belong to non-negative parameters.
872 static int is_obviously_neg(struct isl_tab *tab, int row)
876 unsigned off = 2 + tab->M;
879 if (isl_int_is_pos(tab->mat->row[row][2]))
881 if (isl_int_is_neg(tab->mat->row[row][2]))
885 if (isl_int_is_nonneg(tab->mat->row[row][1]))
887 for (i = 0; i < tab->n_param; ++i) {
888 /* Eliminated parameter */
889 if (tab->var[i].is_row)
891 col = tab->var[i].index;
892 if (isl_int_is_zero(tab->mat->row[row][off + col]))
894 if (!tab->var[i].is_nonneg)
896 if (isl_int_is_pos(tab->mat->row[row][off + col]))
899 for (i = 0; i < tab->n_div; ++i) {
900 if (tab->var[tab->n_var - tab->n_div + i].is_row)
902 col = tab->var[tab->n_var - tab->n_div + i].index;
903 if (isl_int_is_zero(tab->mat->row[row][off + col]))
905 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
907 if (isl_int_is_pos(tab->mat->row[row][off + col]))
913 /* Check if the (parametric) constant of the given row is obviously
914 * non-negative, meaning that we don't need to consult the context tableau.
915 * If there is a big parameter and its coefficient is non-zero,
916 * then this coefficient determines the outcome.
917 * Otherwise, we check whether the constant is non-negative and
918 * all non-zero coefficients of parameters are positive and
919 * belong to non-negative parameters.
921 static int is_obviously_nonneg(struct isl_tab *tab, int row)
925 unsigned off = 2 + tab->M;
928 if (isl_int_is_pos(tab->mat->row[row][2]))
930 if (isl_int_is_neg(tab->mat->row[row][2]))
934 if (isl_int_is_neg(tab->mat->row[row][1]))
936 for (i = 0; i < tab->n_param; ++i) {
937 /* Eliminated parameter */
938 if (tab->var[i].is_row)
940 col = tab->var[i].index;
941 if (isl_int_is_zero(tab->mat->row[row][off + col]))
943 if (!tab->var[i].is_nonneg)
945 if (isl_int_is_neg(tab->mat->row[row][off + col]))
948 for (i = 0; i < tab->n_div; ++i) {
949 if (tab->var[tab->n_var - tab->n_div + i].is_row)
951 col = tab->var[tab->n_var - tab->n_div + i].index;
952 if (isl_int_is_zero(tab->mat->row[row][off + col]))
954 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
956 if (isl_int_is_neg(tab->mat->row[row][off + col]))
962 /* Given a row r and two columns, return the column that would
963 * lead to the lexicographically smallest increment in the sample
964 * solution when leaving the basis in favor of the row.
965 * Pivoting with column c will increment the sample value by a non-negative
966 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
967 * corresponding to the non-parametric variables.
968 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
969 * with all other entries in this virtual row equal to zero.
970 * If variable v appears in a row, then a_{v,c} is the element in column c
973 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
974 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
975 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
976 * increment. Otherwise, it's c2.
978 static int lexmin_col_pair(struct isl_tab *tab,
979 int row, int col1, int col2, isl_int tmp)
984 tr = tab->mat->row[row] + 2 + tab->M;
986 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
990 if (!tab->var[i].is_row) {
991 if (tab->var[i].index == col1)
993 if (tab->var[i].index == col2)
998 if (tab->var[i].index == row)
1001 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1002 s1 = isl_int_sgn(r[col1]);
1003 s2 = isl_int_sgn(r[col2]);
1004 if (s1 == 0 && s2 == 0)
1011 isl_int_mul(tmp, r[col2], tr[col1]);
1012 isl_int_submul(tmp, r[col1], tr[col2]);
1013 if (isl_int_is_pos(tmp))
1015 if (isl_int_is_neg(tmp))
1021 /* Given a row in the tableau, find and return the column that would
1022 * result in the lexicographically smallest, but positive, increment
1023 * in the sample point.
1024 * If there is no such column, then return tab->n_col.
1025 * If anything goes wrong, return -1.
1027 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1030 int col = tab->n_col;
1034 tr = tab->mat->row[row] + 2 + tab->M;
1038 for (j = tab->n_dead; j < tab->n_col; ++j) {
1039 if (tab->col_var[j] >= 0 &&
1040 (tab->col_var[j] < tab->n_param ||
1041 tab->col_var[j] >= tab->n_var - tab->n_div))
1044 if (!isl_int_is_pos(tr[j]))
1047 if (col == tab->n_col)
1050 col = lexmin_col_pair(tab, row, col, j, tmp);
1051 isl_assert(tab->mat->ctx, col >= 0, goto error);
1061 /* Return the first known violated constraint, i.e., a non-negative
1062 * contraint that currently has an either obviously negative value
1063 * or a previously determined to be negative value.
1065 * If any constraint has a negative coefficient for the big parameter,
1066 * if any, then we return one of these first.
1068 static int first_neg(struct isl_tab *tab)
1073 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1074 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1076 if (isl_int_is_neg(tab->mat->row[row][2]))
1079 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1080 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1082 if (tab->row_sign) {
1083 if (tab->row_sign[row] == 0 &&
1084 is_obviously_neg(tab, row))
1085 tab->row_sign[row] = isl_tab_row_neg;
1086 if (tab->row_sign[row] != isl_tab_row_neg)
1088 } else if (!is_obviously_neg(tab, row))
1095 /* Resolve all known or obviously violated constraints through pivoting.
1096 * In particular, as long as we can find any violated constraint, we
1097 * look for a pivoting column that would result in the lexicographicallly
1098 * smallest increment in the sample point. If there is no such column
1099 * then the tableau is infeasible.
1101 static struct isl_tab *restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1102 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
1110 while ((row = first_neg(tab)) != -1) {
1111 col = lexmin_pivot_col(tab, row);
1112 if (col >= tab->n_col) {
1113 if (isl_tab_mark_empty(tab) < 0)
1119 if (isl_tab_pivot(tab, row, col) < 0)
1128 /* Given a row that represents an equality, look for an appropriate
1130 * In particular, if there are any non-zero coefficients among
1131 * the non-parameter variables, then we take the last of these
1132 * variables. Eliminating this variable in terms of the other
1133 * variables and/or parameters does not influence the property
1134 * that all column in the initial tableau are lexicographically
1135 * positive. The row corresponding to the eliminated variable
1136 * will only have non-zero entries below the diagonal of the
1137 * initial tableau. That is, we transform
1143 * If there is no such non-parameter variable, then we are dealing with
1144 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1145 * for elimination. This will ensure that the eliminated parameter
1146 * always has an integer value whenever all the other parameters are integral.
1147 * If there is no such parameter then we return -1.
1149 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1151 unsigned off = 2 + tab->M;
1154 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1156 if (tab->var[i].is_row)
1158 col = tab->var[i].index;
1159 if (col <= tab->n_dead)
1161 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1164 for (i = tab->n_dead; i < tab->n_col; ++i) {
1165 if (isl_int_is_one(tab->mat->row[row][off + i]))
1167 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1173 /* Add an equality that is known to be valid to the tableau.
1174 * We first check if we can eliminate a variable or a parameter.
1175 * If not, we add the equality as two inequalities.
1176 * In this case, the equality was a pure parameter equality and there
1177 * is no need to resolve any constraint violations.
1179 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1186 r = isl_tab_add_row(tab, eq);
1190 r = tab->con[r].index;
1191 i = last_var_col_or_int_par_col(tab, r);
1193 tab->con[r].is_nonneg = 1;
1194 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1196 isl_seq_neg(eq, eq, 1 + tab->n_var);
1197 r = isl_tab_add_row(tab, eq);
1200 tab->con[r].is_nonneg = 1;
1201 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1204 if (isl_tab_pivot(tab, r, i) < 0)
1206 if (isl_tab_kill_col(tab, i) < 0)
1210 tab = restore_lexmin(tab);
1219 /* Check if the given row is a pure constant.
1221 static int is_constant(struct isl_tab *tab, int row)
1223 unsigned off = 2 + tab->M;
1225 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1226 tab->n_col - tab->n_dead) == -1;
1229 /* Add an equality that may or may not be valid to the tableau.
1230 * If the resulting row is a pure constant, then it must be zero.
1231 * Otherwise, the resulting tableau is empty.
1233 * If the row is not a pure constant, then we add two inequalities,
1234 * each time checking that they can be satisfied.
1235 * In the end we try to use one of the two constraints to eliminate
1238 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1239 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1243 struct isl_tab_undo *snap;
1247 snap = isl_tab_snap(tab);
1248 r1 = isl_tab_add_row(tab, eq);
1251 tab->con[r1].is_nonneg = 1;
1252 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1255 row = tab->con[r1].index;
1256 if (is_constant(tab, row)) {
1257 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1258 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1259 if (isl_tab_mark_empty(tab) < 0)
1263 if (isl_tab_rollback(tab, snap) < 0)
1268 tab = restore_lexmin(tab);
1269 if (!tab || tab->empty)
1272 isl_seq_neg(eq, eq, 1 + tab->n_var);
1274 r2 = isl_tab_add_row(tab, eq);
1277 tab->con[r2].is_nonneg = 1;
1278 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1281 tab = restore_lexmin(tab);
1282 if (!tab || tab->empty)
1285 if (!tab->con[r1].is_row) {
1286 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1288 } else if (!tab->con[r2].is_row) {
1289 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1291 } else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) {
1292 unsigned off = 2 + tab->M;
1294 int row = tab->con[r1].index;
1295 i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead,
1296 tab->n_col - tab->n_dead);
1298 if (isl_tab_pivot(tab, row, tab->n_dead + i) < 0)
1300 if (isl_tab_kill_col(tab, tab->n_dead + i) < 0)
1306 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1307 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1309 isl_seq_neg(eq, eq, 1 + tab->n_var);
1310 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1311 isl_seq_neg(eq, eq, 1 + tab->n_var);
1312 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1324 /* Add an inequality to the tableau, resolving violations using
1327 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1334 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1335 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1340 r = isl_tab_add_row(tab, ineq);
1343 tab->con[r].is_nonneg = 1;
1344 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1346 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1347 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1352 tab = restore_lexmin(tab);
1353 if (tab && !tab->empty && tab->con[r].is_row &&
1354 isl_tab_row_is_redundant(tab, tab->con[r].index))
1355 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1363 /* Check if the coefficients of the parameters are all integral.
1365 static int integer_parameter(struct isl_tab *tab, int row)
1369 unsigned off = 2 + tab->M;
1371 for (i = 0; i < tab->n_param; ++i) {
1372 /* Eliminated parameter */
1373 if (tab->var[i].is_row)
1375 col = tab->var[i].index;
1376 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1377 tab->mat->row[row][0]))
1380 for (i = 0; i < tab->n_div; ++i) {
1381 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1383 col = tab->var[tab->n_var - tab->n_div + i].index;
1384 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1385 tab->mat->row[row][0]))
1391 /* Check if the coefficients of the non-parameter variables are all integral.
1393 static int integer_variable(struct isl_tab *tab, int row)
1396 unsigned off = 2 + tab->M;
1398 for (i = tab->n_dead; i < tab->n_col; ++i) {
1399 if (tab->col_var[i] >= 0 &&
1400 (tab->col_var[i] < tab->n_param ||
1401 tab->col_var[i] >= tab->n_var - tab->n_div))
1403 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1404 tab->mat->row[row][0]))
1410 /* Check if the constant term is integral.
1412 static int integer_constant(struct isl_tab *tab, int row)
1414 return isl_int_is_divisible_by(tab->mat->row[row][1],
1415 tab->mat->row[row][0]);
1418 #define I_CST 1 << 0
1419 #define I_PAR 1 << 1
1420 #define I_VAR 1 << 2
1422 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1423 * that is non-integer and therefore requires a cut and return
1424 * the index of the variable.
1425 * For parametric tableaus, there are three parts in a row,
1426 * the constant, the coefficients of the parameters and the rest.
1427 * For each part, we check whether the coefficients in that part
1428 * are all integral and if so, set the corresponding flag in *f.
1429 * If the constant and the parameter part are integral, then the
1430 * current sample value is integral and no cut is required
1431 * (irrespective of whether the variable part is integral).
1433 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1435 var = var < 0 ? tab->n_param : var + 1;
1437 for (; var < tab->n_var - tab->n_div; ++var) {
1440 if (!tab->var[var].is_row)
1442 row = tab->var[var].index;
1443 if (integer_constant(tab, row))
1444 ISL_FL_SET(flags, I_CST);
1445 if (integer_parameter(tab, row))
1446 ISL_FL_SET(flags, I_PAR);
1447 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1449 if (integer_variable(tab, row))
1450 ISL_FL_SET(flags, I_VAR);
1457 /* Check for first (non-parameter) variable that is non-integer and
1458 * therefore requires a cut and return the corresponding row.
1459 * For parametric tableaus, there are three parts in a row,
1460 * the constant, the coefficients of the parameters and the rest.
1461 * For each part, we check whether the coefficients in that part
1462 * are all integral and if so, set the corresponding flag in *f.
1463 * If the constant and the parameter part are integral, then the
1464 * current sample value is integral and no cut is required
1465 * (irrespective of whether the variable part is integral).
1467 static int first_non_integer_row(struct isl_tab *tab, int *f)
1469 int var = next_non_integer_var(tab, -1, f);
1471 return var < 0 ? -1 : tab->var[var].index;
1474 /* Add a (non-parametric) cut to cut away the non-integral sample
1475 * value of the given row.
1477 * If the row is given by
1479 * m r = f + \sum_i a_i y_i
1483 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1485 * The big parameter, if any, is ignored, since it is assumed to be big
1486 * enough to be divisible by any integer.
1487 * If the tableau is actually a parametric tableau, then this function
1488 * is only called when all coefficients of the parameters are integral.
1489 * The cut therefore has zero coefficients for the parameters.
1491 * The current value is known to be negative, so row_sign, if it
1492 * exists, is set accordingly.
1494 * Return the row of the cut or -1.
1496 static int add_cut(struct isl_tab *tab, int row)
1501 unsigned off = 2 + tab->M;
1503 if (isl_tab_extend_cons(tab, 1) < 0)
1505 r = isl_tab_allocate_con(tab);
1509 r_row = tab->mat->row[tab->con[r].index];
1510 isl_int_set(r_row[0], tab->mat->row[row][0]);
1511 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1512 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1513 isl_int_neg(r_row[1], r_row[1]);
1515 isl_int_set_si(r_row[2], 0);
1516 for (i = 0; i < tab->n_col; ++i)
1517 isl_int_fdiv_r(r_row[off + i],
1518 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1520 tab->con[r].is_nonneg = 1;
1521 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1524 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1526 return tab->con[r].index;
1529 /* Given a non-parametric tableau, add cuts until an integer
1530 * sample point is obtained or until the tableau is determined
1531 * to be integer infeasible.
1532 * As long as there is any non-integer value in the sample point,
1533 * we add appropriate cuts, if possible, for each of these
1534 * non-integer values and then resolve the violated
1535 * cut constraints using restore_lexmin.
1536 * If one of the corresponding rows is equal to an integral
1537 * combination of variables/constraints plus a non-integral constant,
1538 * then there is no way to obtain an integer point and we return
1539 * a tableau that is marked empty.
1541 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1552 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1554 if (ISL_FL_ISSET(flags, I_VAR)) {
1555 if (isl_tab_mark_empty(tab) < 0)
1559 row = tab->var[var].index;
1560 row = add_cut(tab, row);
1563 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1564 tab = restore_lexmin(tab);
1565 if (!tab || tab->empty)
1574 /* Check whether all the currently active samples also satisfy the inequality
1575 * "ineq" (treated as an equality if eq is set).
1576 * Remove those samples that do not.
1578 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1586 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1587 isl_assert(tab->mat->ctx, tab->samples, goto error);
1588 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1591 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1593 isl_seq_inner_product(ineq, tab->samples->row[i],
1594 1 + tab->n_var, &v);
1595 sgn = isl_int_sgn(v);
1596 if (eq ? (sgn == 0) : (sgn >= 0))
1598 tab = isl_tab_drop_sample(tab, i);
1610 /* Check whether the sample value of the tableau is finite,
1611 * i.e., either the tableau does not use a big parameter, or
1612 * all values of the variables are equal to the big parameter plus
1613 * some constant. This constant is the actual sample value.
1615 static int sample_is_finite(struct isl_tab *tab)
1622 for (i = 0; i < tab->n_var; ++i) {
1624 if (!tab->var[i].is_row)
1626 row = tab->var[i].index;
1627 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1633 /* Check if the context tableau of sol has any integer points.
1634 * Leave tab in empty state if no integer point can be found.
1635 * If an integer point can be found and if moreover it is finite,
1636 * then it is added to the list of sample values.
1638 * This function is only called when none of the currently active sample
1639 * values satisfies the most recently added constraint.
1641 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1643 struct isl_tab_undo *snap;
1649 snap = isl_tab_snap(tab);
1650 if (isl_tab_push_basis(tab) < 0)
1653 tab = cut_to_integer_lexmin(tab);
1657 if (!tab->empty && sample_is_finite(tab)) {
1658 struct isl_vec *sample;
1660 sample = isl_tab_get_sample_value(tab);
1662 tab = isl_tab_add_sample(tab, sample);
1665 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1674 /* Check if any of the currently active sample values satisfies
1675 * the inequality "ineq" (an equality if eq is set).
1677 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1685 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1686 isl_assert(tab->mat->ctx, tab->samples, return -1);
1687 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1690 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1692 isl_seq_inner_product(ineq, tab->samples->row[i],
1693 1 + tab->n_var, &v);
1694 sgn = isl_int_sgn(v);
1695 if (eq ? (sgn == 0) : (sgn >= 0))
1700 return i < tab->n_sample;
1703 /* For a div d = floor(f/m), add the constraints
1706 * -(f-(m-1)) + m d >= 0
1708 * Note that the second constraint is the negation of
1712 static void add_div_constraints(struct isl_context *context, unsigned div)
1716 struct isl_vec *ineq;
1717 struct isl_basic_set *bset;
1719 bset = context->op->peek_basic_set(context);
1723 total = isl_basic_set_total_dim(bset);
1724 div_pos = 1 + total - bset->n_div + div;
1726 ineq = ineq_for_div(bset, div);
1730 context->op->add_ineq(context, ineq->el, 0, 0);
1732 isl_seq_neg(ineq->el, bset->div[div] + 1, 1 + total);
1733 isl_int_set(ineq->el[div_pos], bset->div[div][0]);
1734 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
1735 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1737 context->op->add_ineq(context, ineq->el, 0, 0);
1743 context->op->invalidate(context);
1746 /* Add a div specifed by "div" to the tableau "tab" and return
1747 * the index of the new div. *nonneg is set to 1 if the div
1748 * is obviously non-negative.
1750 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1756 struct isl_mat *samples;
1758 for (i = 0; i < tab->n_var; ++i) {
1759 if (isl_int_is_zero(div->el[2 + i]))
1761 if (!tab->var[i].is_nonneg)
1764 *nonneg = i == tab->n_var;
1766 if (isl_tab_extend_cons(tab, 3) < 0)
1768 if (isl_tab_extend_vars(tab, 1) < 0)
1770 r = isl_tab_allocate_var(tab);
1774 tab->var[r].is_nonneg = 1;
1775 tab->var[r].frozen = 1;
1777 samples = isl_mat_extend(tab->samples,
1778 tab->n_sample, 1 + tab->n_var);
1779 tab->samples = samples;
1782 for (i = tab->n_outside; i < samples->n_row; ++i) {
1783 isl_seq_inner_product(div->el + 1, samples->row[i],
1784 div->size - 1, &samples->row[i][samples->n_col - 1]);
1785 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1786 samples->row[i][samples->n_col - 1], div->el[0]);
1789 tab->bmap = isl_basic_map_extend_dim(tab->bmap,
1790 isl_basic_map_get_dim(tab->bmap), 1, 0, 2);
1791 k = isl_basic_map_alloc_div(tab->bmap);
1794 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
1795 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
1801 /* Add a div specified by "div" to both the main tableau and
1802 * the context tableau. In case of the main tableau, we only
1803 * need to add an extra div. In the context tableau, we also
1804 * need to express the meaning of the div.
1805 * Return the index of the div or -1 if anything went wrong.
1807 static int add_div(struct isl_tab *tab, struct isl_context *context,
1808 struct isl_vec *div)
1814 k = context->op->add_div(context, div, &nonneg);
1818 add_div_constraints(context, k);
1819 if (!context->op->is_ok(context))
1822 if (isl_tab_extend_vars(tab, 1) < 0)
1824 r = isl_tab_allocate_var(tab);
1828 tab->var[r].is_nonneg = 1;
1829 tab->var[r].frozen = 1;
1832 return tab->n_div - 1;
1834 context->op->invalidate(context);
1838 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1841 unsigned total = isl_basic_map_total_dim(tab->bmap);
1843 for (i = 0; i < tab->bmap->n_div; ++i) {
1844 if (isl_int_ne(tab->bmap->div[i][0], denom))
1846 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, total))
1853 /* Return the index of a div that corresponds to "div".
1854 * We first check if we already have such a div and if not, we create one.
1856 static int get_div(struct isl_tab *tab, struct isl_context *context,
1857 struct isl_vec *div)
1860 struct isl_tab *context_tab = context->op->peek_tab(context);
1865 d = find_div(context_tab, div->el + 1, div->el[0]);
1869 return add_div(tab, context, div);
1872 /* Add a parametric cut to cut away the non-integral sample value
1874 * Let a_i be the coefficients of the constant term and the parameters
1875 * and let b_i be the coefficients of the variables or constraints
1876 * in basis of the tableau.
1877 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1879 * The cut is expressed as
1881 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1883 * If q did not already exist in the context tableau, then it is added first.
1884 * If q is in a column of the main tableau then the "+ q" can be accomplished
1885 * by setting the corresponding entry to the denominator of the constraint.
1886 * If q happens to be in a row of the main tableau, then the corresponding
1887 * row needs to be added instead (taking care of the denominators).
1888 * Note that this is very unlikely, but perhaps not entirely impossible.
1890 * The current value of the cut is known to be negative (or at least
1891 * non-positive), so row_sign is set accordingly.
1893 * Return the row of the cut or -1.
1895 static int add_parametric_cut(struct isl_tab *tab, int row,
1896 struct isl_context *context)
1898 struct isl_vec *div;
1905 unsigned off = 2 + tab->M;
1910 div = get_row_parameter_div(tab, row);
1915 d = context->op->get_div(context, tab, div);
1919 if (isl_tab_extend_cons(tab, 1) < 0)
1921 r = isl_tab_allocate_con(tab);
1925 r_row = tab->mat->row[tab->con[r].index];
1926 isl_int_set(r_row[0], tab->mat->row[row][0]);
1927 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1928 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1929 isl_int_neg(r_row[1], r_row[1]);
1931 isl_int_set_si(r_row[2], 0);
1932 for (i = 0; i < tab->n_param; ++i) {
1933 if (tab->var[i].is_row)
1935 col = tab->var[i].index;
1936 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1937 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1938 tab->mat->row[row][0]);
1939 isl_int_neg(r_row[off + col], r_row[off + col]);
1941 for (i = 0; i < tab->n_div; ++i) {
1942 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1944 col = tab->var[tab->n_var - tab->n_div + i].index;
1945 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1946 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1947 tab->mat->row[row][0]);
1948 isl_int_neg(r_row[off + col], r_row[off + col]);
1950 for (i = 0; i < tab->n_col; ++i) {
1951 if (tab->col_var[i] >= 0 &&
1952 (tab->col_var[i] < tab->n_param ||
1953 tab->col_var[i] >= tab->n_var - tab->n_div))
1955 isl_int_fdiv_r(r_row[off + i],
1956 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1958 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1960 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1962 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1963 isl_int_divexact(r_row[0], r_row[0], gcd);
1964 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1965 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1966 r_row[0], tab->mat->row[d_row] + 1,
1967 off - 1 + tab->n_col);
1968 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1971 col = tab->var[tab->n_var - tab->n_div + d].index;
1972 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1975 tab->con[r].is_nonneg = 1;
1976 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1979 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1983 row = tab->con[r].index;
1985 if (d >= n && context->op->detect_equalities(context, tab) < 0)
1991 /* Construct a tableau for bmap that can be used for computing
1992 * the lexicographic minimum (or maximum) of bmap.
1993 * If not NULL, then dom is the domain where the minimum
1994 * should be computed. In this case, we set up a parametric
1995 * tableau with row signs (initialized to "unknown").
1996 * If M is set, then the tableau will use a big parameter.
1997 * If max is set, then a maximum should be computed instead of a minimum.
1998 * This means that for each variable x, the tableau will contain the variable
1999 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2000 * of the variables in all constraints are negated prior to adding them
2003 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
2004 struct isl_basic_set *dom, unsigned M, int max)
2007 struct isl_tab *tab;
2009 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2010 isl_basic_map_total_dim(bmap), M);
2014 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2016 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
2017 tab->n_div = dom->n_div;
2018 tab->row_sign = isl_calloc_array(bmap->ctx,
2019 enum isl_tab_row_sign, tab->mat->n_row);
2023 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2024 if (isl_tab_mark_empty(tab) < 0)
2029 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2030 tab->var[i].is_nonneg = 1;
2031 tab->var[i].frozen = 1;
2033 for (i = 0; i < bmap->n_eq; ++i) {
2035 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2036 bmap->eq[i] + 1 + tab->n_param,
2037 tab->n_var - tab->n_param - tab->n_div);
2038 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2040 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2041 bmap->eq[i] + 1 + tab->n_param,
2042 tab->n_var - tab->n_param - tab->n_div);
2043 if (!tab || tab->empty)
2046 for (i = 0; i < bmap->n_ineq; ++i) {
2048 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2049 bmap->ineq[i] + 1 + tab->n_param,
2050 tab->n_var - tab->n_param - tab->n_div);
2051 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2053 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2054 bmap->ineq[i] + 1 + tab->n_param,
2055 tab->n_var - tab->n_param - tab->n_div);
2056 if (!tab || tab->empty)
2065 /* Given a main tableau where more than one row requires a split,
2066 * determine and return the "best" row to split on.
2068 * Given two rows in the main tableau, if the inequality corresponding
2069 * to the first row is redundant with respect to that of the second row
2070 * in the current tableau, then it is better to split on the second row,
2071 * since in the positive part, both row will be positive.
2072 * (In the negative part a pivot will have to be performed and just about
2073 * anything can happen to the sign of the other row.)
2075 * As a simple heuristic, we therefore select the row that makes the most
2076 * of the other rows redundant.
2078 * Perhaps it would also be useful to look at the number of constraints
2079 * that conflict with any given constraint.
2081 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2083 struct isl_tab_undo *snap;
2089 if (isl_tab_extend_cons(context_tab, 2) < 0)
2092 snap = isl_tab_snap(context_tab);
2094 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2095 struct isl_tab_undo *snap2;
2096 struct isl_vec *ineq = NULL;
2100 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2102 if (tab->row_sign[split] != isl_tab_row_any)
2105 ineq = get_row_parameter_ineq(tab, split);
2108 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2113 snap2 = isl_tab_snap(context_tab);
2115 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2116 struct isl_tab_var *var;
2120 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2122 if (tab->row_sign[row] != isl_tab_row_any)
2125 ineq = get_row_parameter_ineq(tab, row);
2128 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2132 var = &context_tab->con[context_tab->n_con - 1];
2133 if (!context_tab->empty &&
2134 !isl_tab_min_at_most_neg_one(context_tab, var))
2136 if (isl_tab_rollback(context_tab, snap2) < 0)
2139 if (best == -1 || r > best_r) {
2143 if (isl_tab_rollback(context_tab, snap) < 0)
2150 static struct isl_basic_set *context_lex_peek_basic_set(
2151 struct isl_context *context)
2153 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2156 return isl_tab_peek_bset(clex->tab);
2159 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2161 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2165 static void context_lex_extend(struct isl_context *context, int n)
2167 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2170 if (isl_tab_extend_cons(clex->tab, n) >= 0)
2172 isl_tab_free(clex->tab);
2176 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2177 int check, int update)
2179 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2180 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2182 clex->tab = add_lexmin_eq(clex->tab, eq);
2184 int v = tab_has_valid_sample(clex->tab, eq, 1);
2188 clex->tab = check_integer_feasible(clex->tab);
2191 clex->tab = check_samples(clex->tab, eq, 1);
2194 isl_tab_free(clex->tab);
2198 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2199 int check, int update)
2201 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2202 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2204 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2206 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2210 clex->tab = check_integer_feasible(clex->tab);
2213 clex->tab = check_samples(clex->tab, ineq, 0);
2216 isl_tab_free(clex->tab);
2220 /* Check which signs can be obtained by "ineq" on all the currently
2221 * active sample values. See row_sign for more information.
2223 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2229 int res = isl_tab_row_unknown;
2231 isl_assert(tab->mat->ctx, tab->samples, return 0);
2232 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return 0);
2235 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2236 isl_seq_inner_product(tab->samples->row[i], ineq,
2237 1 + tab->n_var, &tmp);
2238 sgn = isl_int_sgn(tmp);
2239 if (sgn > 0 || (sgn == 0 && strict)) {
2240 if (res == isl_tab_row_unknown)
2241 res = isl_tab_row_pos;
2242 if (res == isl_tab_row_neg)
2243 res = isl_tab_row_any;
2246 if (res == isl_tab_row_unknown)
2247 res = isl_tab_row_neg;
2248 if (res == isl_tab_row_pos)
2249 res = isl_tab_row_any;
2251 if (res == isl_tab_row_any)
2259 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2260 isl_int *ineq, int strict)
2262 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2263 return tab_ineq_sign(clex->tab, ineq, strict);
2266 /* Check whether "ineq" can be added to the tableau without rendering
2269 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2271 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2272 struct isl_tab_undo *snap;
2278 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2281 snap = isl_tab_snap(clex->tab);
2282 if (isl_tab_push_basis(clex->tab) < 0)
2284 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2285 clex->tab = check_integer_feasible(clex->tab);
2288 feasible = !clex->tab->empty;
2289 if (isl_tab_rollback(clex->tab, snap) < 0)
2295 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2296 struct isl_vec *div)
2298 return get_div(tab, context, div);
2301 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div,
2304 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2305 return context_tab_add_div(clex->tab, div, nonneg);
2308 static int context_lex_detect_equalities(struct isl_context *context,
2309 struct isl_tab *tab)
2314 static int context_lex_best_split(struct isl_context *context,
2315 struct isl_tab *tab)
2317 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2318 struct isl_tab_undo *snap;
2321 snap = isl_tab_snap(clex->tab);
2322 if (isl_tab_push_basis(clex->tab) < 0)
2324 r = best_split(tab, clex->tab);
2326 if (isl_tab_rollback(clex->tab, snap) < 0)
2332 static int context_lex_is_empty(struct isl_context *context)
2334 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2337 return clex->tab->empty;
2340 static void *context_lex_save(struct isl_context *context)
2342 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2343 struct isl_tab_undo *snap;
2345 snap = isl_tab_snap(clex->tab);
2346 if (isl_tab_push_basis(clex->tab) < 0)
2348 if (isl_tab_save_samples(clex->tab) < 0)
2354 static void context_lex_restore(struct isl_context *context, void *save)
2356 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2357 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2358 isl_tab_free(clex->tab);
2363 static int context_lex_is_ok(struct isl_context *context)
2365 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2369 /* For each variable in the context tableau, check if the variable can
2370 * only attain non-negative values. If so, mark the parameter as non-negative
2371 * in the main tableau. This allows for a more direct identification of some
2372 * cases of violated constraints.
2374 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2375 struct isl_tab *context_tab)
2378 struct isl_tab_undo *snap;
2379 struct isl_vec *ineq = NULL;
2380 struct isl_tab_var *var;
2383 if (context_tab->n_var == 0)
2386 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2390 if (isl_tab_extend_cons(context_tab, 1) < 0)
2393 snap = isl_tab_snap(context_tab);
2396 isl_seq_clr(ineq->el, ineq->size);
2397 for (i = 0; i < context_tab->n_var; ++i) {
2398 isl_int_set_si(ineq->el[1 + i], 1);
2399 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2401 var = &context_tab->con[context_tab->n_con - 1];
2402 if (!context_tab->empty &&
2403 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2405 if (i >= tab->n_param)
2406 j = i - tab->n_param + tab->n_var - tab->n_div;
2407 tab->var[j].is_nonneg = 1;
2410 isl_int_set_si(ineq->el[1 + i], 0);
2411 if (isl_tab_rollback(context_tab, snap) < 0)
2415 if (context_tab->M && n == context_tab->n_var) {
2416 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2428 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2429 struct isl_context *context, struct isl_tab *tab)
2431 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2432 struct isl_tab_undo *snap;
2434 snap = isl_tab_snap(clex->tab);
2435 if (isl_tab_push_basis(clex->tab) < 0)
2438 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2440 if (isl_tab_rollback(clex->tab, snap) < 0)
2449 static void context_lex_invalidate(struct isl_context *context)
2451 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2452 isl_tab_free(clex->tab);
2456 static void context_lex_free(struct isl_context *context)
2458 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2459 isl_tab_free(clex->tab);
2463 struct isl_context_op isl_context_lex_op = {
2464 context_lex_detect_nonnegative_parameters,
2465 context_lex_peek_basic_set,
2466 context_lex_peek_tab,
2468 context_lex_add_ineq,
2469 context_lex_ineq_sign,
2470 context_lex_test_ineq,
2471 context_lex_get_div,
2472 context_lex_add_div,
2473 context_lex_detect_equalities,
2474 context_lex_best_split,
2475 context_lex_is_empty,
2478 context_lex_restore,
2479 context_lex_invalidate,
2483 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2485 struct isl_tab *tab;
2487 bset = isl_basic_set_cow(bset);
2490 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2493 if (isl_tab_track_bset(tab, bset) < 0)
2495 tab = isl_tab_init_samples(tab);
2498 isl_basic_set_free(bset);
2502 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2504 struct isl_context_lex *clex;
2509 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2513 clex->context.op = &isl_context_lex_op;
2515 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2516 clex->tab = restore_lexmin(clex->tab);
2517 clex->tab = check_integer_feasible(clex->tab);
2521 return &clex->context;
2523 clex->context.op->free(&clex->context);
2527 struct isl_context_gbr {
2528 struct isl_context context;
2529 struct isl_tab *tab;
2530 struct isl_tab *shifted;
2531 struct isl_tab *cone;
2534 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2535 struct isl_context *context, struct isl_tab *tab)
2537 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2538 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2541 static struct isl_basic_set *context_gbr_peek_basic_set(
2542 struct isl_context *context)
2544 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2547 return isl_tab_peek_bset(cgbr->tab);
2550 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2552 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2556 /* Initialize the "shifted" tableau of the context, which
2557 * contains the constraints of the original tableau shifted
2558 * by the sum of all negative coefficients. This ensures
2559 * that any rational point in the shifted tableau can
2560 * be rounded up to yield an integer point in the original tableau.
2562 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2565 struct isl_vec *cst;
2566 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2567 unsigned dim = isl_basic_set_total_dim(bset);
2569 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2573 for (i = 0; i < bset->n_ineq; ++i) {
2574 isl_int_set(cst->el[i], bset->ineq[i][0]);
2575 for (j = 0; j < dim; ++j) {
2576 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2578 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2579 bset->ineq[i][1 + j]);
2583 cgbr->shifted = isl_tab_from_basic_set(bset);
2585 for (i = 0; i < bset->n_ineq; ++i)
2586 isl_int_set(bset->ineq[i][0], cst->el[i]);
2591 /* Check if the shifted tableau is non-empty, and if so
2592 * use the sample point to construct an integer point
2593 * of the context tableau.
2595 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2597 struct isl_vec *sample;
2600 gbr_init_shifted(cgbr);
2603 if (cgbr->shifted->empty)
2604 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2606 sample = isl_tab_get_sample_value(cgbr->shifted);
2607 sample = isl_vec_ceil(sample);
2612 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2619 for (i = 0; i < bset->n_eq; ++i)
2620 isl_int_set_si(bset->eq[i][0], 0);
2622 for (i = 0; i < bset->n_ineq; ++i)
2623 isl_int_set_si(bset->ineq[i][0], 0);
2628 static int use_shifted(struct isl_context_gbr *cgbr)
2630 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2633 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2635 struct isl_basic_set *bset;
2636 struct isl_basic_set *cone;
2638 if (isl_tab_sample_is_integer(cgbr->tab))
2639 return isl_tab_get_sample_value(cgbr->tab);
2641 if (use_shifted(cgbr)) {
2642 struct isl_vec *sample;
2644 sample = gbr_get_shifted_sample(cgbr);
2645 if (!sample || sample->size > 0)
2648 isl_vec_free(sample);
2652 bset = isl_tab_peek_bset(cgbr->tab);
2653 cgbr->cone = isl_tab_from_recession_cone(bset);
2656 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2659 cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone);
2663 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2664 struct isl_vec *sample;
2665 struct isl_tab_undo *snap;
2667 if (cgbr->tab->basis) {
2668 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2669 isl_mat_free(cgbr->tab->basis);
2670 cgbr->tab->basis = NULL;
2672 cgbr->tab->n_zero = 0;
2673 cgbr->tab->n_unbounded = 0;
2677 snap = isl_tab_snap(cgbr->tab);
2679 sample = isl_tab_sample(cgbr->tab);
2681 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2682 isl_vec_free(sample);
2689 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2690 cone = drop_constant_terms(cone);
2691 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2692 cone = isl_basic_set_underlying_set(cone);
2693 cone = isl_basic_set_gauss(cone, NULL);
2695 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2696 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2697 bset = isl_basic_set_underlying_set(bset);
2698 bset = isl_basic_set_gauss(bset, NULL);
2700 return isl_basic_set_sample_with_cone(bset, cone);
2703 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2705 struct isl_vec *sample;
2710 if (cgbr->tab->empty)
2713 sample = gbr_get_sample(cgbr);
2717 if (sample->size == 0) {
2718 isl_vec_free(sample);
2719 if (isl_tab_mark_empty(cgbr->tab) < 0)
2724 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2728 isl_tab_free(cgbr->tab);
2732 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2739 if (isl_tab_extend_cons(tab, 2) < 0)
2742 tab = isl_tab_add_eq(tab, eq);
2750 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2751 int check, int update)
2753 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2755 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2757 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2758 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2760 cgbr->cone = isl_tab_add_eq(cgbr->cone, eq);
2764 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2768 check_gbr_integer_feasible(cgbr);
2771 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2774 isl_tab_free(cgbr->tab);
2778 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2783 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2786 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2789 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2792 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2794 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2797 for (i = 0; i < dim; ++i) {
2798 if (!isl_int_is_neg(ineq[1 + i]))
2800 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2803 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2806 for (i = 0; i < dim; ++i) {
2807 if (!isl_int_is_neg(ineq[1 + i]))
2809 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2813 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2814 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2816 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2822 isl_tab_free(cgbr->tab);
2826 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2827 int check, int update)
2829 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2831 add_gbr_ineq(cgbr, ineq);
2836 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2840 check_gbr_integer_feasible(cgbr);
2843 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2846 isl_tab_free(cgbr->tab);
2850 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2851 isl_int *ineq, int strict)
2853 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2854 return tab_ineq_sign(cgbr->tab, ineq, strict);
2857 /* Check whether "ineq" can be added to the tableau without rendering
2860 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2862 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2863 struct isl_tab_undo *snap;
2864 struct isl_tab_undo *shifted_snap = NULL;
2865 struct isl_tab_undo *cone_snap = NULL;
2871 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2874 snap = isl_tab_snap(cgbr->tab);
2876 shifted_snap = isl_tab_snap(cgbr->shifted);
2878 cone_snap = isl_tab_snap(cgbr->cone);
2879 add_gbr_ineq(cgbr, ineq);
2880 check_gbr_integer_feasible(cgbr);
2883 feasible = !cgbr->tab->empty;
2884 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2887 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2889 } else if (cgbr->shifted) {
2890 isl_tab_free(cgbr->shifted);
2891 cgbr->shifted = NULL;
2894 if (isl_tab_rollback(cgbr->cone, cone_snap))
2896 } else if (cgbr->cone) {
2897 isl_tab_free(cgbr->cone);
2904 /* Return the column of the last of the variables associated to
2905 * a column that has a non-zero coefficient.
2906 * This function is called in a context where only coefficients
2907 * of parameters or divs can be non-zero.
2909 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2913 unsigned dim = tab->n_var - tab->n_param - tab->n_div;
2915 if (tab->n_var == 0)
2918 for (i = tab->n_var - 1; i >= 0; --i) {
2919 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2921 if (tab->var[i].is_row)
2923 col = tab->var[i].index;
2924 if (!isl_int_is_zero(p[col]))
2931 /* Look through all the recently added equalities in the context
2932 * to see if we can propagate any of them to the main tableau.
2934 * The newly added equalities in the context are encoded as pairs
2935 * of inequalities starting at inequality "first".
2937 * We tentatively add each of these equalities to the main tableau
2938 * and if this happens to result in a row with a final coefficient
2939 * that is one or negative one, we use it to kill a column
2940 * in the main tableau. Otherwise, we discard the tentatively
2943 static void propagate_equalities(struct isl_context_gbr *cgbr,
2944 struct isl_tab *tab, unsigned first)
2947 struct isl_vec *eq = NULL;
2949 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2953 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2956 isl_seq_clr(eq->el + 1 + tab->n_param,
2957 tab->n_var - tab->n_param - tab->n_div);
2958 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2961 struct isl_tab_undo *snap;
2962 snap = isl_tab_snap(tab);
2964 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
2965 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
2966 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
2969 r = isl_tab_add_row(tab, eq->el);
2972 r = tab->con[r].index;
2973 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
2974 if (j < 0 || j < tab->n_dead ||
2975 !isl_int_is_one(tab->mat->row[r][0]) ||
2976 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
2977 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
2978 if (isl_tab_rollback(tab, snap) < 0)
2982 if (isl_tab_pivot(tab, r, j) < 0)
2984 if (isl_tab_kill_col(tab, j) < 0)
2987 tab = restore_lexmin(tab);
2995 isl_tab_free(cgbr->tab);
2999 static int context_gbr_detect_equalities(struct isl_context *context,
3000 struct isl_tab *tab)
3002 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3003 struct isl_ctx *ctx;
3005 enum isl_lp_result res;
3008 ctx = cgbr->tab->mat->ctx;
3011 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3012 cgbr->cone = isl_tab_from_recession_cone(bset);
3015 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
3018 cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone);
3020 n_ineq = cgbr->tab->bmap->n_ineq;
3021 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3022 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3023 propagate_equalities(cgbr, tab, n_ineq);
3027 isl_tab_free(cgbr->tab);
3032 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3033 struct isl_vec *div)
3035 return get_div(tab, context, div);
3038 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div,
3041 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3045 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3047 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3049 if (isl_tab_allocate_var(cgbr->cone) <0)
3052 cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap,
3053 isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2);
3054 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3057 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3058 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3061 return context_tab_add_div(cgbr->tab, div, nonneg);
3064 static int context_gbr_best_split(struct isl_context *context,
3065 struct isl_tab *tab)
3067 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3068 struct isl_tab_undo *snap;
3071 snap = isl_tab_snap(cgbr->tab);
3072 r = best_split(tab, cgbr->tab);
3074 if (isl_tab_rollback(cgbr->tab, snap) < 0)
3080 static int context_gbr_is_empty(struct isl_context *context)
3082 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3085 return cgbr->tab->empty;
3088 struct isl_gbr_tab_undo {
3089 struct isl_tab_undo *tab_snap;
3090 struct isl_tab_undo *shifted_snap;
3091 struct isl_tab_undo *cone_snap;
3094 static void *context_gbr_save(struct isl_context *context)
3096 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3097 struct isl_gbr_tab_undo *snap;
3099 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3103 snap->tab_snap = isl_tab_snap(cgbr->tab);
3104 if (isl_tab_save_samples(cgbr->tab) < 0)
3108 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3110 snap->shifted_snap = NULL;
3113 snap->cone_snap = isl_tab_snap(cgbr->cone);
3115 snap->cone_snap = NULL;
3123 static void context_gbr_restore(struct isl_context *context, void *save)
3125 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3126 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3129 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3130 isl_tab_free(cgbr->tab);
3134 if (snap->shifted_snap) {
3135 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3137 } else if (cgbr->shifted) {
3138 isl_tab_free(cgbr->shifted);
3139 cgbr->shifted = NULL;
3142 if (snap->cone_snap) {
3143 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3145 } else if (cgbr->cone) {
3146 isl_tab_free(cgbr->cone);
3155 isl_tab_free(cgbr->tab);
3159 static int context_gbr_is_ok(struct isl_context *context)
3161 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3165 static void context_gbr_invalidate(struct isl_context *context)
3167 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3168 isl_tab_free(cgbr->tab);
3172 static void context_gbr_free(struct isl_context *context)
3174 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3175 isl_tab_free(cgbr->tab);
3176 isl_tab_free(cgbr->shifted);
3177 isl_tab_free(cgbr->cone);
3181 struct isl_context_op isl_context_gbr_op = {
3182 context_gbr_detect_nonnegative_parameters,
3183 context_gbr_peek_basic_set,
3184 context_gbr_peek_tab,
3186 context_gbr_add_ineq,
3187 context_gbr_ineq_sign,
3188 context_gbr_test_ineq,
3189 context_gbr_get_div,
3190 context_gbr_add_div,
3191 context_gbr_detect_equalities,
3192 context_gbr_best_split,
3193 context_gbr_is_empty,
3196 context_gbr_restore,
3197 context_gbr_invalidate,
3201 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3203 struct isl_context_gbr *cgbr;
3208 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3212 cgbr->context.op = &isl_context_gbr_op;
3214 cgbr->shifted = NULL;
3216 cgbr->tab = isl_tab_from_basic_set(dom);
3217 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3220 if (isl_tab_track_bset(cgbr->tab,
3221 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3223 check_gbr_integer_feasible(cgbr);
3225 return &cgbr->context;
3227 cgbr->context.op->free(&cgbr->context);
3231 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3236 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3237 return isl_context_lex_alloc(dom);
3239 return isl_context_gbr_alloc(dom);
3242 /* Construct an isl_sol_map structure for accumulating the solution.
3243 * If track_empty is set, then we also keep track of the parts
3244 * of the context where there is no solution.
3245 * If max is set, then we are solving a maximization, rather than
3246 * a minimization problem, which means that the variables in the
3247 * tableau have value "M - x" rather than "M + x".
3249 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
3250 struct isl_basic_set *dom, int track_empty, int max)
3252 struct isl_sol_map *sol_map;
3254 sol_map = isl_calloc_type(bset->ctx, struct isl_sol_map);
3258 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3259 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3260 sol_map->sol.dec_level.sol = &sol_map->sol;
3261 sol_map->sol.max = max;
3262 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3263 sol_map->sol.add = &sol_map_add_wrap;
3264 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3265 sol_map->sol.free = &sol_map_free_wrap;
3266 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
3271 sol_map->sol.context = isl_context_alloc(dom);
3272 if (!sol_map->sol.context)
3276 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
3277 1, ISL_SET_DISJOINT);
3278 if (!sol_map->empty)
3282 isl_basic_set_free(dom);
3285 isl_basic_set_free(dom);
3286 sol_map_free(sol_map);
3290 /* Check whether all coefficients of (non-parameter) variables
3291 * are non-positive, meaning that no pivots can be performed on the row.
3293 static int is_critical(struct isl_tab *tab, int row)
3296 unsigned off = 2 + tab->M;
3298 for (j = tab->n_dead; j < tab->n_col; ++j) {
3299 if (tab->col_var[j] >= 0 &&
3300 (tab->col_var[j] < tab->n_param ||
3301 tab->col_var[j] >= tab->n_var - tab->n_div))
3304 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3311 /* Check whether the inequality represented by vec is strict over the integers,
3312 * i.e., there are no integer values satisfying the constraint with
3313 * equality. This happens if the gcd of the coefficients is not a divisor
3314 * of the constant term. If so, scale the constraint down by the gcd
3315 * of the coefficients.
3317 static int is_strict(struct isl_vec *vec)
3323 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3324 if (!isl_int_is_one(gcd)) {
3325 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3326 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3327 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3334 /* Determine the sign of the given row of the main tableau.
3335 * The result is one of
3336 * isl_tab_row_pos: always non-negative; no pivot needed
3337 * isl_tab_row_neg: always non-positive; pivot
3338 * isl_tab_row_any: can be both positive and negative; split
3340 * We first handle some simple cases
3341 * - the row sign may be known already
3342 * - the row may be obviously non-negative
3343 * - the parametric constant may be equal to that of another row
3344 * for which we know the sign. This sign will be either "pos" or
3345 * "any". If it had been "neg" then we would have pivoted before.
3347 * If none of these cases hold, we check the value of the row for each
3348 * of the currently active samples. Based on the signs of these values
3349 * we make an initial determination of the sign of the row.
3351 * all zero -> unk(nown)
3352 * all non-negative -> pos
3353 * all non-positive -> neg
3354 * both negative and positive -> all
3356 * If we end up with "all", we are done.
3357 * Otherwise, we perform a check for positive and/or negative
3358 * values as follows.
3360 * samples neg unk pos
3366 * There is no special sign for "zero", because we can usually treat zero
3367 * as either non-negative or non-positive, whatever works out best.
3368 * However, if the row is "critical", meaning that pivoting is impossible
3369 * then we don't want to limp zero with the non-positive case, because
3370 * then we we would lose the solution for those values of the parameters
3371 * where the value of the row is zero. Instead, we treat 0 as non-negative
3372 * ensuring a split if the row can attain both zero and negative values.
3373 * The same happens when the original constraint was one that could not
3374 * be satisfied with equality by any integer values of the parameters.
3375 * In this case, we normalize the constraint, but then a value of zero
3376 * for the normalized constraint is actually a positive value for the
3377 * original constraint, so again we need to treat zero as non-negative.
3378 * In both these cases, we have the following decision tree instead:
3380 * all non-negative -> pos
3381 * all negative -> neg
3382 * both negative and non-negative -> all
3390 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3391 struct isl_sol *sol, int row)
3393 struct isl_vec *ineq = NULL;
3394 int res = isl_tab_row_unknown;
3399 if (tab->row_sign[row] != isl_tab_row_unknown)
3400 return tab->row_sign[row];
3401 if (is_obviously_nonneg(tab, row))
3402 return isl_tab_row_pos;
3403 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3404 if (tab->row_sign[row2] == isl_tab_row_unknown)
3406 if (identical_parameter_line(tab, row, row2))
3407 return tab->row_sign[row2];
3410 critical = is_critical(tab, row);
3412 ineq = get_row_parameter_ineq(tab, row);
3416 strict = is_strict(ineq);
3418 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3419 critical || strict);
3421 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3422 /* test for negative values */
3424 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3425 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3427 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3431 res = isl_tab_row_pos;
3433 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3435 if (res == isl_tab_row_neg) {
3436 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3437 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3441 if (res == isl_tab_row_neg) {
3442 /* test for positive values */
3444 if (!critical && !strict)
3445 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3447 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3451 res = isl_tab_row_any;
3461 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3463 /* Find solutions for values of the parameters that satisfy the given
3466 * We currently take a snapshot of the context tableau that is reset
3467 * when we return from this function, while we make a copy of the main
3468 * tableau, leaving the original main tableau untouched.
3469 * These are fairly arbitrary choices. Making a copy also of the context
3470 * tableau would obviate the need to undo any changes made to it later,
3471 * while taking a snapshot of the main tableau could reduce memory usage.
3472 * If we were to switch to taking a snapshot of the main tableau,
3473 * we would have to keep in mind that we need to save the row signs
3474 * and that we need to do this before saving the current basis
3475 * such that the basis has been restore before we restore the row signs.
3477 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3483 saved = sol->context->op->save(sol->context);
3485 tab = isl_tab_dup(tab);
3489 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3491 find_solutions(sol, tab);
3493 sol->context->op->restore(sol->context, saved);
3499 /* Record the absence of solutions for those values of the parameters
3500 * that do not satisfy the given inequality with equality.
3502 static void no_sol_in_strict(struct isl_sol *sol,
3503 struct isl_tab *tab, struct isl_vec *ineq)
3510 saved = sol->context->op->save(sol->context);
3512 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3514 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3523 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3525 sol->context->op->restore(sol->context, saved);
3531 /* Compute the lexicographic minimum of the set represented by the main
3532 * tableau "tab" within the context "sol->context_tab".
3533 * On entry the sample value of the main tableau is lexicographically
3534 * less than or equal to this lexicographic minimum.
3535 * Pivots are performed until a feasible point is found, which is then
3536 * necessarily equal to the minimum, or until the tableau is found to
3537 * be infeasible. Some pivots may need to be performed for only some
3538 * feasible values of the context tableau. If so, the context tableau
3539 * is split into a part where the pivot is needed and a part where it is not.
3541 * Whenever we enter the main loop, the main tableau is such that no
3542 * "obvious" pivots need to be performed on it, where "obvious" means
3543 * that the given row can be seen to be negative without looking at
3544 * the context tableau. In particular, for non-parametric problems,
3545 * no pivots need to be performed on the main tableau.
3546 * The caller of find_solutions is responsible for making this property
3547 * hold prior to the first iteration of the loop, while restore_lexmin
3548 * is called before every other iteration.
3550 * Inside the main loop, we first examine the signs of the rows of
3551 * the main tableau within the context of the context tableau.
3552 * If we find a row that is always non-positive for all values of
3553 * the parameters satisfying the context tableau and negative for at
3554 * least one value of the parameters, we perform the appropriate pivot
3555 * and start over. An exception is the case where no pivot can be
3556 * performed on the row. In this case, we require that the sign of
3557 * the row is negative for all values of the parameters (rather than just
3558 * non-positive). This special case is handled inside row_sign, which
3559 * will say that the row can have any sign if it determines that it can
3560 * attain both negative and zero values.
3562 * If we can't find a row that always requires a pivot, but we can find
3563 * one or more rows that require a pivot for some values of the parameters
3564 * (i.e., the row can attain both positive and negative signs), then we split
3565 * the context tableau into two parts, one where we force the sign to be
3566 * non-negative and one where we force is to be negative.
3567 * The non-negative part is handled by a recursive call (through find_in_pos).
3568 * Upon returning from this call, we continue with the negative part and
3569 * perform the required pivot.
3571 * If no such rows can be found, all rows are non-negative and we have
3572 * found a (rational) feasible point. If we only wanted a rational point
3574 * Otherwise, we check if all values of the sample point of the tableau
3575 * are integral for the variables. If so, we have found the minimal
3576 * integral point and we are done.
3577 * If the sample point is not integral, then we need to make a distinction
3578 * based on whether the constant term is non-integral or the coefficients
3579 * of the parameters. Furthermore, in order to decide how to handle
3580 * the non-integrality, we also need to know whether the coefficients
3581 * of the other columns in the tableau are integral. This leads
3582 * to the following table. The first two rows do not correspond
3583 * to a non-integral sample point and are only mentioned for completeness.
3585 * constant parameters other
3588 * int int rat | -> no problem
3590 * rat int int -> fail
3592 * rat int rat -> cut
3595 * rat rat rat | -> parametric cut
3598 * rat rat int | -> split context
3600 * If the parametric constant is completely integral, then there is nothing
3601 * to be done. If the constant term is non-integral, but all the other
3602 * coefficient are integral, then there is nothing that can be done
3603 * and the tableau has no integral solution.
3604 * If, on the other hand, one or more of the other columns have rational
3605 * coeffcients, but the parameter coefficients are all integral, then
3606 * we can perform a regular (non-parametric) cut.
3607 * Finally, if there is any parameter coefficient that is non-integral,
3608 * then we need to involve the context tableau. There are two cases here.
3609 * If at least one other column has a rational coefficient, then we
3610 * can perform a parametric cut in the main tableau by adding a new
3611 * integer division in the context tableau.
3612 * If all other columns have integral coefficients, then we need to
3613 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3614 * is always integral. We do this by introducing an integer division
3615 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3616 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3617 * Since q is expressed in the tableau as
3618 * c + \sum a_i y_i - m q >= 0
3619 * -c - \sum a_i y_i + m q + m - 1 >= 0
3620 * it is sufficient to add the inequality
3621 * -c - \sum a_i y_i + m q >= 0
3622 * In the part of the context where this inequality does not hold, the
3623 * main tableau is marked as being empty.
3625 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3627 struct isl_context *context;
3629 if (!tab || sol->error)
3632 context = sol->context;
3636 if (context->op->is_empty(context))
3639 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
3646 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3647 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3649 sgn = row_sign(tab, sol, row);
3652 tab->row_sign[row] = sgn;
3653 if (sgn == isl_tab_row_any)
3655 if (sgn == isl_tab_row_any && split == -1)
3657 if (sgn == isl_tab_row_neg)
3660 if (row < tab->n_row)
3663 struct isl_vec *ineq;
3665 split = context->op->best_split(context, tab);
3668 ineq = get_row_parameter_ineq(tab, split);
3672 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3673 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3675 if (tab->row_sign[row] == isl_tab_row_any)
3676 tab->row_sign[row] = isl_tab_row_unknown;
3678 tab->row_sign[split] = isl_tab_row_pos;
3680 find_in_pos(sol, tab, ineq->el);
3681 tab->row_sign[split] = isl_tab_row_neg;
3683 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3684 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3685 context->op->add_ineq(context, ineq->el, 0, 1);
3693 row = first_non_integer_row(tab, &flags);
3696 if (ISL_FL_ISSET(flags, I_PAR)) {
3697 if (ISL_FL_ISSET(flags, I_VAR)) {
3698 if (isl_tab_mark_empty(tab) < 0)
3702 row = add_cut(tab, row);
3703 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3704 struct isl_vec *div;
3705 struct isl_vec *ineq;
3707 div = get_row_split_div(tab, row);
3710 d = context->op->get_div(context, tab, div);
3714 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3716 no_sol_in_strict(sol, tab, ineq);
3717 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3718 context->op->add_ineq(context, ineq->el, 1, 1);
3720 if (sol->error || !context->op->is_ok(context))
3722 tab = set_row_cst_to_div(tab, row, d);
3724 row = add_parametric_cut(tab, row, context);
3737 /* Compute the lexicographic minimum of the set represented by the main
3738 * tableau "tab" within the context "sol->context_tab".
3740 * As a preprocessing step, we first transfer all the purely parametric
3741 * equalities from the main tableau to the context tableau, i.e.,
3742 * parameters that have been pivoted to a row.
3743 * These equalities are ignored by the main algorithm, because the
3744 * corresponding rows may not be marked as being non-negative.
3745 * In parts of the context where the added equality does not hold,
3746 * the main tableau is marked as being empty.
3748 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3754 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3758 if (tab->row_var[row] < 0)
3760 if (tab->row_var[row] >= tab->n_param &&
3761 tab->row_var[row] < tab->n_var - tab->n_div)
3763 if (tab->row_var[row] < tab->n_param)
3764 p = tab->row_var[row];
3766 p = tab->row_var[row]
3767 + tab->n_param - (tab->n_var - tab->n_div);
3769 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3770 get_row_parameter_line(tab, row, eq->el);
3771 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3772 eq = isl_vec_normalize(eq);
3775 no_sol_in_strict(sol, tab, eq);
3777 isl_seq_neg(eq->el, eq->el, eq->size);
3779 no_sol_in_strict(sol, tab, eq);
3780 isl_seq_neg(eq->el, eq->el, eq->size);
3782 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3786 if (isl_tab_mark_redundant(tab, row) < 0)
3789 if (sol->context->op->is_empty(sol->context))
3792 row = tab->n_redundant - 1;
3795 find_solutions(sol, tab);
3806 static void sol_map_find_solutions(struct isl_sol_map *sol_map,
3807 struct isl_tab *tab)
3809 find_solutions_main(&sol_map->sol, tab);
3812 /* Check if integer division "div" of "dom" also occurs in "bmap".
3813 * If so, return its position within the divs.
3814 * If not, return -1.
3816 static int find_context_div(struct isl_basic_map *bmap,
3817 struct isl_basic_set *dom, unsigned div)
3820 unsigned b_dim = isl_dim_total(bmap->dim);
3821 unsigned d_dim = isl_dim_total(dom->dim);
3823 if (isl_int_is_zero(dom->div[div][0]))
3825 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3828 for (i = 0; i < bmap->n_div; ++i) {
3829 if (isl_int_is_zero(bmap->div[i][0]))
3831 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3832 (b_dim - d_dim) + bmap->n_div) != -1)
3834 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3840 /* The correspondence between the variables in the main tableau,
3841 * the context tableau, and the input map and domain is as follows.
3842 * The first n_param and the last n_div variables of the main tableau
3843 * form the variables of the context tableau.
3844 * In the basic map, these n_param variables correspond to the
3845 * parameters and the input dimensions. In the domain, they correspond
3846 * to the parameters and the set dimensions.
3847 * The n_div variables correspond to the integer divisions in the domain.
3848 * To ensure that everything lines up, we may need to copy some of the
3849 * integer divisions of the domain to the map. These have to be placed
3850 * in the same order as those in the context and they have to be placed
3851 * after any other integer divisions that the map may have.
3852 * This function performs the required reordering.
3854 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3855 struct isl_basic_set *dom)
3861 for (i = 0; i < dom->n_div; ++i)
3862 if (find_context_div(bmap, dom, i) != -1)
3864 other = bmap->n_div - common;
3865 if (dom->n_div - common > 0) {
3866 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
3867 dom->n_div - common, 0, 0);
3871 for (i = 0; i < dom->n_div; ++i) {
3872 int pos = find_context_div(bmap, dom, i);
3874 pos = isl_basic_map_alloc_div(bmap);
3877 isl_int_set_si(bmap->div[pos][0], 0);
3879 if (pos != other + i)
3880 isl_basic_map_swap_div(bmap, pos, other + i);
3884 isl_basic_map_free(bmap);
3888 /* Compute the lexicographic minimum (or maximum if "max" is set)
3889 * of "bmap" over the domain "dom" and return the result as a map.
3890 * If "empty" is not NULL, then *empty is assigned a set that
3891 * contains those parts of the domain where there is no solution.
3892 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
3893 * then we compute the rational optimum. Otherwise, we compute
3894 * the integral optimum.
3896 * We perform some preprocessing. As the PILP solver does not
3897 * handle implicit equalities very well, we first make sure all
3898 * the equalities are explicitly available.
3899 * We also make sure the divs in the domain are properly order,
3900 * because they will be added one by one in the given order
3901 * during the construction of the solution map.
3903 struct isl_map *isl_tab_basic_map_partial_lexopt(
3904 struct isl_basic_map *bmap, struct isl_basic_set *dom,
3905 struct isl_set **empty, int max)
3907 struct isl_tab *tab;
3908 struct isl_map *result = NULL;
3909 struct isl_sol_map *sol_map = NULL;
3910 struct isl_context *context;
3911 struct isl_basic_map *eq;
3918 isl_assert(bmap->ctx,
3919 isl_basic_map_compatible_domain(bmap, dom), goto error);
3921 eq = isl_basic_map_copy(bmap);
3922 eq = isl_basic_map_intersect_domain(eq, isl_basic_set_copy(dom));
3923 eq = isl_basic_map_affine_hull(eq);
3924 bmap = isl_basic_map_intersect(bmap, eq);
3927 dom = isl_basic_set_order_divs(dom);
3928 bmap = align_context_divs(bmap, dom);
3930 sol_map = sol_map_init(bmap, dom, !!empty, max);
3934 context = sol_map->sol.context;
3935 if (isl_basic_set_fast_is_empty(context->op->peek_basic_set(context)))
3937 else if (isl_basic_map_fast_is_empty(bmap))
3938 sol_map_add_empty(sol_map,
3939 isl_basic_set_dup(context->op->peek_basic_set(context)));
3941 tab = tab_for_lexmin(bmap,
3942 context->op->peek_basic_set(context), 1, max);
3943 tab = context->op->detect_nonnegative_parameters(context, tab);
3944 sol_map_find_solutions(sol_map, tab);
3946 if (sol_map->sol.error)
3949 result = isl_map_copy(sol_map->map);
3951 *empty = isl_set_copy(sol_map->empty);
3952 sol_free(&sol_map->sol);
3953 isl_basic_map_free(bmap);
3956 sol_free(&sol_map->sol);
3957 isl_basic_map_free(bmap);
3961 struct isl_sol_for {
3963 int (*fn)(__isl_take isl_basic_set *dom,
3964 __isl_take isl_mat *map, void *user);
3968 static void sol_for_free(struct isl_sol_for *sol_for)
3970 if (sol_for->sol.context)
3971 sol_for->sol.context->op->free(sol_for->sol.context);
3975 static void sol_for_free_wrap(struct isl_sol *sol)
3977 sol_for_free((struct isl_sol_for *)sol);
3980 /* Add the solution identified by the tableau and the context tableau.
3982 * See documentation of sol_add for more details.
3984 * Instead of constructing a basic map, this function calls a user
3985 * defined function with the current context as a basic set and
3986 * an affine matrix reprenting the relation between the input and output.
3987 * The number of rows in this matrix is equal to one plus the number
3988 * of output variables. The number of columns is equal to one plus
3989 * the total dimension of the context, i.e., the number of parameters,
3990 * input variables and divs. Since some of the columns in the matrix
3991 * may refer to the divs, the basic set is not simplified.
3992 * (Simplification may reorder or remove divs.)
3994 static void sol_for_add(struct isl_sol_for *sol,
3995 struct isl_basic_set *dom, struct isl_mat *M)
3997 if (sol->sol.error || !dom || !M)
4000 dom = isl_basic_set_simplify(dom);
4001 dom = isl_basic_set_finalize(dom);
4003 if (sol->fn(isl_basic_set_copy(dom), isl_mat_copy(M), sol->user) < 0)
4006 isl_basic_set_free(dom);
4010 isl_basic_set_free(dom);
4015 static void sol_for_add_wrap(struct isl_sol *sol,
4016 struct isl_basic_set *dom, struct isl_mat *M)
4018 sol_for_add((struct isl_sol_for *)sol, dom, M);
4021 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4022 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4026 struct isl_sol_for *sol_for = NULL;
4027 struct isl_dim *dom_dim;
4028 struct isl_basic_set *dom = NULL;
4030 sol_for = isl_calloc_type(bset->ctx, struct isl_sol_for);
4034 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
4035 dom = isl_basic_set_universe(dom_dim);
4037 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4038 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4039 sol_for->sol.dec_level.sol = &sol_for->sol;
4041 sol_for->user = user;
4042 sol_for->sol.max = max;
4043 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4044 sol_for->sol.add = &sol_for_add_wrap;
4045 sol_for->sol.add_empty = NULL;
4046 sol_for->sol.free = &sol_for_free_wrap;
4048 sol_for->sol.context = isl_context_alloc(dom);
4049 if (!sol_for->sol.context)
4052 isl_basic_set_free(dom);
4055 isl_basic_set_free(dom);
4056 sol_for_free(sol_for);
4060 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4061 struct isl_tab *tab)
4063 find_solutions_main(&sol_for->sol, tab);
4066 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4067 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4071 struct isl_sol_for *sol_for = NULL;
4073 bmap = isl_basic_map_copy(bmap);
4077 bmap = isl_basic_map_detect_equalities(bmap);
4078 sol_for = sol_for_init(bmap, max, fn, user);
4080 if (isl_basic_map_fast_is_empty(bmap))
4083 struct isl_tab *tab;
4084 struct isl_context *context = sol_for->sol.context;
4085 tab = tab_for_lexmin(bmap,
4086 context->op->peek_basic_set(context), 1, max);
4087 tab = context->op->detect_nonnegative_parameters(context, tab);
4088 sol_for_find_solutions(sol_for, tab);
4089 if (sol_for->sol.error)
4093 sol_free(&sol_for->sol);
4094 isl_basic_map_free(bmap);
4097 sol_free(&sol_for->sol);
4098 isl_basic_map_free(bmap);
4102 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
4103 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4107 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
4110 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
4111 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4115 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);