2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_aff_private.h>
20 #include <isl_config.h>
23 * The implementation of parametric integer linear programming in this file
24 * was inspired by the paper "Parametric Integer Programming" and the
25 * report "Solving systems of affine (in)equalities" by Paul Feautrier
28 * The strategy used for obtaining a feasible solution is different
29 * from the one used in isl_tab.c. In particular, in isl_tab.c,
30 * upon finding a constraint that is not yet satisfied, we pivot
31 * in a row that increases the constant term of the row holding the
32 * constraint, making sure the sample solution remains feasible
33 * for all the constraints it already satisfied.
34 * Here, we always pivot in the row holding the constraint,
35 * choosing a column that induces the lexicographically smallest
36 * increment to the sample solution.
38 * By starting out from a sample value that is lexicographically
39 * smaller than any integer point in the problem space, the first
40 * feasible integer sample point we find will also be the lexicographically
41 * smallest. If all variables can be assumed to be non-negative,
42 * then the initial sample value may be chosen equal to zero.
43 * However, we will not make this assumption. Instead, we apply
44 * the "big parameter" trick. Any variable x is then not directly
45 * used in the tableau, but instead it is represented by another
46 * variable x' = M + x, where M is an arbitrarily large (positive)
47 * value. x' is therefore always non-negative, whatever the value of x.
48 * Taking as initial sample value x' = 0 corresponds to x = -M,
49 * which is always smaller than any possible value of x.
51 * The big parameter trick is used in the main tableau and
52 * also in the context tableau if isl_context_lex is used.
53 * In this case, each tableaus has its own big parameter.
54 * Before doing any real work, we check if all the parameters
55 * happen to be non-negative. If so, we drop the column corresponding
56 * to M from the initial context tableau.
57 * If isl_context_gbr is used, then the big parameter trick is only
58 * used in the main tableau.
62 struct isl_context_op {
63 /* detect nonnegative parameters in context and mark them in tab */
64 struct isl_tab *(*detect_nonnegative_parameters)(
65 struct isl_context *context, struct isl_tab *tab);
66 /* return temporary reference to basic set representation of context */
67 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
68 /* return temporary reference to tableau representation of context */
69 struct isl_tab *(*peek_tab)(struct isl_context *context);
70 /* add equality; check is 1 if eq may not be valid;
71 * update is 1 if we may want to call ineq_sign on context later.
73 void (*add_eq)(struct isl_context *context, isl_int *eq,
74 int check, int update);
75 /* add inequality; check is 1 if ineq may not be valid;
76 * update is 1 if we may want to call ineq_sign on context later.
78 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
79 int check, int update);
80 /* check sign of ineq based on previous information.
81 * strict is 1 if saturation should be treated as a positive sign.
83 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
84 isl_int *ineq, int strict);
85 /* check if inequality maintains feasibility */
86 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
87 /* return index of a div that corresponds to "div" */
88 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
90 /* add div "div" to context and return non-negativity */
91 int (*add_div)(struct isl_context *context, struct isl_vec *div);
92 int (*detect_equalities)(struct isl_context *context,
94 /* return row index of "best" split */
95 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
96 /* check if context has already been determined to be empty */
97 int (*is_empty)(struct isl_context *context);
98 /* check if context is still usable */
99 int (*is_ok)(struct isl_context *context);
100 /* save a copy/snapshot of context */
101 void *(*save)(struct isl_context *context);
102 /* restore saved context */
103 void (*restore)(struct isl_context *context, void *);
104 /* invalidate context */
105 void (*invalidate)(struct isl_context *context);
107 void (*free)(struct isl_context *context);
111 struct isl_context_op *op;
114 struct isl_context_lex {
115 struct isl_context context;
119 struct isl_partial_sol {
121 struct isl_basic_set *dom;
124 struct isl_partial_sol *next;
128 struct isl_sol_callback {
129 struct isl_tab_callback callback;
133 /* isl_sol is an interface for constructing a solution to
134 * a parametric integer linear programming problem.
135 * Every time the algorithm reaches a state where a solution
136 * can be read off from the tableau (including cases where the tableau
137 * is empty), the function "add" is called on the isl_sol passed
138 * to find_solutions_main.
140 * The context tableau is owned by isl_sol and is updated incrementally.
142 * There are currently two implementations of this interface,
143 * isl_sol_map, which simply collects the solutions in an isl_map
144 * and (optionally) the parts of the context where there is no solution
146 * isl_sol_for, which calls a user-defined function for each part of
155 struct isl_context *context;
156 struct isl_partial_sol *partial;
157 void (*add)(struct isl_sol *sol,
158 struct isl_basic_set *dom, struct isl_mat *M);
159 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
160 void (*free)(struct isl_sol *sol);
161 struct isl_sol_callback dec_level;
164 static void sol_free(struct isl_sol *sol)
166 struct isl_partial_sol *partial, *next;
169 for (partial = sol->partial; partial; partial = next) {
170 next = partial->next;
171 isl_basic_set_free(partial->dom);
172 isl_mat_free(partial->M);
178 /* Push a partial solution represented by a domain and mapping M
179 * onto the stack of partial solutions.
181 static void sol_push_sol(struct isl_sol *sol,
182 struct isl_basic_set *dom, struct isl_mat *M)
184 struct isl_partial_sol *partial;
186 if (sol->error || !dom)
189 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
193 partial->level = sol->level;
196 partial->next = sol->partial;
198 sol->partial = partial;
202 isl_basic_set_free(dom);
206 /* Pop one partial solution from the partial solution stack and
207 * pass it on to sol->add or sol->add_empty.
209 static void sol_pop_one(struct isl_sol *sol)
211 struct isl_partial_sol *partial;
213 partial = sol->partial;
214 sol->partial = partial->next;
217 sol->add(sol, partial->dom, partial->M);
219 sol->add_empty(sol, partial->dom);
223 /* Return a fresh copy of the domain represented by the context tableau.
225 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
227 struct isl_basic_set *bset;
232 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
233 bset = isl_basic_set_update_from_tab(bset,
234 sol->context->op->peek_tab(sol->context));
239 /* Check whether two partial solutions have the same mapping, where n_div
240 * is the number of divs that the two partial solutions have in common.
242 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
248 if (!s1->M != !s2->M)
253 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
255 for (i = 0; i < s1->M->n_row; ++i) {
256 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
257 s1->M->n_col-1-dim-n_div) != -1)
259 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
260 s2->M->n_col-1-dim-n_div) != -1)
262 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
268 /* Pop all solutions from the partial solution stack that were pushed onto
269 * the stack at levels that are deeper than the current level.
270 * If the two topmost elements on the stack have the same level
271 * and represent the same solution, then their domains are combined.
272 * This combined domain is the same as the current context domain
273 * as sol_pop is called each time we move back to a higher level.
275 static void sol_pop(struct isl_sol *sol)
277 struct isl_partial_sol *partial;
283 if (sol->level == 0) {
284 for (partial = sol->partial; partial; partial = sol->partial)
289 partial = sol->partial;
293 if (partial->level <= sol->level)
296 if (partial->next && partial->next->level == partial->level) {
297 n_div = isl_basic_set_dim(
298 sol->context->op->peek_basic_set(sol->context),
301 if (!same_solution(partial, partial->next, n_div)) {
305 struct isl_basic_set *bset;
307 bset = sol_domain(sol);
309 isl_basic_set_free(partial->next->dom);
310 partial->next->dom = bset;
311 partial->next->level = sol->level;
313 sol->partial = partial->next;
314 isl_basic_set_free(partial->dom);
315 isl_mat_free(partial->M);
322 static void sol_dec_level(struct isl_sol *sol)
332 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
334 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
336 sol_dec_level(callback->sol);
338 return callback->sol->error ? -1 : 0;
341 /* Move down to next level and push callback onto context tableau
342 * to decrease the level again when it gets rolled back across
343 * the current state. That is, dec_level will be called with
344 * the context tableau in the same state as it is when inc_level
347 static void sol_inc_level(struct isl_sol *sol)
355 tab = sol->context->op->peek_tab(sol->context);
356 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
360 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
364 if (isl_int_is_one(m))
367 for (i = 0; i < n_row; ++i)
368 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
371 /* Add the solution identified by the tableau and the context tableau.
373 * The layout of the variables is as follows.
374 * tab->n_var is equal to the total number of variables in the input
375 * map (including divs that were copied from the context)
376 * + the number of extra divs constructed
377 * Of these, the first tab->n_param and the last tab->n_div variables
378 * correspond to the variables in the context, i.e.,
379 * tab->n_param + tab->n_div = context_tab->n_var
380 * tab->n_param is equal to the number of parameters and input
381 * dimensions in the input map
382 * tab->n_div is equal to the number of divs in the context
384 * If there is no solution, then call add_empty with a basic set
385 * that corresponds to the context tableau. (If add_empty is NULL,
388 * If there is a solution, then first construct a matrix that maps
389 * all dimensions of the context to the output variables, i.e.,
390 * the output dimensions in the input map.
391 * The divs in the input map (if any) that do not correspond to any
392 * div in the context do not appear in the solution.
393 * The algorithm will make sure that they have an integer value,
394 * but these values themselves are of no interest.
395 * We have to be careful not to drop or rearrange any divs in the
396 * context because that would change the meaning of the matrix.
398 * To extract the value of the output variables, it should be noted
399 * that we always use a big parameter M in the main tableau and so
400 * the variable stored in this tableau is not an output variable x itself, but
401 * x' = M + x (in case of minimization)
403 * x' = M - x (in case of maximization)
404 * If x' appears in a column, then its optimal value is zero,
405 * which means that the optimal value of x is an unbounded number
406 * (-M for minimization and M for maximization).
407 * We currently assume that the output dimensions in the original map
408 * are bounded, so this cannot occur.
409 * Similarly, when x' appears in a row, then the coefficient of M in that
410 * row is necessarily 1.
411 * If the row in the tableau represents
412 * d x' = c + d M + e(y)
413 * then, in case of minimization, the corresponding row in the matrix
416 * with a d = m, the (updated) common denominator of the matrix.
417 * In case of maximization, the row will be
420 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
422 struct isl_basic_set *bset = NULL;
423 struct isl_mat *mat = NULL;
428 if (sol->error || !tab)
431 if (tab->empty && !sol->add_empty)
434 bset = sol_domain(sol);
437 sol_push_sol(sol, bset, NULL);
443 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
444 1 + tab->n_param + tab->n_div);
450 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
451 isl_int_set_si(mat->row[0][0], 1);
452 for (row = 0; row < sol->n_out; ++row) {
453 int i = tab->n_param + row;
456 isl_seq_clr(mat->row[1 + row], mat->n_col);
457 if (!tab->var[i].is_row) {
459 isl_die(mat->ctx, isl_error_invalid,
460 "unbounded optimum", goto error2);
464 r = tab->var[i].index;
466 isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
467 isl_die(mat->ctx, isl_error_invalid,
468 "unbounded optimum", goto error2);
469 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
470 isl_int_divexact(m, tab->mat->row[r][0], m);
471 scale_rows(mat, m, 1 + row);
472 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
473 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
474 for (j = 0; j < tab->n_param; ++j) {
476 if (tab->var[j].is_row)
478 col = tab->var[j].index;
479 isl_int_mul(mat->row[1 + row][1 + j], m,
480 tab->mat->row[r][off + col]);
482 for (j = 0; j < tab->n_div; ++j) {
484 if (tab->var[tab->n_var - tab->n_div+j].is_row)
486 col = tab->var[tab->n_var - tab->n_div+j].index;
487 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
488 tab->mat->row[r][off + col]);
491 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
497 sol_push_sol(sol, bset, mat);
502 isl_basic_set_free(bset);
510 struct isl_set *empty;
513 static void sol_map_free(struct isl_sol_map *sol_map)
517 if (sol_map->sol.context)
518 sol_map->sol.context->op->free(sol_map->sol.context);
519 isl_map_free(sol_map->map);
520 isl_set_free(sol_map->empty);
524 static void sol_map_free_wrap(struct isl_sol *sol)
526 sol_map_free((struct isl_sol_map *)sol);
529 /* This function is called for parts of the context where there is
530 * no solution, with "bset" corresponding to the context tableau.
531 * Simply add the basic set to the set "empty".
533 static void sol_map_add_empty(struct isl_sol_map *sol,
534 struct isl_basic_set *bset)
538 isl_assert(bset->ctx, sol->empty, goto error);
540 sol->empty = isl_set_grow(sol->empty, 1);
541 bset = isl_basic_set_simplify(bset);
542 bset = isl_basic_set_finalize(bset);
543 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
546 isl_basic_set_free(bset);
549 isl_basic_set_free(bset);
553 static void sol_map_add_empty_wrap(struct isl_sol *sol,
554 struct isl_basic_set *bset)
556 sol_map_add_empty((struct isl_sol_map *)sol, bset);
559 /* Given a basic map "dom" that represents the context and an affine
560 * matrix "M" that maps the dimensions of the context to the
561 * output variables, construct a basic map with the same parameters
562 * and divs as the context, the dimensions of the context as input
563 * dimensions and a number of output dimensions that is equal to
564 * the number of output dimensions in the input map.
566 * The constraints and divs of the context are simply copied
567 * from "dom". For each row
571 * is added, with d the common denominator of M.
573 static void sol_map_add(struct isl_sol_map *sol,
574 struct isl_basic_set *dom, struct isl_mat *M)
577 struct isl_basic_map *bmap = NULL;
585 if (sol->sol.error || !dom || !M)
588 n_out = sol->sol.n_out;
589 n_eq = dom->n_eq + n_out;
590 n_ineq = dom->n_ineq;
592 nparam = isl_basic_set_total_dim(dom) - n_div;
593 total = isl_map_dim(sol->map, isl_dim_all);
594 bmap = isl_basic_map_alloc_space(isl_map_get_space(sol->map),
595 n_div, n_eq, 2 * n_div + n_ineq);
598 if (sol->sol.rational)
599 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
600 for (i = 0; i < dom->n_div; ++i) {
601 int k = isl_basic_map_alloc_div(bmap);
604 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
605 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
606 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
607 dom->div[i] + 1 + 1 + nparam, i);
609 for (i = 0; i < dom->n_eq; ++i) {
610 int k = isl_basic_map_alloc_equality(bmap);
613 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
614 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
615 isl_seq_cpy(bmap->eq[k] + 1 + total,
616 dom->eq[i] + 1 + nparam, n_div);
618 for (i = 0; i < dom->n_ineq; ++i) {
619 int k = isl_basic_map_alloc_inequality(bmap);
622 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
623 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
624 isl_seq_cpy(bmap->ineq[k] + 1 + total,
625 dom->ineq[i] + 1 + nparam, n_div);
627 for (i = 0; i < M->n_row - 1; ++i) {
628 int k = isl_basic_map_alloc_equality(bmap);
631 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
632 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
633 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
634 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
635 M->row[1 + i] + 1 + nparam, n_div);
637 bmap = isl_basic_map_simplify(bmap);
638 bmap = isl_basic_map_finalize(bmap);
639 sol->map = isl_map_grow(sol->map, 1);
640 sol->map = isl_map_add_basic_map(sol->map, bmap);
641 isl_basic_set_free(dom);
647 isl_basic_set_free(dom);
649 isl_basic_map_free(bmap);
653 static void sol_map_add_wrap(struct isl_sol *sol,
654 struct isl_basic_set *dom, struct isl_mat *M)
656 sol_map_add((struct isl_sol_map *)sol, dom, M);
660 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
661 * i.e., the constant term and the coefficients of all variables that
662 * appear in the context tableau.
663 * Note that the coefficient of the big parameter M is NOT copied.
664 * The context tableau may not have a big parameter and even when it
665 * does, it is a different big parameter.
667 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
670 unsigned off = 2 + tab->M;
672 isl_int_set(line[0], tab->mat->row[row][1]);
673 for (i = 0; i < tab->n_param; ++i) {
674 if (tab->var[i].is_row)
675 isl_int_set_si(line[1 + i], 0);
677 int col = tab->var[i].index;
678 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
681 for (i = 0; i < tab->n_div; ++i) {
682 if (tab->var[tab->n_var - tab->n_div + i].is_row)
683 isl_int_set_si(line[1 + tab->n_param + i], 0);
685 int col = tab->var[tab->n_var - tab->n_div + i].index;
686 isl_int_set(line[1 + tab->n_param + i],
687 tab->mat->row[row][off + col]);
692 /* Check if rows "row1" and "row2" have identical "parametric constants",
693 * as explained above.
694 * In this case, we also insist that the coefficients of the big parameter
695 * be the same as the values of the constants will only be the same
696 * if these coefficients are also the same.
698 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
701 unsigned off = 2 + tab->M;
703 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
706 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
707 tab->mat->row[row2][2]))
710 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
711 int pos = i < tab->n_param ? i :
712 tab->n_var - tab->n_div + i - tab->n_param;
715 if (tab->var[pos].is_row)
717 col = tab->var[pos].index;
718 if (isl_int_ne(tab->mat->row[row1][off + col],
719 tab->mat->row[row2][off + col]))
725 /* Return an inequality that expresses that the "parametric constant"
726 * should be non-negative.
727 * This function is only called when the coefficient of the big parameter
730 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
732 struct isl_vec *ineq;
734 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
738 get_row_parameter_line(tab, row, ineq->el);
740 ineq = isl_vec_normalize(ineq);
745 /* Return a integer division for use in a parametric cut based on the given row.
746 * In particular, let the parametric constant of the row be
750 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
751 * The div returned is equal to
753 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
755 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
759 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
763 isl_int_set(div->el[0], tab->mat->row[row][0]);
764 get_row_parameter_line(tab, row, div->el + 1);
765 div = isl_vec_normalize(div);
766 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
767 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
772 /* Return a integer division for use in transferring an integrality constraint
774 * In particular, let the parametric constant of the row be
778 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
779 * The the returned div is equal to
781 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
783 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
787 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
791 isl_int_set(div->el[0], tab->mat->row[row][0]);
792 get_row_parameter_line(tab, row, div->el + 1);
793 div = isl_vec_normalize(div);
794 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
799 /* Construct and return an inequality that expresses an upper bound
801 * In particular, if the div is given by
805 * then the inequality expresses
809 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
813 struct isl_vec *ineq;
818 total = isl_basic_set_total_dim(bset);
819 div_pos = 1 + total - bset->n_div + div;
821 ineq = isl_vec_alloc(bset->ctx, 1 + total);
825 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
826 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
830 /* Given a row in the tableau and a div that was created
831 * using get_row_split_div and that been constrained to equality, i.e.,
833 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
835 * replace the expression "\sum_i {a_i} y_i" in the row by d,
836 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
837 * The coefficients of the non-parameters in the tableau have been
838 * verified to be integral. We can therefore simply replace coefficient b
839 * by floor(b). For the coefficients of the parameters we have
840 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
843 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
845 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
846 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
848 isl_int_set_si(tab->mat->row[row][0], 1);
850 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
851 int drow = tab->var[tab->n_var - tab->n_div + div].index;
853 isl_assert(tab->mat->ctx,
854 isl_int_is_one(tab->mat->row[drow][0]), goto error);
855 isl_seq_combine(tab->mat->row[row] + 1,
856 tab->mat->ctx->one, tab->mat->row[row] + 1,
857 tab->mat->ctx->one, tab->mat->row[drow] + 1,
858 1 + tab->M + tab->n_col);
860 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
862 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
871 /* Check if the (parametric) constant of the given row is obviously
872 * negative, meaning that we don't need to consult the context tableau.
873 * If there is a big parameter and its coefficient is non-zero,
874 * then this coefficient determines the outcome.
875 * Otherwise, we check whether the constant is negative and
876 * all non-zero coefficients of parameters are negative and
877 * belong to non-negative parameters.
879 static int is_obviously_neg(struct isl_tab *tab, int row)
883 unsigned off = 2 + tab->M;
886 if (isl_int_is_pos(tab->mat->row[row][2]))
888 if (isl_int_is_neg(tab->mat->row[row][2]))
892 if (isl_int_is_nonneg(tab->mat->row[row][1]))
894 for (i = 0; i < tab->n_param; ++i) {
895 /* Eliminated parameter */
896 if (tab->var[i].is_row)
898 col = tab->var[i].index;
899 if (isl_int_is_zero(tab->mat->row[row][off + col]))
901 if (!tab->var[i].is_nonneg)
903 if (isl_int_is_pos(tab->mat->row[row][off + col]))
906 for (i = 0; i < tab->n_div; ++i) {
907 if (tab->var[tab->n_var - tab->n_div + i].is_row)
909 col = tab->var[tab->n_var - tab->n_div + i].index;
910 if (isl_int_is_zero(tab->mat->row[row][off + col]))
912 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
914 if (isl_int_is_pos(tab->mat->row[row][off + col]))
920 /* Check if the (parametric) constant of the given row is obviously
921 * non-negative, meaning that we don't need to consult the context tableau.
922 * If there is a big parameter and its coefficient is non-zero,
923 * then this coefficient determines the outcome.
924 * Otherwise, we check whether the constant is non-negative and
925 * all non-zero coefficients of parameters are positive and
926 * belong to non-negative parameters.
928 static int is_obviously_nonneg(struct isl_tab *tab, int row)
932 unsigned off = 2 + tab->M;
935 if (isl_int_is_pos(tab->mat->row[row][2]))
937 if (isl_int_is_neg(tab->mat->row[row][2]))
941 if (isl_int_is_neg(tab->mat->row[row][1]))
943 for (i = 0; i < tab->n_param; ++i) {
944 /* Eliminated parameter */
945 if (tab->var[i].is_row)
947 col = tab->var[i].index;
948 if (isl_int_is_zero(tab->mat->row[row][off + col]))
950 if (!tab->var[i].is_nonneg)
952 if (isl_int_is_neg(tab->mat->row[row][off + col]))
955 for (i = 0; i < tab->n_div; ++i) {
956 if (tab->var[tab->n_var - tab->n_div + i].is_row)
958 col = tab->var[tab->n_var - tab->n_div + i].index;
959 if (isl_int_is_zero(tab->mat->row[row][off + col]))
961 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
963 if (isl_int_is_neg(tab->mat->row[row][off + col]))
969 /* Given a row r and two columns, return the column that would
970 * lead to the lexicographically smallest increment in the sample
971 * solution when leaving the basis in favor of the row.
972 * Pivoting with column c will increment the sample value by a non-negative
973 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
974 * corresponding to the non-parametric variables.
975 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
976 * with all other entries in this virtual row equal to zero.
977 * If variable v appears in a row, then a_{v,c} is the element in column c
980 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
981 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
982 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
983 * increment. Otherwise, it's c2.
985 static int lexmin_col_pair(struct isl_tab *tab,
986 int row, int col1, int col2, isl_int tmp)
991 tr = tab->mat->row[row] + 2 + tab->M;
993 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
997 if (!tab->var[i].is_row) {
998 if (tab->var[i].index == col1)
1000 if (tab->var[i].index == col2)
1005 if (tab->var[i].index == row)
1008 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1009 s1 = isl_int_sgn(r[col1]);
1010 s2 = isl_int_sgn(r[col2]);
1011 if (s1 == 0 && s2 == 0)
1018 isl_int_mul(tmp, r[col2], tr[col1]);
1019 isl_int_submul(tmp, r[col1], tr[col2]);
1020 if (isl_int_is_pos(tmp))
1022 if (isl_int_is_neg(tmp))
1028 /* Given a row in the tableau, find and return the column that would
1029 * result in the lexicographically smallest, but positive, increment
1030 * in the sample point.
1031 * If there is no such column, then return tab->n_col.
1032 * If anything goes wrong, return -1.
1034 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1037 int col = tab->n_col;
1041 tr = tab->mat->row[row] + 2 + tab->M;
1045 for (j = tab->n_dead; j < tab->n_col; ++j) {
1046 if (tab->col_var[j] >= 0 &&
1047 (tab->col_var[j] < tab->n_param ||
1048 tab->col_var[j] >= tab->n_var - tab->n_div))
1051 if (!isl_int_is_pos(tr[j]))
1054 if (col == tab->n_col)
1057 col = lexmin_col_pair(tab, row, col, j, tmp);
1058 isl_assert(tab->mat->ctx, col >= 0, goto error);
1068 /* Return the first known violated constraint, i.e., a non-negative
1069 * constraint that currently has an either obviously negative value
1070 * or a previously determined to be negative value.
1072 * If any constraint has a negative coefficient for the big parameter,
1073 * if any, then we return one of these first.
1075 static int first_neg(struct isl_tab *tab)
1080 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1081 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1083 if (!isl_int_is_neg(tab->mat->row[row][2]))
1086 tab->row_sign[row] = isl_tab_row_neg;
1089 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1090 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1092 if (tab->row_sign) {
1093 if (tab->row_sign[row] == 0 &&
1094 is_obviously_neg(tab, row))
1095 tab->row_sign[row] = isl_tab_row_neg;
1096 if (tab->row_sign[row] != isl_tab_row_neg)
1098 } else if (!is_obviously_neg(tab, row))
1105 /* Check whether the invariant that all columns are lexico-positive
1106 * is satisfied. This function is not called from the current code
1107 * but is useful during debugging.
1109 static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused));
1110 static void check_lexpos(struct isl_tab *tab)
1112 unsigned off = 2 + tab->M;
1117 for (col = tab->n_dead; col < tab->n_col; ++col) {
1118 if (tab->col_var[col] >= 0 &&
1119 (tab->col_var[col] < tab->n_param ||
1120 tab->col_var[col] >= tab->n_var - tab->n_div))
1122 for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) {
1123 if (!tab->var[var].is_row) {
1124 if (tab->var[var].index == col)
1129 row = tab->var[var].index;
1130 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1132 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1134 fprintf(stderr, "lexneg column %d (row %d)\n",
1137 if (var >= tab->n_var - tab->n_div)
1138 fprintf(stderr, "zero column %d\n", col);
1142 /* Report to the caller that the given constraint is part of an encountered
1145 static int report_conflicting_constraint(struct isl_tab *tab, int con)
1147 return tab->conflict(con, tab->conflict_user);
1150 /* Given a conflicting row in the tableau, report all constraints
1151 * involved in the row to the caller. That is, the row itself
1152 * (if represents a constraint) and all constraint columns with
1153 * non-zero (and therefore negative) coefficient.
1155 static int report_conflict(struct isl_tab *tab, int row)
1163 if (tab->row_var[row] < 0 &&
1164 report_conflicting_constraint(tab, ~tab->row_var[row]) < 0)
1167 tr = tab->mat->row[row] + 2 + tab->M;
1169 for (j = tab->n_dead; j < tab->n_col; ++j) {
1170 if (tab->col_var[j] >= 0 &&
1171 (tab->col_var[j] < tab->n_param ||
1172 tab->col_var[j] >= tab->n_var - tab->n_div))
1175 if (!isl_int_is_neg(tr[j]))
1178 if (tab->col_var[j] < 0 &&
1179 report_conflicting_constraint(tab, ~tab->col_var[j]) < 0)
1186 /* Resolve all known or obviously violated constraints through pivoting.
1187 * In particular, as long as we can find any violated constraint, we
1188 * look for a pivoting column that would result in the lexicographically
1189 * smallest increment in the sample point. If there is no such column
1190 * then the tableau is infeasible.
1192 static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1193 static int restore_lexmin(struct isl_tab *tab)
1201 while ((row = first_neg(tab)) != -1) {
1202 col = lexmin_pivot_col(tab, row);
1203 if (col >= tab->n_col) {
1204 if (report_conflict(tab, row) < 0)
1206 if (isl_tab_mark_empty(tab) < 0)
1212 if (isl_tab_pivot(tab, row, col) < 0)
1218 /* Given a row that represents an equality, look for an appropriate
1220 * In particular, if there are any non-zero coefficients among
1221 * the non-parameter variables, then we take the last of these
1222 * variables. Eliminating this variable in terms of the other
1223 * variables and/or parameters does not influence the property
1224 * that all column in the initial tableau are lexicographically
1225 * positive. The row corresponding to the eliminated variable
1226 * will only have non-zero entries below the diagonal of the
1227 * initial tableau. That is, we transform
1233 * If there is no such non-parameter variable, then we are dealing with
1234 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1235 * for elimination. This will ensure that the eliminated parameter
1236 * always has an integer value whenever all the other parameters are integral.
1237 * If there is no such parameter then we return -1.
1239 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1241 unsigned off = 2 + tab->M;
1244 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1246 if (tab->var[i].is_row)
1248 col = tab->var[i].index;
1249 if (col <= tab->n_dead)
1251 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1254 for (i = tab->n_dead; i < tab->n_col; ++i) {
1255 if (isl_int_is_one(tab->mat->row[row][off + i]))
1257 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1263 /* Add an equality that is known to be valid to the tableau.
1264 * We first check if we can eliminate a variable or a parameter.
1265 * If not, we add the equality as two inequalities.
1266 * In this case, the equality was a pure parameter equality and there
1267 * is no need to resolve any constraint violations.
1269 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1276 r = isl_tab_add_row(tab, eq);
1280 r = tab->con[r].index;
1281 i = last_var_col_or_int_par_col(tab, r);
1283 tab->con[r].is_nonneg = 1;
1284 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1286 isl_seq_neg(eq, eq, 1 + tab->n_var);
1287 r = isl_tab_add_row(tab, eq);
1290 tab->con[r].is_nonneg = 1;
1291 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1294 if (isl_tab_pivot(tab, r, i) < 0)
1296 if (isl_tab_kill_col(tab, i) < 0)
1307 /* Check if the given row is a pure constant.
1309 static int is_constant(struct isl_tab *tab, int row)
1311 unsigned off = 2 + tab->M;
1313 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1314 tab->n_col - tab->n_dead) == -1;
1317 /* Add an equality that may or may not be valid to the tableau.
1318 * If the resulting row is a pure constant, then it must be zero.
1319 * Otherwise, the resulting tableau is empty.
1321 * If the row is not a pure constant, then we add two inequalities,
1322 * each time checking that they can be satisfied.
1323 * In the end we try to use one of the two constraints to eliminate
1326 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1327 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1331 struct isl_tab_undo *snap;
1335 snap = isl_tab_snap(tab);
1336 r1 = isl_tab_add_row(tab, eq);
1339 tab->con[r1].is_nonneg = 1;
1340 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1343 row = tab->con[r1].index;
1344 if (is_constant(tab, row)) {
1345 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1346 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1347 if (isl_tab_mark_empty(tab) < 0)
1351 if (isl_tab_rollback(tab, snap) < 0)
1356 if (restore_lexmin(tab) < 0)
1361 isl_seq_neg(eq, eq, 1 + tab->n_var);
1363 r2 = isl_tab_add_row(tab, eq);
1366 tab->con[r2].is_nonneg = 1;
1367 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1370 if (restore_lexmin(tab) < 0)
1375 if (!tab->con[r1].is_row) {
1376 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1378 } else if (!tab->con[r2].is_row) {
1379 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1384 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1385 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1387 isl_seq_neg(eq, eq, 1 + tab->n_var);
1388 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1389 isl_seq_neg(eq, eq, 1 + tab->n_var);
1390 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1399 /* Add an inequality to the tableau, resolving violations using
1402 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1409 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1410 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1415 r = isl_tab_add_row(tab, ineq);
1418 tab->con[r].is_nonneg = 1;
1419 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1421 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1422 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1427 if (restore_lexmin(tab) < 0)
1429 if (!tab->empty && tab->con[r].is_row &&
1430 isl_tab_row_is_redundant(tab, tab->con[r].index))
1431 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1439 /* Check if the coefficients of the parameters are all integral.
1441 static int integer_parameter(struct isl_tab *tab, int row)
1445 unsigned off = 2 + tab->M;
1447 for (i = 0; i < tab->n_param; ++i) {
1448 /* Eliminated parameter */
1449 if (tab->var[i].is_row)
1451 col = tab->var[i].index;
1452 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1453 tab->mat->row[row][0]))
1456 for (i = 0; i < tab->n_div; ++i) {
1457 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1459 col = tab->var[tab->n_var - tab->n_div + i].index;
1460 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1461 tab->mat->row[row][0]))
1467 /* Check if the coefficients of the non-parameter variables are all integral.
1469 static int integer_variable(struct isl_tab *tab, int row)
1472 unsigned off = 2 + tab->M;
1474 for (i = tab->n_dead; i < tab->n_col; ++i) {
1475 if (tab->col_var[i] >= 0 &&
1476 (tab->col_var[i] < tab->n_param ||
1477 tab->col_var[i] >= tab->n_var - tab->n_div))
1479 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1480 tab->mat->row[row][0]))
1486 /* Check if the constant term is integral.
1488 static int integer_constant(struct isl_tab *tab, int row)
1490 return isl_int_is_divisible_by(tab->mat->row[row][1],
1491 tab->mat->row[row][0]);
1494 #define I_CST 1 << 0
1495 #define I_PAR 1 << 1
1496 #define I_VAR 1 << 2
1498 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1499 * that is non-integer and therefore requires a cut and return
1500 * the index of the variable.
1501 * For parametric tableaus, there are three parts in a row,
1502 * the constant, the coefficients of the parameters and the rest.
1503 * For each part, we check whether the coefficients in that part
1504 * are all integral and if so, set the corresponding flag in *f.
1505 * If the constant and the parameter part are integral, then the
1506 * current sample value is integral and no cut is required
1507 * (irrespective of whether the variable part is integral).
1509 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1511 var = var < 0 ? tab->n_param : var + 1;
1513 for (; var < tab->n_var - tab->n_div; ++var) {
1516 if (!tab->var[var].is_row)
1518 row = tab->var[var].index;
1519 if (integer_constant(tab, row))
1520 ISL_FL_SET(flags, I_CST);
1521 if (integer_parameter(tab, row))
1522 ISL_FL_SET(flags, I_PAR);
1523 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1525 if (integer_variable(tab, row))
1526 ISL_FL_SET(flags, I_VAR);
1533 /* Check for first (non-parameter) variable that is non-integer and
1534 * therefore requires a cut and return the corresponding row.
1535 * For parametric tableaus, there are three parts in a row,
1536 * the constant, the coefficients of the parameters and the rest.
1537 * For each part, we check whether the coefficients in that part
1538 * are all integral and if so, set the corresponding flag in *f.
1539 * If the constant and the parameter part are integral, then the
1540 * current sample value is integral and no cut is required
1541 * (irrespective of whether the variable part is integral).
1543 static int first_non_integer_row(struct isl_tab *tab, int *f)
1545 int var = next_non_integer_var(tab, -1, f);
1547 return var < 0 ? -1 : tab->var[var].index;
1550 /* Add a (non-parametric) cut to cut away the non-integral sample
1551 * value of the given row.
1553 * If the row is given by
1555 * m r = f + \sum_i a_i y_i
1559 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1561 * The big parameter, if any, is ignored, since it is assumed to be big
1562 * enough to be divisible by any integer.
1563 * If the tableau is actually a parametric tableau, then this function
1564 * is only called when all coefficients of the parameters are integral.
1565 * The cut therefore has zero coefficients for the parameters.
1567 * The current value is known to be negative, so row_sign, if it
1568 * exists, is set accordingly.
1570 * Return the row of the cut or -1.
1572 static int add_cut(struct isl_tab *tab, int row)
1577 unsigned off = 2 + tab->M;
1579 if (isl_tab_extend_cons(tab, 1) < 0)
1581 r = isl_tab_allocate_con(tab);
1585 r_row = tab->mat->row[tab->con[r].index];
1586 isl_int_set(r_row[0], tab->mat->row[row][0]);
1587 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1588 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1589 isl_int_neg(r_row[1], r_row[1]);
1591 isl_int_set_si(r_row[2], 0);
1592 for (i = 0; i < tab->n_col; ++i)
1593 isl_int_fdiv_r(r_row[off + i],
1594 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1596 tab->con[r].is_nonneg = 1;
1597 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1600 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1602 return tab->con[r].index;
1605 /* Given a non-parametric tableau, add cuts until an integer
1606 * sample point is obtained or until the tableau is determined
1607 * to be integer infeasible.
1608 * As long as there is any non-integer value in the sample point,
1609 * we add appropriate cuts, if possible, for each of these
1610 * non-integer values and then resolve the violated
1611 * cut constraints using restore_lexmin.
1612 * If one of the corresponding rows is equal to an integral
1613 * combination of variables/constraints plus a non-integral constant,
1614 * then there is no way to obtain an integer point and we return
1615 * a tableau that is marked empty.
1617 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1628 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1630 if (ISL_FL_ISSET(flags, I_VAR)) {
1631 if (isl_tab_mark_empty(tab) < 0)
1635 row = tab->var[var].index;
1636 row = add_cut(tab, row);
1639 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1640 if (restore_lexmin(tab) < 0)
1651 /* Check whether all the currently active samples also satisfy the inequality
1652 * "ineq" (treated as an equality if eq is set).
1653 * Remove those samples that do not.
1655 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1663 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1664 isl_assert(tab->mat->ctx, tab->samples, goto error);
1665 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1668 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1670 isl_seq_inner_product(ineq, tab->samples->row[i],
1671 1 + tab->n_var, &v);
1672 sgn = isl_int_sgn(v);
1673 if (eq ? (sgn == 0) : (sgn >= 0))
1675 tab = isl_tab_drop_sample(tab, i);
1687 /* Check whether the sample value of the tableau is finite,
1688 * i.e., either the tableau does not use a big parameter, or
1689 * all values of the variables are equal to the big parameter plus
1690 * some constant. This constant is the actual sample value.
1692 static int sample_is_finite(struct isl_tab *tab)
1699 for (i = 0; i < tab->n_var; ++i) {
1701 if (!tab->var[i].is_row)
1703 row = tab->var[i].index;
1704 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1710 /* Check if the context tableau of sol has any integer points.
1711 * Leave tab in empty state if no integer point can be found.
1712 * If an integer point can be found and if moreover it is finite,
1713 * then it is added to the list of sample values.
1715 * This function is only called when none of the currently active sample
1716 * values satisfies the most recently added constraint.
1718 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1720 struct isl_tab_undo *snap;
1725 snap = isl_tab_snap(tab);
1726 if (isl_tab_push_basis(tab) < 0)
1729 tab = cut_to_integer_lexmin(tab);
1733 if (!tab->empty && sample_is_finite(tab)) {
1734 struct isl_vec *sample;
1736 sample = isl_tab_get_sample_value(tab);
1738 tab = isl_tab_add_sample(tab, sample);
1741 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1750 /* Check if any of the currently active sample values satisfies
1751 * the inequality "ineq" (an equality if eq is set).
1753 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1761 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1762 isl_assert(tab->mat->ctx, tab->samples, return -1);
1763 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1766 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1768 isl_seq_inner_product(ineq, tab->samples->row[i],
1769 1 + tab->n_var, &v);
1770 sgn = isl_int_sgn(v);
1771 if (eq ? (sgn == 0) : (sgn >= 0))
1776 return i < tab->n_sample;
1779 /* Add a div specified by "div" to the tableau "tab" and return
1780 * 1 if the div is obviously non-negative.
1782 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1783 int (*add_ineq)(void *user, isl_int *), void *user)
1787 struct isl_mat *samples;
1790 r = isl_tab_add_div(tab, div, add_ineq, user);
1793 nonneg = tab->var[r].is_nonneg;
1794 tab->var[r].frozen = 1;
1796 samples = isl_mat_extend(tab->samples,
1797 tab->n_sample, 1 + tab->n_var);
1798 tab->samples = samples;
1801 for (i = tab->n_outside; i < samples->n_row; ++i) {
1802 isl_seq_inner_product(div->el + 1, samples->row[i],
1803 div->size - 1, &samples->row[i][samples->n_col - 1]);
1804 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1805 samples->row[i][samples->n_col - 1], div->el[0]);
1811 /* Add a div specified by "div" to both the main tableau and
1812 * the context tableau. In case of the main tableau, we only
1813 * need to add an extra div. In the context tableau, we also
1814 * need to express the meaning of the div.
1815 * Return the index of the div or -1 if anything went wrong.
1817 static int add_div(struct isl_tab *tab, struct isl_context *context,
1818 struct isl_vec *div)
1823 if ((nonneg = context->op->add_div(context, div)) < 0)
1826 if (!context->op->is_ok(context))
1829 if (isl_tab_extend_vars(tab, 1) < 0)
1831 r = isl_tab_allocate_var(tab);
1835 tab->var[r].is_nonneg = 1;
1836 tab->var[r].frozen = 1;
1839 return tab->n_div - 1;
1841 context->op->invalidate(context);
1845 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1848 unsigned total = isl_basic_map_total_dim(tab->bmap);
1850 for (i = 0; i < tab->bmap->n_div; ++i) {
1851 if (isl_int_ne(tab->bmap->div[i][0], denom))
1853 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
1860 /* Return the index of a div that corresponds to "div".
1861 * We first check if we already have such a div and if not, we create one.
1863 static int get_div(struct isl_tab *tab, struct isl_context *context,
1864 struct isl_vec *div)
1867 struct isl_tab *context_tab = context->op->peek_tab(context);
1872 d = find_div(context_tab, div->el + 1, div->el[0]);
1876 return add_div(tab, context, div);
1879 /* Add a parametric cut to cut away the non-integral sample value
1881 * Let a_i be the coefficients of the constant term and the parameters
1882 * and let b_i be the coefficients of the variables or constraints
1883 * in basis of the tableau.
1884 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1886 * The cut is expressed as
1888 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1890 * If q did not already exist in the context tableau, then it is added first.
1891 * If q is in a column of the main tableau then the "+ q" can be accomplished
1892 * by setting the corresponding entry to the denominator of the constraint.
1893 * If q happens to be in a row of the main tableau, then the corresponding
1894 * row needs to be added instead (taking care of the denominators).
1895 * Note that this is very unlikely, but perhaps not entirely impossible.
1897 * The current value of the cut is known to be negative (or at least
1898 * non-positive), so row_sign is set accordingly.
1900 * Return the row of the cut or -1.
1902 static int add_parametric_cut(struct isl_tab *tab, int row,
1903 struct isl_context *context)
1905 struct isl_vec *div;
1912 unsigned off = 2 + tab->M;
1917 div = get_row_parameter_div(tab, row);
1922 d = context->op->get_div(context, tab, div);
1926 if (isl_tab_extend_cons(tab, 1) < 0)
1928 r = isl_tab_allocate_con(tab);
1932 r_row = tab->mat->row[tab->con[r].index];
1933 isl_int_set(r_row[0], tab->mat->row[row][0]);
1934 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1935 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1936 isl_int_neg(r_row[1], r_row[1]);
1938 isl_int_set_si(r_row[2], 0);
1939 for (i = 0; i < tab->n_param; ++i) {
1940 if (tab->var[i].is_row)
1942 col = tab->var[i].index;
1943 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1944 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1945 tab->mat->row[row][0]);
1946 isl_int_neg(r_row[off + col], r_row[off + col]);
1948 for (i = 0; i < tab->n_div; ++i) {
1949 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1951 col = tab->var[tab->n_var - tab->n_div + i].index;
1952 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1953 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1954 tab->mat->row[row][0]);
1955 isl_int_neg(r_row[off + col], r_row[off + col]);
1957 for (i = 0; i < tab->n_col; ++i) {
1958 if (tab->col_var[i] >= 0 &&
1959 (tab->col_var[i] < tab->n_param ||
1960 tab->col_var[i] >= tab->n_var - tab->n_div))
1962 isl_int_fdiv_r(r_row[off + i],
1963 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1965 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1967 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1969 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1970 isl_int_divexact(r_row[0], r_row[0], gcd);
1971 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1972 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1973 r_row[0], tab->mat->row[d_row] + 1,
1974 off - 1 + tab->n_col);
1975 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1978 col = tab->var[tab->n_var - tab->n_div + d].index;
1979 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1982 tab->con[r].is_nonneg = 1;
1983 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1986 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1990 row = tab->con[r].index;
1992 if (d >= n && context->op->detect_equalities(context, tab) < 0)
1998 /* Construct a tableau for bmap that can be used for computing
1999 * the lexicographic minimum (or maximum) of bmap.
2000 * If not NULL, then dom is the domain where the minimum
2001 * should be computed. In this case, we set up a parametric
2002 * tableau with row signs (initialized to "unknown").
2003 * If M is set, then the tableau will use a big parameter.
2004 * If max is set, then a maximum should be computed instead of a minimum.
2005 * This means that for each variable x, the tableau will contain the variable
2006 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2007 * of the variables in all constraints are negated prior to adding them
2010 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
2011 struct isl_basic_set *dom, unsigned M, int max)
2014 struct isl_tab *tab;
2016 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2017 isl_basic_map_total_dim(bmap), M);
2021 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2023 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
2024 tab->n_div = dom->n_div;
2025 tab->row_sign = isl_calloc_array(bmap->ctx,
2026 enum isl_tab_row_sign, tab->mat->n_row);
2030 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2031 if (isl_tab_mark_empty(tab) < 0)
2036 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2037 tab->var[i].is_nonneg = 1;
2038 tab->var[i].frozen = 1;
2040 for (i = 0; i < bmap->n_eq; ++i) {
2042 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2043 bmap->eq[i] + 1 + tab->n_param,
2044 tab->n_var - tab->n_param - tab->n_div);
2045 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2047 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2048 bmap->eq[i] + 1 + tab->n_param,
2049 tab->n_var - tab->n_param - tab->n_div);
2050 if (!tab || tab->empty)
2053 if (bmap->n_eq && restore_lexmin(tab) < 0)
2055 for (i = 0; i < bmap->n_ineq; ++i) {
2057 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2058 bmap->ineq[i] + 1 + tab->n_param,
2059 tab->n_var - tab->n_param - tab->n_div);
2060 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2062 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2063 bmap->ineq[i] + 1 + tab->n_param,
2064 tab->n_var - tab->n_param - tab->n_div);
2065 if (!tab || tab->empty)
2074 /* Given a main tableau where more than one row requires a split,
2075 * determine and return the "best" row to split on.
2077 * Given two rows in the main tableau, if the inequality corresponding
2078 * to the first row is redundant with respect to that of the second row
2079 * in the current tableau, then it is better to split on the second row,
2080 * since in the positive part, both row will be positive.
2081 * (In the negative part a pivot will have to be performed and just about
2082 * anything can happen to the sign of the other row.)
2084 * As a simple heuristic, we therefore select the row that makes the most
2085 * of the other rows redundant.
2087 * Perhaps it would also be useful to look at the number of constraints
2088 * that conflict with any given constraint.
2090 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2092 struct isl_tab_undo *snap;
2098 if (isl_tab_extend_cons(context_tab, 2) < 0)
2101 snap = isl_tab_snap(context_tab);
2103 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2104 struct isl_tab_undo *snap2;
2105 struct isl_vec *ineq = NULL;
2109 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2111 if (tab->row_sign[split] != isl_tab_row_any)
2114 ineq = get_row_parameter_ineq(tab, split);
2117 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2122 snap2 = isl_tab_snap(context_tab);
2124 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2125 struct isl_tab_var *var;
2129 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2131 if (tab->row_sign[row] != isl_tab_row_any)
2134 ineq = get_row_parameter_ineq(tab, row);
2137 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2141 var = &context_tab->con[context_tab->n_con - 1];
2142 if (!context_tab->empty &&
2143 !isl_tab_min_at_most_neg_one(context_tab, var))
2145 if (isl_tab_rollback(context_tab, snap2) < 0)
2148 if (best == -1 || r > best_r) {
2152 if (isl_tab_rollback(context_tab, snap) < 0)
2159 static struct isl_basic_set *context_lex_peek_basic_set(
2160 struct isl_context *context)
2162 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2165 return isl_tab_peek_bset(clex->tab);
2168 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2170 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2174 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2175 int check, int update)
2177 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2178 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2180 if (add_lexmin_eq(clex->tab, eq) < 0)
2183 int v = tab_has_valid_sample(clex->tab, eq, 1);
2187 clex->tab = check_integer_feasible(clex->tab);
2190 clex->tab = check_samples(clex->tab, eq, 1);
2193 isl_tab_free(clex->tab);
2197 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2198 int check, int update)
2200 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2201 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2203 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2205 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2209 clex->tab = check_integer_feasible(clex->tab);
2212 clex->tab = check_samples(clex->tab, ineq, 0);
2215 isl_tab_free(clex->tab);
2219 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2221 struct isl_context *context = (struct isl_context *)user;
2222 context_lex_add_ineq(context, ineq, 0, 0);
2223 return context->op->is_ok(context) ? 0 : -1;
2226 /* Check which signs can be obtained by "ineq" on all the currently
2227 * active sample values. See row_sign for more information.
2229 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2235 enum isl_tab_row_sign res = isl_tab_row_unknown;
2237 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2238 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2239 return isl_tab_row_unknown);
2242 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2243 isl_seq_inner_product(tab->samples->row[i], ineq,
2244 1 + tab->n_var, &tmp);
2245 sgn = isl_int_sgn(tmp);
2246 if (sgn > 0 || (sgn == 0 && strict)) {
2247 if (res == isl_tab_row_unknown)
2248 res = isl_tab_row_pos;
2249 if (res == isl_tab_row_neg)
2250 res = isl_tab_row_any;
2253 if (res == isl_tab_row_unknown)
2254 res = isl_tab_row_neg;
2255 if (res == isl_tab_row_pos)
2256 res = isl_tab_row_any;
2258 if (res == isl_tab_row_any)
2266 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2267 isl_int *ineq, int strict)
2269 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2270 return tab_ineq_sign(clex->tab, ineq, strict);
2273 /* Check whether "ineq" can be added to the tableau without rendering
2276 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2278 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2279 struct isl_tab_undo *snap;
2285 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2288 snap = isl_tab_snap(clex->tab);
2289 if (isl_tab_push_basis(clex->tab) < 0)
2291 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2292 clex->tab = check_integer_feasible(clex->tab);
2295 feasible = !clex->tab->empty;
2296 if (isl_tab_rollback(clex->tab, snap) < 0)
2302 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2303 struct isl_vec *div)
2305 return get_div(tab, context, div);
2308 /* Add a div specified by "div" to the context tableau and return
2309 * 1 if the div is obviously non-negative.
2310 * context_tab_add_div will always return 1, because all variables
2311 * in a isl_context_lex tableau are non-negative.
2312 * However, if we are using a big parameter in the context, then this only
2313 * reflects the non-negativity of the variable used to _encode_ the
2314 * div, i.e., div' = M + div, so we can't draw any conclusions.
2316 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2318 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2320 nonneg = context_tab_add_div(clex->tab, div,
2321 context_lex_add_ineq_wrap, context);
2329 static int context_lex_detect_equalities(struct isl_context *context,
2330 struct isl_tab *tab)
2335 static int context_lex_best_split(struct isl_context *context,
2336 struct isl_tab *tab)
2338 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2339 struct isl_tab_undo *snap;
2342 snap = isl_tab_snap(clex->tab);
2343 if (isl_tab_push_basis(clex->tab) < 0)
2345 r = best_split(tab, clex->tab);
2347 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2353 static int context_lex_is_empty(struct isl_context *context)
2355 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2358 return clex->tab->empty;
2361 static void *context_lex_save(struct isl_context *context)
2363 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2364 struct isl_tab_undo *snap;
2366 snap = isl_tab_snap(clex->tab);
2367 if (isl_tab_push_basis(clex->tab) < 0)
2369 if (isl_tab_save_samples(clex->tab) < 0)
2375 static void context_lex_restore(struct isl_context *context, void *save)
2377 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2378 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2379 isl_tab_free(clex->tab);
2384 static int context_lex_is_ok(struct isl_context *context)
2386 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2390 /* For each variable in the context tableau, check if the variable can
2391 * only attain non-negative values. If so, mark the parameter as non-negative
2392 * in the main tableau. This allows for a more direct identification of some
2393 * cases of violated constraints.
2395 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2396 struct isl_tab *context_tab)
2399 struct isl_tab_undo *snap;
2400 struct isl_vec *ineq = NULL;
2401 struct isl_tab_var *var;
2404 if (context_tab->n_var == 0)
2407 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2411 if (isl_tab_extend_cons(context_tab, 1) < 0)
2414 snap = isl_tab_snap(context_tab);
2417 isl_seq_clr(ineq->el, ineq->size);
2418 for (i = 0; i < context_tab->n_var; ++i) {
2419 isl_int_set_si(ineq->el[1 + i], 1);
2420 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2422 var = &context_tab->con[context_tab->n_con - 1];
2423 if (!context_tab->empty &&
2424 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2426 if (i >= tab->n_param)
2427 j = i - tab->n_param + tab->n_var - tab->n_div;
2428 tab->var[j].is_nonneg = 1;
2431 isl_int_set_si(ineq->el[1 + i], 0);
2432 if (isl_tab_rollback(context_tab, snap) < 0)
2436 if (context_tab->M && n == context_tab->n_var) {
2437 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2449 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2450 struct isl_context *context, struct isl_tab *tab)
2452 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2453 struct isl_tab_undo *snap;
2458 snap = isl_tab_snap(clex->tab);
2459 if (isl_tab_push_basis(clex->tab) < 0)
2462 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2464 if (isl_tab_rollback(clex->tab, snap) < 0)
2473 static void context_lex_invalidate(struct isl_context *context)
2475 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2476 isl_tab_free(clex->tab);
2480 static void context_lex_free(struct isl_context *context)
2482 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2483 isl_tab_free(clex->tab);
2487 struct isl_context_op isl_context_lex_op = {
2488 context_lex_detect_nonnegative_parameters,
2489 context_lex_peek_basic_set,
2490 context_lex_peek_tab,
2492 context_lex_add_ineq,
2493 context_lex_ineq_sign,
2494 context_lex_test_ineq,
2495 context_lex_get_div,
2496 context_lex_add_div,
2497 context_lex_detect_equalities,
2498 context_lex_best_split,
2499 context_lex_is_empty,
2502 context_lex_restore,
2503 context_lex_invalidate,
2507 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2509 struct isl_tab *tab;
2511 bset = isl_basic_set_cow(bset);
2514 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2517 if (isl_tab_track_bset(tab, bset) < 0)
2519 tab = isl_tab_init_samples(tab);
2522 isl_basic_set_free(bset);
2526 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2528 struct isl_context_lex *clex;
2533 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2537 clex->context.op = &isl_context_lex_op;
2539 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2540 if (restore_lexmin(clex->tab) < 0)
2542 clex->tab = check_integer_feasible(clex->tab);
2546 return &clex->context;
2548 clex->context.op->free(&clex->context);
2552 struct isl_context_gbr {
2553 struct isl_context context;
2554 struct isl_tab *tab;
2555 struct isl_tab *shifted;
2556 struct isl_tab *cone;
2559 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2560 struct isl_context *context, struct isl_tab *tab)
2562 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2565 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2568 static struct isl_basic_set *context_gbr_peek_basic_set(
2569 struct isl_context *context)
2571 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2574 return isl_tab_peek_bset(cgbr->tab);
2577 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2579 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2583 /* Initialize the "shifted" tableau of the context, which
2584 * contains the constraints of the original tableau shifted
2585 * by the sum of all negative coefficients. This ensures
2586 * that any rational point in the shifted tableau can
2587 * be rounded up to yield an integer point in the original tableau.
2589 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2592 struct isl_vec *cst;
2593 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2594 unsigned dim = isl_basic_set_total_dim(bset);
2596 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2600 for (i = 0; i < bset->n_ineq; ++i) {
2601 isl_int_set(cst->el[i], bset->ineq[i][0]);
2602 for (j = 0; j < dim; ++j) {
2603 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2605 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2606 bset->ineq[i][1 + j]);
2610 cgbr->shifted = isl_tab_from_basic_set(bset);
2612 for (i = 0; i < bset->n_ineq; ++i)
2613 isl_int_set(bset->ineq[i][0], cst->el[i]);
2618 /* Check if the shifted tableau is non-empty, and if so
2619 * use the sample point to construct an integer point
2620 * of the context tableau.
2622 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2624 struct isl_vec *sample;
2627 gbr_init_shifted(cgbr);
2630 if (cgbr->shifted->empty)
2631 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2633 sample = isl_tab_get_sample_value(cgbr->shifted);
2634 sample = isl_vec_ceil(sample);
2639 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2646 for (i = 0; i < bset->n_eq; ++i)
2647 isl_int_set_si(bset->eq[i][0], 0);
2649 for (i = 0; i < bset->n_ineq; ++i)
2650 isl_int_set_si(bset->ineq[i][0], 0);
2655 static int use_shifted(struct isl_context_gbr *cgbr)
2657 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2660 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2662 struct isl_basic_set *bset;
2663 struct isl_basic_set *cone;
2665 if (isl_tab_sample_is_integer(cgbr->tab))
2666 return isl_tab_get_sample_value(cgbr->tab);
2668 if (use_shifted(cgbr)) {
2669 struct isl_vec *sample;
2671 sample = gbr_get_shifted_sample(cgbr);
2672 if (!sample || sample->size > 0)
2675 isl_vec_free(sample);
2679 bset = isl_tab_peek_bset(cgbr->tab);
2680 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2683 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2686 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2689 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2690 struct isl_vec *sample;
2691 struct isl_tab_undo *snap;
2693 if (cgbr->tab->basis) {
2694 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2695 isl_mat_free(cgbr->tab->basis);
2696 cgbr->tab->basis = NULL;
2698 cgbr->tab->n_zero = 0;
2699 cgbr->tab->n_unbounded = 0;
2702 snap = isl_tab_snap(cgbr->tab);
2704 sample = isl_tab_sample(cgbr->tab);
2706 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2707 isl_vec_free(sample);
2714 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2715 cone = drop_constant_terms(cone);
2716 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2717 cone = isl_basic_set_underlying_set(cone);
2718 cone = isl_basic_set_gauss(cone, NULL);
2720 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2721 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2722 bset = isl_basic_set_underlying_set(bset);
2723 bset = isl_basic_set_gauss(bset, NULL);
2725 return isl_basic_set_sample_with_cone(bset, cone);
2728 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2730 struct isl_vec *sample;
2735 if (cgbr->tab->empty)
2738 sample = gbr_get_sample(cgbr);
2742 if (sample->size == 0) {
2743 isl_vec_free(sample);
2744 if (isl_tab_mark_empty(cgbr->tab) < 0)
2749 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2753 isl_tab_free(cgbr->tab);
2757 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2762 if (isl_tab_extend_cons(tab, 2) < 0)
2765 if (isl_tab_add_eq(tab, eq) < 0)
2774 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2775 int check, int update)
2777 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2779 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2781 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2782 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2784 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
2789 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2793 check_gbr_integer_feasible(cgbr);
2796 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2799 isl_tab_free(cgbr->tab);
2803 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2808 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2811 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2814 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2817 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2819 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2822 for (i = 0; i < dim; ++i) {
2823 if (!isl_int_is_neg(ineq[1 + i]))
2825 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2828 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2831 for (i = 0; i < dim; ++i) {
2832 if (!isl_int_is_neg(ineq[1 + i]))
2834 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2838 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2839 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2841 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2847 isl_tab_free(cgbr->tab);
2851 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2852 int check, int update)
2854 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2856 add_gbr_ineq(cgbr, ineq);
2861 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2865 check_gbr_integer_feasible(cgbr);
2868 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2871 isl_tab_free(cgbr->tab);
2875 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2877 struct isl_context *context = (struct isl_context *)user;
2878 context_gbr_add_ineq(context, ineq, 0, 0);
2879 return context->op->is_ok(context) ? 0 : -1;
2882 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2883 isl_int *ineq, int strict)
2885 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2886 return tab_ineq_sign(cgbr->tab, ineq, strict);
2889 /* Check whether "ineq" can be added to the tableau without rendering
2892 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2894 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2895 struct isl_tab_undo *snap;
2896 struct isl_tab_undo *shifted_snap = NULL;
2897 struct isl_tab_undo *cone_snap = NULL;
2903 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2906 snap = isl_tab_snap(cgbr->tab);
2908 shifted_snap = isl_tab_snap(cgbr->shifted);
2910 cone_snap = isl_tab_snap(cgbr->cone);
2911 add_gbr_ineq(cgbr, ineq);
2912 check_gbr_integer_feasible(cgbr);
2915 feasible = !cgbr->tab->empty;
2916 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2919 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2921 } else if (cgbr->shifted) {
2922 isl_tab_free(cgbr->shifted);
2923 cgbr->shifted = NULL;
2926 if (isl_tab_rollback(cgbr->cone, cone_snap))
2928 } else if (cgbr->cone) {
2929 isl_tab_free(cgbr->cone);
2936 /* Return the column of the last of the variables associated to
2937 * a column that has a non-zero coefficient.
2938 * This function is called in a context where only coefficients
2939 * of parameters or divs can be non-zero.
2941 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2946 if (tab->n_var == 0)
2949 for (i = tab->n_var - 1; i >= 0; --i) {
2950 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2952 if (tab->var[i].is_row)
2954 col = tab->var[i].index;
2955 if (!isl_int_is_zero(p[col]))
2962 /* Look through all the recently added equalities in the context
2963 * to see if we can propagate any of them to the main tableau.
2965 * The newly added equalities in the context are encoded as pairs
2966 * of inequalities starting at inequality "first".
2968 * We tentatively add each of these equalities to the main tableau
2969 * and if this happens to result in a row with a final coefficient
2970 * that is one or negative one, we use it to kill a column
2971 * in the main tableau. Otherwise, we discard the tentatively
2974 static void propagate_equalities(struct isl_context_gbr *cgbr,
2975 struct isl_tab *tab, unsigned first)
2978 struct isl_vec *eq = NULL;
2980 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2984 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2987 isl_seq_clr(eq->el + 1 + tab->n_param,
2988 tab->n_var - tab->n_param - tab->n_div);
2989 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2992 struct isl_tab_undo *snap;
2993 snap = isl_tab_snap(tab);
2995 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
2996 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
2997 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
3000 r = isl_tab_add_row(tab, eq->el);
3003 r = tab->con[r].index;
3004 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
3005 if (j < 0 || j < tab->n_dead ||
3006 !isl_int_is_one(tab->mat->row[r][0]) ||
3007 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
3008 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
3009 if (isl_tab_rollback(tab, snap) < 0)
3013 if (isl_tab_pivot(tab, r, j) < 0)
3015 if (isl_tab_kill_col(tab, j) < 0)
3018 if (restore_lexmin(tab) < 0)
3027 isl_tab_free(cgbr->tab);
3031 static int context_gbr_detect_equalities(struct isl_context *context,
3032 struct isl_tab *tab)
3034 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3035 struct isl_ctx *ctx;
3038 ctx = cgbr->tab->mat->ctx;
3041 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3042 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3045 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
3048 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3051 n_ineq = cgbr->tab->bmap->n_ineq;
3052 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3053 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3054 propagate_equalities(cgbr, tab, n_ineq);
3058 isl_tab_free(cgbr->tab);
3063 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3064 struct isl_vec *div)
3066 return get_div(tab, context, div);
3069 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
3071 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3075 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3077 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3079 if (isl_tab_allocate_var(cgbr->cone) <0)
3082 cgbr->cone->bmap = isl_basic_map_extend_space(cgbr->cone->bmap,
3083 isl_basic_map_get_space(cgbr->cone->bmap), 1, 0, 2);
3084 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3087 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3088 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3091 return context_tab_add_div(cgbr->tab, div,
3092 context_gbr_add_ineq_wrap, context);
3095 static int context_gbr_best_split(struct isl_context *context,
3096 struct isl_tab *tab)
3098 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3099 struct isl_tab_undo *snap;
3102 snap = isl_tab_snap(cgbr->tab);
3103 r = best_split(tab, cgbr->tab);
3105 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3111 static int context_gbr_is_empty(struct isl_context *context)
3113 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3116 return cgbr->tab->empty;
3119 struct isl_gbr_tab_undo {
3120 struct isl_tab_undo *tab_snap;
3121 struct isl_tab_undo *shifted_snap;
3122 struct isl_tab_undo *cone_snap;
3125 static void *context_gbr_save(struct isl_context *context)
3127 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3128 struct isl_gbr_tab_undo *snap;
3130 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3134 snap->tab_snap = isl_tab_snap(cgbr->tab);
3135 if (isl_tab_save_samples(cgbr->tab) < 0)
3139 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3141 snap->shifted_snap = NULL;
3144 snap->cone_snap = isl_tab_snap(cgbr->cone);
3146 snap->cone_snap = NULL;
3154 static void context_gbr_restore(struct isl_context *context, void *save)
3156 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3157 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3160 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3161 isl_tab_free(cgbr->tab);
3165 if (snap->shifted_snap) {
3166 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3168 } else if (cgbr->shifted) {
3169 isl_tab_free(cgbr->shifted);
3170 cgbr->shifted = NULL;
3173 if (snap->cone_snap) {
3174 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3176 } else if (cgbr->cone) {
3177 isl_tab_free(cgbr->cone);
3186 isl_tab_free(cgbr->tab);
3190 static int context_gbr_is_ok(struct isl_context *context)
3192 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3196 static void context_gbr_invalidate(struct isl_context *context)
3198 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3199 isl_tab_free(cgbr->tab);
3203 static void context_gbr_free(struct isl_context *context)
3205 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3206 isl_tab_free(cgbr->tab);
3207 isl_tab_free(cgbr->shifted);
3208 isl_tab_free(cgbr->cone);
3212 struct isl_context_op isl_context_gbr_op = {
3213 context_gbr_detect_nonnegative_parameters,
3214 context_gbr_peek_basic_set,
3215 context_gbr_peek_tab,
3217 context_gbr_add_ineq,
3218 context_gbr_ineq_sign,
3219 context_gbr_test_ineq,
3220 context_gbr_get_div,
3221 context_gbr_add_div,
3222 context_gbr_detect_equalities,
3223 context_gbr_best_split,
3224 context_gbr_is_empty,
3227 context_gbr_restore,
3228 context_gbr_invalidate,
3232 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3234 struct isl_context_gbr *cgbr;
3239 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3243 cgbr->context.op = &isl_context_gbr_op;
3245 cgbr->shifted = NULL;
3247 cgbr->tab = isl_tab_from_basic_set(dom);
3248 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3251 if (isl_tab_track_bset(cgbr->tab,
3252 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3254 check_gbr_integer_feasible(cgbr);
3256 return &cgbr->context;
3258 cgbr->context.op->free(&cgbr->context);
3262 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3267 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3268 return isl_context_lex_alloc(dom);
3270 return isl_context_gbr_alloc(dom);
3273 /* Construct an isl_sol_map structure for accumulating the solution.
3274 * If track_empty is set, then we also keep track of the parts
3275 * of the context where there is no solution.
3276 * If max is set, then we are solving a maximization, rather than
3277 * a minimization problem, which means that the variables in the
3278 * tableau have value "M - x" rather than "M + x".
3280 static struct isl_sol *sol_map_init(struct isl_basic_map *bmap,
3281 struct isl_basic_set *dom, int track_empty, int max)
3283 struct isl_sol_map *sol_map = NULL;
3288 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3292 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3293 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3294 sol_map->sol.dec_level.sol = &sol_map->sol;
3295 sol_map->sol.max = max;
3296 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3297 sol_map->sol.add = &sol_map_add_wrap;
3298 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3299 sol_map->sol.free = &sol_map_free_wrap;
3300 sol_map->map = isl_map_alloc_space(isl_basic_map_get_space(bmap), 1,
3305 sol_map->sol.context = isl_context_alloc(dom);
3306 if (!sol_map->sol.context)
3310 sol_map->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
3311 1, ISL_SET_DISJOINT);
3312 if (!sol_map->empty)
3316 isl_basic_set_free(dom);
3317 return &sol_map->sol;
3319 isl_basic_set_free(dom);
3320 sol_map_free(sol_map);
3324 /* Check whether all coefficients of (non-parameter) variables
3325 * are non-positive, meaning that no pivots can be performed on the row.
3327 static int is_critical(struct isl_tab *tab, int row)
3330 unsigned off = 2 + tab->M;
3332 for (j = tab->n_dead; j < tab->n_col; ++j) {
3333 if (tab->col_var[j] >= 0 &&
3334 (tab->col_var[j] < tab->n_param ||
3335 tab->col_var[j] >= tab->n_var - tab->n_div))
3338 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3345 /* Check whether the inequality represented by vec is strict over the integers,
3346 * i.e., there are no integer values satisfying the constraint with
3347 * equality. This happens if the gcd of the coefficients is not a divisor
3348 * of the constant term. If so, scale the constraint down by the gcd
3349 * of the coefficients.
3351 static int is_strict(struct isl_vec *vec)
3357 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3358 if (!isl_int_is_one(gcd)) {
3359 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3360 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3361 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3368 /* Determine the sign of the given row of the main tableau.
3369 * The result is one of
3370 * isl_tab_row_pos: always non-negative; no pivot needed
3371 * isl_tab_row_neg: always non-positive; pivot
3372 * isl_tab_row_any: can be both positive and negative; split
3374 * We first handle some simple cases
3375 * - the row sign may be known already
3376 * - the row may be obviously non-negative
3377 * - the parametric constant may be equal to that of another row
3378 * for which we know the sign. This sign will be either "pos" or
3379 * "any". If it had been "neg" then we would have pivoted before.
3381 * If none of these cases hold, we check the value of the row for each
3382 * of the currently active samples. Based on the signs of these values
3383 * we make an initial determination of the sign of the row.
3385 * all zero -> unk(nown)
3386 * all non-negative -> pos
3387 * all non-positive -> neg
3388 * both negative and positive -> all
3390 * If we end up with "all", we are done.
3391 * Otherwise, we perform a check for positive and/or negative
3392 * values as follows.
3394 * samples neg unk pos
3400 * There is no special sign for "zero", because we can usually treat zero
3401 * as either non-negative or non-positive, whatever works out best.
3402 * However, if the row is "critical", meaning that pivoting is impossible
3403 * then we don't want to limp zero with the non-positive case, because
3404 * then we we would lose the solution for those values of the parameters
3405 * where the value of the row is zero. Instead, we treat 0 as non-negative
3406 * ensuring a split if the row can attain both zero and negative values.
3407 * The same happens when the original constraint was one that could not
3408 * be satisfied with equality by any integer values of the parameters.
3409 * In this case, we normalize the constraint, but then a value of zero
3410 * for the normalized constraint is actually a positive value for the
3411 * original constraint, so again we need to treat zero as non-negative.
3412 * In both these cases, we have the following decision tree instead:
3414 * all non-negative -> pos
3415 * all negative -> neg
3416 * both negative and non-negative -> all
3424 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3425 struct isl_sol *sol, int row)
3427 struct isl_vec *ineq = NULL;
3428 enum isl_tab_row_sign res = isl_tab_row_unknown;
3433 if (tab->row_sign[row] != isl_tab_row_unknown)
3434 return tab->row_sign[row];
3435 if (is_obviously_nonneg(tab, row))
3436 return isl_tab_row_pos;
3437 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3438 if (tab->row_sign[row2] == isl_tab_row_unknown)
3440 if (identical_parameter_line(tab, row, row2))
3441 return tab->row_sign[row2];
3444 critical = is_critical(tab, row);
3446 ineq = get_row_parameter_ineq(tab, row);
3450 strict = is_strict(ineq);
3452 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3453 critical || strict);
3455 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3456 /* test for negative values */
3458 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3459 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3461 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3465 res = isl_tab_row_pos;
3467 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3469 if (res == isl_tab_row_neg) {
3470 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3471 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3475 if (res == isl_tab_row_neg) {
3476 /* test for positive values */
3478 if (!critical && !strict)
3479 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3481 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3485 res = isl_tab_row_any;
3492 return isl_tab_row_unknown;
3495 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3497 /* Find solutions for values of the parameters that satisfy the given
3500 * We currently take a snapshot of the context tableau that is reset
3501 * when we return from this function, while we make a copy of the main
3502 * tableau, leaving the original main tableau untouched.
3503 * These are fairly arbitrary choices. Making a copy also of the context
3504 * tableau would obviate the need to undo any changes made to it later,
3505 * while taking a snapshot of the main tableau could reduce memory usage.
3506 * If we were to switch to taking a snapshot of the main tableau,
3507 * we would have to keep in mind that we need to save the row signs
3508 * and that we need to do this before saving the current basis
3509 * such that the basis has been restore before we restore the row signs.
3511 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3517 saved = sol->context->op->save(sol->context);
3519 tab = isl_tab_dup(tab);
3523 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3525 find_solutions(sol, tab);
3528 sol->context->op->restore(sol->context, saved);
3534 /* Record the absence of solutions for those values of the parameters
3535 * that do not satisfy the given inequality with equality.
3537 static void no_sol_in_strict(struct isl_sol *sol,
3538 struct isl_tab *tab, struct isl_vec *ineq)
3543 if (!sol->context || sol->error)
3545 saved = sol->context->op->save(sol->context);
3547 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3549 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3558 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3560 sol->context->op->restore(sol->context, saved);
3566 /* Compute the lexicographic minimum of the set represented by the main
3567 * tableau "tab" within the context "sol->context_tab".
3568 * On entry the sample value of the main tableau is lexicographically
3569 * less than or equal to this lexicographic minimum.
3570 * Pivots are performed until a feasible point is found, which is then
3571 * necessarily equal to the minimum, or until the tableau is found to
3572 * be infeasible. Some pivots may need to be performed for only some
3573 * feasible values of the context tableau. If so, the context tableau
3574 * is split into a part where the pivot is needed and a part where it is not.
3576 * Whenever we enter the main loop, the main tableau is such that no
3577 * "obvious" pivots need to be performed on it, where "obvious" means
3578 * that the given row can be seen to be negative without looking at
3579 * the context tableau. In particular, for non-parametric problems,
3580 * no pivots need to be performed on the main tableau.
3581 * The caller of find_solutions is responsible for making this property
3582 * hold prior to the first iteration of the loop, while restore_lexmin
3583 * is called before every other iteration.
3585 * Inside the main loop, we first examine the signs of the rows of
3586 * the main tableau within the context of the context tableau.
3587 * If we find a row that is always non-positive for all values of
3588 * the parameters satisfying the context tableau and negative for at
3589 * least one value of the parameters, we perform the appropriate pivot
3590 * and start over. An exception is the case where no pivot can be
3591 * performed on the row. In this case, we require that the sign of
3592 * the row is negative for all values of the parameters (rather than just
3593 * non-positive). This special case is handled inside row_sign, which
3594 * will say that the row can have any sign if it determines that it can
3595 * attain both negative and zero values.
3597 * If we can't find a row that always requires a pivot, but we can find
3598 * one or more rows that require a pivot for some values of the parameters
3599 * (i.e., the row can attain both positive and negative signs), then we split
3600 * the context tableau into two parts, one where we force the sign to be
3601 * non-negative and one where we force is to be negative.
3602 * The non-negative part is handled by a recursive call (through find_in_pos).
3603 * Upon returning from this call, we continue with the negative part and
3604 * perform the required pivot.
3606 * If no such rows can be found, all rows are non-negative and we have
3607 * found a (rational) feasible point. If we only wanted a rational point
3609 * Otherwise, we check if all values of the sample point of the tableau
3610 * are integral for the variables. If so, we have found the minimal
3611 * integral point and we are done.
3612 * If the sample point is not integral, then we need to make a distinction
3613 * based on whether the constant term is non-integral or the coefficients
3614 * of the parameters. Furthermore, in order to decide how to handle
3615 * the non-integrality, we also need to know whether the coefficients
3616 * of the other columns in the tableau are integral. This leads
3617 * to the following table. The first two rows do not correspond
3618 * to a non-integral sample point and are only mentioned for completeness.
3620 * constant parameters other
3623 * int int rat | -> no problem
3625 * rat int int -> fail
3627 * rat int rat -> cut
3630 * rat rat rat | -> parametric cut
3633 * rat rat int | -> split context
3635 * If the parametric constant is completely integral, then there is nothing
3636 * to be done. If the constant term is non-integral, but all the other
3637 * coefficient are integral, then there is nothing that can be done
3638 * and the tableau has no integral solution.
3639 * If, on the other hand, one or more of the other columns have rational
3640 * coefficients, but the parameter coefficients are all integral, then
3641 * we can perform a regular (non-parametric) cut.
3642 * Finally, if there is any parameter coefficient that is non-integral,
3643 * then we need to involve the context tableau. There are two cases here.
3644 * If at least one other column has a rational coefficient, then we
3645 * can perform a parametric cut in the main tableau by adding a new
3646 * integer division in the context tableau.
3647 * If all other columns have integral coefficients, then we need to
3648 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3649 * is always integral. We do this by introducing an integer division
3650 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3651 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3652 * Since q is expressed in the tableau as
3653 * c + \sum a_i y_i - m q >= 0
3654 * -c - \sum a_i y_i + m q + m - 1 >= 0
3655 * it is sufficient to add the inequality
3656 * -c - \sum a_i y_i + m q >= 0
3657 * In the part of the context where this inequality does not hold, the
3658 * main tableau is marked as being empty.
3660 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3662 struct isl_context *context;
3665 if (!tab || sol->error)
3668 context = sol->context;
3672 if (context->op->is_empty(context))
3675 for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) {
3678 enum isl_tab_row_sign sgn;
3682 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3683 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3685 sgn = row_sign(tab, sol, row);
3688 tab->row_sign[row] = sgn;
3689 if (sgn == isl_tab_row_any)
3691 if (sgn == isl_tab_row_any && split == -1)
3693 if (sgn == isl_tab_row_neg)
3696 if (row < tab->n_row)
3699 struct isl_vec *ineq;
3701 split = context->op->best_split(context, tab);
3704 ineq = get_row_parameter_ineq(tab, split);
3708 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3709 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3711 if (tab->row_sign[row] == isl_tab_row_any)
3712 tab->row_sign[row] = isl_tab_row_unknown;
3714 tab->row_sign[split] = isl_tab_row_pos;
3716 find_in_pos(sol, tab, ineq->el);
3717 tab->row_sign[split] = isl_tab_row_neg;
3719 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3720 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3722 context->op->add_ineq(context, ineq->el, 0, 1);
3730 row = first_non_integer_row(tab, &flags);
3733 if (ISL_FL_ISSET(flags, I_PAR)) {
3734 if (ISL_FL_ISSET(flags, I_VAR)) {
3735 if (isl_tab_mark_empty(tab) < 0)
3739 row = add_cut(tab, row);
3740 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3741 struct isl_vec *div;
3742 struct isl_vec *ineq;
3744 div = get_row_split_div(tab, row);
3747 d = context->op->get_div(context, tab, div);
3751 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3755 no_sol_in_strict(sol, tab, ineq);
3756 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3757 context->op->add_ineq(context, ineq->el, 1, 1);
3759 if (sol->error || !context->op->is_ok(context))
3761 tab = set_row_cst_to_div(tab, row, d);
3762 if (context->op->is_empty(context))
3765 row = add_parametric_cut(tab, row, context);
3780 /* Compute the lexicographic minimum of the set represented by the main
3781 * tableau "tab" within the context "sol->context_tab".
3783 * As a preprocessing step, we first transfer all the purely parametric
3784 * equalities from the main tableau to the context tableau, i.e.,
3785 * parameters that have been pivoted to a row.
3786 * These equalities are ignored by the main algorithm, because the
3787 * corresponding rows may not be marked as being non-negative.
3788 * In parts of the context where the added equality does not hold,
3789 * the main tableau is marked as being empty.
3791 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3800 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3804 if (tab->row_var[row] < 0)
3806 if (tab->row_var[row] >= tab->n_param &&
3807 tab->row_var[row] < tab->n_var - tab->n_div)
3809 if (tab->row_var[row] < tab->n_param)
3810 p = tab->row_var[row];
3812 p = tab->row_var[row]
3813 + tab->n_param - (tab->n_var - tab->n_div);
3815 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3818 get_row_parameter_line(tab, row, eq->el);
3819 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3820 eq = isl_vec_normalize(eq);
3823 no_sol_in_strict(sol, tab, eq);
3825 isl_seq_neg(eq->el, eq->el, eq->size);
3827 no_sol_in_strict(sol, tab, eq);
3828 isl_seq_neg(eq->el, eq->el, eq->size);
3830 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3834 if (isl_tab_mark_redundant(tab, row) < 0)
3837 if (sol->context->op->is_empty(sol->context))
3840 row = tab->n_redundant - 1;
3843 find_solutions(sol, tab);
3854 /* Check if integer division "div" of "dom" also occurs in "bmap".
3855 * If so, return its position within the divs.
3856 * If not, return -1.
3858 static int find_context_div(struct isl_basic_map *bmap,
3859 struct isl_basic_set *dom, unsigned div)
3862 unsigned b_dim = isl_space_dim(bmap->dim, isl_dim_all);
3863 unsigned d_dim = isl_space_dim(dom->dim, isl_dim_all);
3865 if (isl_int_is_zero(dom->div[div][0]))
3867 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3870 for (i = 0; i < bmap->n_div; ++i) {
3871 if (isl_int_is_zero(bmap->div[i][0]))
3873 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3874 (b_dim - d_dim) + bmap->n_div) != -1)
3876 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3882 /* The correspondence between the variables in the main tableau,
3883 * the context tableau, and the input map and domain is as follows.
3884 * The first n_param and the last n_div variables of the main tableau
3885 * form the variables of the context tableau.
3886 * In the basic map, these n_param variables correspond to the
3887 * parameters and the input dimensions. In the domain, they correspond
3888 * to the parameters and the set dimensions.
3889 * The n_div variables correspond to the integer divisions in the domain.
3890 * To ensure that everything lines up, we may need to copy some of the
3891 * integer divisions of the domain to the map. These have to be placed
3892 * in the same order as those in the context and they have to be placed
3893 * after any other integer divisions that the map may have.
3894 * This function performs the required reordering.
3896 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3897 struct isl_basic_set *dom)
3903 for (i = 0; i < dom->n_div; ++i)
3904 if (find_context_div(bmap, dom, i) != -1)
3906 other = bmap->n_div - common;
3907 if (dom->n_div - common > 0) {
3908 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
3909 dom->n_div - common, 0, 0);
3913 for (i = 0; i < dom->n_div; ++i) {
3914 int pos = find_context_div(bmap, dom, i);
3916 pos = isl_basic_map_alloc_div(bmap);
3919 isl_int_set_si(bmap->div[pos][0], 0);
3921 if (pos != other + i)
3922 isl_basic_map_swap_div(bmap, pos, other + i);
3926 isl_basic_map_free(bmap);
3930 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3931 * some obvious symmetries.
3933 * We make sure the divs in the domain are properly ordered,
3934 * because they will be added one by one in the given order
3935 * during the construction of the solution map.
3937 static struct isl_sol *basic_map_partial_lexopt_base(
3938 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3939 __isl_give isl_set **empty, int max,
3940 struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap,
3941 __isl_take isl_basic_set *dom, int track_empty, int max))
3943 struct isl_tab *tab;
3944 struct isl_sol *sol = NULL;
3945 struct isl_context *context;
3948 dom = isl_basic_set_order_divs(dom);
3949 bmap = align_context_divs(bmap, dom);
3951 sol = init(bmap, dom, !!empty, max);
3955 context = sol->context;
3956 if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context)))
3958 else if (isl_basic_map_plain_is_empty(bmap)) {
3961 isl_basic_set_copy(context->op->peek_basic_set(context)));
3963 tab = tab_for_lexmin(bmap,
3964 context->op->peek_basic_set(context), 1, max);
3965 tab = context->op->detect_nonnegative_parameters(context, tab);
3966 find_solutions_main(sol, tab);
3971 isl_basic_map_free(bmap);
3975 isl_basic_map_free(bmap);
3979 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3980 * some obvious symmetries.
3982 * We call basic_map_partial_lexopt_base and extract the results.
3984 static __isl_give isl_map *basic_map_partial_lexopt_base_map(
3985 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3986 __isl_give isl_set **empty, int max)
3988 isl_map *result = NULL;
3989 struct isl_sol *sol;
3990 struct isl_sol_map *sol_map;
3992 sol = basic_map_partial_lexopt_base(bmap, dom, empty, max,
3996 sol_map = (struct isl_sol_map *) sol;
3998 result = isl_map_copy(sol_map->map);
4000 *empty = isl_set_copy(sol_map->empty);
4001 sol_free(&sol_map->sol);
4005 /* Structure used during detection of parallel constraints.
4006 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4007 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4008 * val: the coefficients of the output variables
4010 struct isl_constraint_equal_info {
4011 isl_basic_map *bmap;
4017 /* Check whether the coefficients of the output variables
4018 * of the constraint in "entry" are equal to info->val.
4020 static int constraint_equal(const void *entry, const void *val)
4022 isl_int **row = (isl_int **)entry;
4023 const struct isl_constraint_equal_info *info = val;
4025 return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
4028 /* Check whether "bmap" has a pair of constraints that have
4029 * the same coefficients for the output variables.
4030 * Note that the coefficients of the existentially quantified
4031 * variables need to be zero since the existentially quantified
4032 * of the result are usually not the same as those of the input.
4033 * the isl_dim_out and isl_dim_div dimensions.
4034 * If so, return 1 and return the row indices of the two constraints
4035 * in *first and *second.
4037 static int parallel_constraints(__isl_keep isl_basic_map *bmap,
4038 int *first, int *second)
4041 isl_ctx *ctx = isl_basic_map_get_ctx(bmap);
4042 struct isl_hash_table *table = NULL;
4043 struct isl_hash_table_entry *entry;
4044 struct isl_constraint_equal_info info;
4048 ctx = isl_basic_map_get_ctx(bmap);
4049 table = isl_hash_table_alloc(ctx, bmap->n_ineq);
4053 info.n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4054 isl_basic_map_dim(bmap, isl_dim_in);
4056 n_out = isl_basic_map_dim(bmap, isl_dim_out);
4057 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4058 info.n_out = n_out + n_div;
4059 for (i = 0; i < bmap->n_ineq; ++i) {
4062 info.val = bmap->ineq[i] + 1 + info.n_in;
4063 if (isl_seq_first_non_zero(info.val, n_out) < 0)
4065 if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4067 hash = isl_seq_get_hash(info.val, info.n_out);
4068 entry = isl_hash_table_find(ctx, table, hash,
4069 constraint_equal, &info, 1);
4074 entry->data = &bmap->ineq[i];
4077 if (i < bmap->n_ineq) {
4078 *first = ((isl_int **)entry->data) - bmap->ineq;
4082 isl_hash_table_free(ctx, table);
4084 return i < bmap->n_ineq;
4086 isl_hash_table_free(ctx, table);
4090 /* Given a set of upper bounds in "var", add constraints to "bset"
4091 * that make the i-th bound smallest.
4093 * In particular, if there are n bounds b_i, then add the constraints
4095 * b_i <= b_j for j > i
4096 * b_i < b_j for j < i
4098 static __isl_give isl_basic_set *select_minimum(__isl_take isl_basic_set *bset,
4099 __isl_keep isl_mat *var, int i)
4104 ctx = isl_mat_get_ctx(var);
4106 for (j = 0; j < var->n_row; ++j) {
4109 k = isl_basic_set_alloc_inequality(bset);
4112 isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4113 ctx->negone, var->row[i], var->n_col);
4114 isl_int_set_si(bset->ineq[k][var->n_col], 0);
4116 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4119 bset = isl_basic_set_finalize(bset);
4123 isl_basic_set_free(bset);
4127 /* Given a set of upper bounds on the last "input" variable m,
4128 * construct a set that assigns the minimal upper bound to m, i.e.,
4129 * construct a set that divides the space into cells where one
4130 * of the upper bounds is smaller than all the others and assign
4131 * this upper bound to m.
4133 * In particular, if there are n bounds b_i, then the result
4134 * consists of n basic sets, each one of the form
4137 * b_i <= b_j for j > i
4138 * b_i < b_j for j < i
4140 static __isl_give isl_set *set_minimum(__isl_take isl_space *dim,
4141 __isl_take isl_mat *var)
4144 isl_basic_set *bset = NULL;
4146 isl_set *set = NULL;
4151 ctx = isl_space_get_ctx(dim);
4152 set = isl_set_alloc_space(isl_space_copy(dim),
4153 var->n_row, ISL_SET_DISJOINT);
4155 for (i = 0; i < var->n_row; ++i) {
4156 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0,
4158 k = isl_basic_set_alloc_equality(bset);
4161 isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4162 isl_int_set_si(bset->eq[k][var->n_col], -1);
4163 bset = select_minimum(bset, var, i);
4164 set = isl_set_add_basic_set(set, bset);
4167 isl_space_free(dim);
4171 isl_basic_set_free(bset);
4173 isl_space_free(dim);
4178 /* Given that the last input variable of "bmap" represents the minimum
4179 * of the bounds in "cst", check whether we need to split the domain
4180 * based on which bound attains the minimum.
4182 * A split is needed when the minimum appears in an integer division
4183 * or in an equality. Otherwise, it is only needed if it appears in
4184 * an upper bound that is different from the upper bounds on which it
4187 static int need_split_basic_map(__isl_keep isl_basic_map *bmap,
4188 __isl_keep isl_mat *cst)
4194 pos = cst->n_col - 1;
4195 total = isl_basic_map_dim(bmap, isl_dim_all);
4197 for (i = 0; i < bmap->n_div; ++i)
4198 if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4201 for (i = 0; i < bmap->n_eq; ++i)
4202 if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4205 for (i = 0; i < bmap->n_ineq; ++i) {
4206 if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4208 if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4210 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4211 total - pos - 1) >= 0)
4214 for (j = 0; j < cst->n_row; ++j)
4215 if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4217 if (j >= cst->n_row)
4224 /* Given that the last set variable of "bset" represents the minimum
4225 * of the bounds in "cst", check whether we need to split the domain
4226 * based on which bound attains the minimum.
4228 * We simply call need_split_basic_map here. This is safe because
4229 * the position of the minimum is computed from "cst" and not
4232 static int need_split_basic_set(__isl_keep isl_basic_set *bset,
4233 __isl_keep isl_mat *cst)
4235 return need_split_basic_map((isl_basic_map *)bset, cst);
4238 /* Given that the last set variable of "set" represents the minimum
4239 * of the bounds in "cst", check whether we need to split the domain
4240 * based on which bound attains the minimum.
4242 static int need_split_set(__isl_keep isl_set *set, __isl_keep isl_mat *cst)
4246 for (i = 0; i < set->n; ++i)
4247 if (need_split_basic_set(set->p[i], cst))
4253 /* Given a set of which the last set variable is the minimum
4254 * of the bounds in "cst", split each basic set in the set
4255 * in pieces where one of the bounds is (strictly) smaller than the others.
4256 * This subdivision is given in "min_expr".
4257 * The variable is subsequently projected out.
4259 * We only do the split when it is needed.
4260 * For example if the last input variable m = min(a,b) and the only
4261 * constraints in the given basic set are lower bounds on m,
4262 * i.e., l <= m = min(a,b), then we can simply project out m
4263 * to obtain l <= a and l <= b, without having to split on whether
4264 * m is equal to a or b.
4266 static __isl_give isl_set *split(__isl_take isl_set *empty,
4267 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4274 if (!empty || !min_expr || !cst)
4277 n_in = isl_set_dim(empty, isl_dim_set);
4278 dim = isl_set_get_space(empty);
4279 dim = isl_space_drop_dims(dim, isl_dim_set, n_in - 1, 1);
4280 res = isl_set_empty(dim);
4282 for (i = 0; i < empty->n; ++i) {
4285 set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i]));
4286 if (need_split_basic_set(empty->p[i], cst))
4287 set = isl_set_intersect(set, isl_set_copy(min_expr));
4288 set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1);
4290 res = isl_set_union_disjoint(res, set);
4293 isl_set_free(empty);
4294 isl_set_free(min_expr);
4298 isl_set_free(empty);
4299 isl_set_free(min_expr);
4304 /* Given a map of which the last input variable is the minimum
4305 * of the bounds in "cst", split each basic set in the set
4306 * in pieces where one of the bounds is (strictly) smaller than the others.
4307 * This subdivision is given in "min_expr".
4308 * The variable is subsequently projected out.
4310 * The implementation is essentially the same as that of "split".
4312 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4313 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4320 if (!opt || !min_expr || !cst)
4323 n_in = isl_map_dim(opt, isl_dim_in);
4324 dim = isl_map_get_space(opt);
4325 dim = isl_space_drop_dims(dim, isl_dim_in, n_in - 1, 1);
4326 res = isl_map_empty(dim);
4328 for (i = 0; i < opt->n; ++i) {
4331 map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4332 if (need_split_basic_map(opt->p[i], cst))
4333 map = isl_map_intersect_domain(map,
4334 isl_set_copy(min_expr));
4335 map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4337 res = isl_map_union_disjoint(res, map);
4341 isl_set_free(min_expr);
4346 isl_set_free(min_expr);
4351 static __isl_give isl_map *basic_map_partial_lexopt(
4352 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4353 __isl_give isl_set **empty, int max);
4358 isl_pw_multi_aff *pma;
4361 /* This function is called from basic_map_partial_lexopt_symm.
4362 * The last variable of "bmap" and "dom" corresponds to the minimum
4363 * of the bounds in "cst". "map_space" is the space of the original
4364 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4365 * is the space of the original domain.
4367 * We recursively call basic_map_partial_lexopt and then plug in
4368 * the definition of the minimum in the result.
4370 static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_map_core(
4371 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4372 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
4373 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
4377 union isl_lex_res res;
4379 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
4381 opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4384 *empty = split(*empty,
4385 isl_set_copy(min_expr), isl_mat_copy(cst));
4386 *empty = isl_set_reset_space(*empty, set_space);
4389 opt = split_domain(opt, min_expr, cst);
4390 opt = isl_map_reset_space(opt, map_space);
4396 /* Given a basic map with at least two parallel constraints (as found
4397 * by the function parallel_constraints), first look for more constraints
4398 * parallel to the two constraint and replace the found list of parallel
4399 * constraints by a single constraint with as "input" part the minimum
4400 * of the input parts of the list of constraints. Then, recursively call
4401 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4402 * and plug in the definition of the minimum in the result.
4404 * More specifically, given a set of constraints
4408 * Replace this set by a single constraint
4412 * with u a new parameter with constraints
4416 * Any solution to the new system is also a solution for the original system
4419 * a x >= -u >= -b_i(p)
4421 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4422 * therefore be plugged into the solution.
4424 static union isl_lex_res basic_map_partial_lexopt_symm(
4425 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4426 __isl_give isl_set **empty, int max, int first, int second,
4427 __isl_give union isl_lex_res (*core)(__isl_take isl_basic_map *bmap,
4428 __isl_take isl_basic_set *dom,
4429 __isl_give isl_set **empty,
4430 int max, __isl_take isl_mat *cst,
4431 __isl_take isl_space *map_space,
4432 __isl_take isl_space *set_space))
4436 unsigned n_in, n_out, n_div;
4438 isl_vec *var = NULL;
4439 isl_mat *cst = NULL;
4440 isl_space *map_space, *set_space;
4441 union isl_lex_res res;
4443 map_space = isl_basic_map_get_space(bmap);
4444 set_space = empty ? isl_basic_set_get_space(dom) : NULL;
4446 n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4447 isl_basic_map_dim(bmap, isl_dim_in);
4448 n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in;
4450 ctx = isl_basic_map_get_ctx(bmap);
4451 list = isl_alloc_array(ctx, int, bmap->n_ineq);
4452 var = isl_vec_alloc(ctx, n_out);
4458 isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
4459 for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
4460 if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out))
4464 cst = isl_mat_alloc(ctx, n, 1 + n_in);
4468 for (i = 0; i < n; ++i)
4469 isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);
4471 bmap = isl_basic_map_cow(bmap);
4474 for (i = n - 1; i >= 0; --i)
4475 if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
4478 bmap = isl_basic_map_add(bmap, isl_dim_in, 1);
4479 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
4480 k = isl_basic_map_alloc_inequality(bmap);
4483 isl_seq_clr(bmap->ineq[k], 1 + n_in);
4484 isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
4485 isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
4486 bmap = isl_basic_map_finalize(bmap);
4488 n_div = isl_basic_set_dim(dom, isl_dim_div);
4489 dom = isl_basic_set_add(dom, isl_dim_set, 1);
4490 dom = isl_basic_set_extend_constraints(dom, 0, n);
4491 for (i = 0; i < n; ++i) {
4492 k = isl_basic_set_alloc_inequality(dom);
4495 isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
4496 isl_int_set_si(dom->ineq[k][1 + n_in], -1);
4497 isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
4503 return core(bmap, dom, empty, max, cst, map_space, set_space);
4505 isl_space_free(map_space);
4506 isl_space_free(set_space);
4510 isl_basic_set_free(dom);
4511 isl_basic_map_free(bmap);
4516 static __isl_give isl_map *basic_map_partial_lexopt_symm_map(
4517 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4518 __isl_give isl_set **empty, int max, int first, int second)
4520 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
4521 first, second, &basic_map_partial_lexopt_symm_map_core).map;
4524 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4525 * equalities and removing redundant constraints.
4527 * We first check if there are any parallel constraints (left).
4528 * If not, we are in the base case.
4529 * If there are parallel constraints, we replace them by a single
4530 * constraint in basic_map_partial_lexopt_symm and then call
4531 * this function recursively to look for more parallel constraints.
4533 static __isl_give isl_map *basic_map_partial_lexopt(
4534 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4535 __isl_give isl_set **empty, int max)
4543 if (bmap->ctx->opt->pip_symmetry)
4544 par = parallel_constraints(bmap, &first, &second);
4548 return basic_map_partial_lexopt_base_map(bmap, dom, empty, max);
4550 return basic_map_partial_lexopt_symm_map(bmap, dom, empty, max,
4553 isl_basic_set_free(dom);
4554 isl_basic_map_free(bmap);
4558 /* Compute the lexicographic minimum (or maximum if "max" is set)
4559 * of "bmap" over the domain "dom" and return the result as a map.
4560 * If "empty" is not NULL, then *empty is assigned a set that
4561 * contains those parts of the domain where there is no solution.
4562 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4563 * then we compute the rational optimum. Otherwise, we compute
4564 * the integral optimum.
4566 * We perform some preprocessing. As the PILP solver does not
4567 * handle implicit equalities very well, we first make sure all
4568 * the equalities are explicitly available.
4570 * We also add context constraints to the basic map and remove
4571 * redundant constraints. This is only needed because of the
4572 * way we handle simple symmetries. In particular, we currently look
4573 * for symmetries on the constraints, before we set up the main tableau.
4574 * It is then no good to look for symmetries on possibly redundant constraints.
4576 struct isl_map *isl_tab_basic_map_partial_lexopt(
4577 struct isl_basic_map *bmap, struct isl_basic_set *dom,
4578 struct isl_set **empty, int max)
4585 isl_assert(bmap->ctx,
4586 isl_basic_map_compatible_domain(bmap, dom), goto error);
4588 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
4589 return basic_map_partial_lexopt(bmap, dom, empty, max);
4591 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
4592 bmap = isl_basic_map_detect_equalities(bmap);
4593 bmap = isl_basic_map_remove_redundancies(bmap);
4595 return basic_map_partial_lexopt(bmap, dom, empty, max);
4597 isl_basic_set_free(dom);
4598 isl_basic_map_free(bmap);
4602 struct isl_sol_for {
4604 int (*fn)(__isl_take isl_basic_set *dom,
4605 __isl_take isl_aff_list *list, void *user);
4609 static void sol_for_free(struct isl_sol_for *sol_for)
4611 if (sol_for->sol.context)
4612 sol_for->sol.context->op->free(sol_for->sol.context);
4616 static void sol_for_free_wrap(struct isl_sol *sol)
4618 sol_for_free((struct isl_sol_for *)sol);
4621 /* Add the solution identified by the tableau and the context tableau.
4623 * See documentation of sol_add for more details.
4625 * Instead of constructing a basic map, this function calls a user
4626 * defined function with the current context as a basic set and
4627 * a list of affine expressions representing the relation between
4628 * the input and output. The space over which the affine expressions
4629 * are defined is the same as that of the domain. The number of
4630 * affine expressions in the list is equal to the number of output variables.
4632 static void sol_for_add(struct isl_sol_for *sol,
4633 struct isl_basic_set *dom, struct isl_mat *M)
4637 isl_local_space *ls;
4641 if (sol->sol.error || !dom || !M)
4644 ctx = isl_basic_set_get_ctx(dom);
4645 ls = isl_basic_set_get_local_space(dom);
4646 list = isl_aff_list_alloc(ctx, M->n_row - 1);
4647 for (i = 1; i < M->n_row; ++i) {
4648 aff = isl_aff_alloc(isl_local_space_copy(ls));
4650 isl_int_set(aff->v->el[0], M->row[0][0]);
4651 isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col);
4653 list = isl_aff_list_add(list, aff);
4655 isl_local_space_free(ls);
4657 dom = isl_basic_set_finalize(dom);
4659 if (sol->fn(isl_basic_set_copy(dom), list, sol->user) < 0)
4662 isl_basic_set_free(dom);
4666 isl_basic_set_free(dom);
4671 static void sol_for_add_wrap(struct isl_sol *sol,
4672 struct isl_basic_set *dom, struct isl_mat *M)
4674 sol_for_add((struct isl_sol_for *)sol, dom, M);
4677 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4678 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4682 struct isl_sol_for *sol_for = NULL;
4684 struct isl_basic_set *dom = NULL;
4686 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
4690 dom_dim = isl_space_domain(isl_space_copy(bmap->dim));
4691 dom = isl_basic_set_universe(dom_dim);
4693 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4694 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4695 sol_for->sol.dec_level.sol = &sol_for->sol;
4697 sol_for->user = user;
4698 sol_for->sol.max = max;
4699 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4700 sol_for->sol.add = &sol_for_add_wrap;
4701 sol_for->sol.add_empty = NULL;
4702 sol_for->sol.free = &sol_for_free_wrap;
4704 sol_for->sol.context = isl_context_alloc(dom);
4705 if (!sol_for->sol.context)
4708 isl_basic_set_free(dom);
4711 isl_basic_set_free(dom);
4712 sol_for_free(sol_for);
4716 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4717 struct isl_tab *tab)
4719 find_solutions_main(&sol_for->sol, tab);
4722 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4723 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4727 struct isl_sol_for *sol_for = NULL;
4729 bmap = isl_basic_map_copy(bmap);
4733 bmap = isl_basic_map_detect_equalities(bmap);
4734 sol_for = sol_for_init(bmap, max, fn, user);
4736 if (isl_basic_map_plain_is_empty(bmap))
4739 struct isl_tab *tab;
4740 struct isl_context *context = sol_for->sol.context;
4741 tab = tab_for_lexmin(bmap,
4742 context->op->peek_basic_set(context), 1, max);
4743 tab = context->op->detect_nonnegative_parameters(context, tab);
4744 sol_for_find_solutions(sol_for, tab);
4745 if (sol_for->sol.error)
4749 sol_free(&sol_for->sol);
4750 isl_basic_map_free(bmap);
4753 sol_free(&sol_for->sol);
4754 isl_basic_map_free(bmap);
4758 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set *bset, int max,
4759 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4763 return isl_basic_map_foreach_lexopt(bset, max, fn, user);
4766 /* Check if the given sequence of len variables starting at pos
4767 * represents a trivial (i.e., zero) solution.
4768 * The variables are assumed to be non-negative and to come in pairs,
4769 * with each pair representing a variable of unrestricted sign.
4770 * The solution is trivial if each such pair in the sequence consists
4771 * of two identical values, meaning that the variable being represented
4774 static int region_is_trivial(struct isl_tab *tab, int pos, int len)
4781 for (i = 0; i < len; i += 2) {
4785 neg_row = tab->var[pos + i].is_row ?
4786 tab->var[pos + i].index : -1;
4787 pos_row = tab->var[pos + i + 1].is_row ?
4788 tab->var[pos + i + 1].index : -1;
4791 isl_int_is_zero(tab->mat->row[neg_row][1])) &&
4793 isl_int_is_zero(tab->mat->row[pos_row][1])))
4796 if (neg_row < 0 || pos_row < 0)
4798 if (isl_int_ne(tab->mat->row[neg_row][1],
4799 tab->mat->row[pos_row][1]))
4806 /* Return the index of the first trivial region or -1 if all regions
4809 static int first_trivial_region(struct isl_tab *tab,
4810 int n_region, struct isl_region *region)
4814 for (i = 0; i < n_region; ++i) {
4815 if (region_is_trivial(tab, region[i].pos, region[i].len))
4822 /* Check if the solution is optimal, i.e., whether the first
4823 * n_op entries are zero.
4825 static int is_optimal(__isl_keep isl_vec *sol, int n_op)
4829 for (i = 0; i < n_op; ++i)
4830 if (!isl_int_is_zero(sol->el[1 + i]))
4835 /* Add constraints to "tab" that ensure that any solution is significantly
4836 * better that that represented by "sol". That is, find the first
4837 * relevant (within first n_op) non-zero coefficient and force it (along
4838 * with all previous coefficients) to be zero.
4839 * If the solution is already optimal (all relevant coefficients are zero),
4840 * then just mark the table as empty.
4842 static int force_better_solution(struct isl_tab *tab,
4843 __isl_keep isl_vec *sol, int n_op)
4852 for (i = 0; i < n_op; ++i)
4853 if (!isl_int_is_zero(sol->el[1 + i]))
4857 if (isl_tab_mark_empty(tab) < 0)
4862 ctx = isl_vec_get_ctx(sol);
4863 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4867 for (; i >= 0; --i) {
4869 isl_int_set_si(v->el[1 + i], -1);
4870 if (add_lexmin_eq(tab, v->el) < 0)
4881 struct isl_trivial {
4885 struct isl_tab_undo *snap;
4888 /* Return the lexicographically smallest non-trivial solution of the
4889 * given ILP problem.
4891 * All variables are assumed to be non-negative.
4893 * n_op is the number of initial coordinates to optimize.
4894 * That is, once a solution has been found, we will only continue looking
4895 * for solution that result in significantly better values for those
4896 * initial coordinates. That is, we only continue looking for solutions
4897 * that increase the number of initial zeros in this sequence.
4899 * A solution is non-trivial, if it is non-trivial on each of the
4900 * specified regions. Each region represents a sequence of pairs
4901 * of variables. A solution is non-trivial on such a region if
4902 * at least one of these pairs consists of different values, i.e.,
4903 * such that the non-negative variable represented by the pair is non-zero.
4905 * Whenever a conflict is encountered, all constraints involved are
4906 * reported to the caller through a call to "conflict".
4908 * We perform a simple branch-and-bound backtracking search.
4909 * Each level in the search represents initially trivial region that is forced
4910 * to be non-trivial.
4911 * At each level we consider n cases, where n is the length of the region.
4912 * In terms of the n/2 variables of unrestricted signs being encoded by
4913 * the region, we consider the cases
4916 * x_0 = 0 and x_1 >= 1
4917 * x_0 = 0 and x_1 <= -1
4918 * x_0 = 0 and x_1 = 0 and x_2 >= 1
4919 * x_0 = 0 and x_1 = 0 and x_2 <= -1
4921 * The cases are considered in this order, assuming that each pair
4922 * x_i_a x_i_b represents the value x_i_b - x_i_a.
4923 * That is, x_0 >= 1 is enforced by adding the constraint
4924 * x_0_b - x_0_a >= 1
4926 __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin(
4927 __isl_take isl_basic_set *bset, int n_op, int n_region,
4928 struct isl_region *region,
4929 int (*conflict)(int con, void *user), void *user)
4933 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
4935 isl_vec *sol = isl_vec_alloc(ctx, 0);
4936 struct isl_tab *tab;
4937 struct isl_trivial *triv = NULL;
4940 tab = tab_for_lexmin(bset, NULL, 0, 0);
4943 tab->conflict = conflict;
4944 tab->conflict_user = user;
4946 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4947 triv = isl_calloc_array(ctx, struct isl_trivial, n_region);
4954 while (level >= 0) {
4958 tab = cut_to_integer_lexmin(tab);
4963 r = first_trivial_region(tab, n_region, region);
4965 for (i = 0; i < level; ++i)
4968 sol = isl_tab_get_sample_value(tab);
4971 if (is_optimal(sol, n_op))
4975 if (level >= n_region)
4976 isl_die(ctx, isl_error_internal,
4977 "nesting level too deep", goto error);
4978 if (isl_tab_extend_cons(tab,
4979 2 * region[r].len + 2 * n_op) < 0)
4981 triv[level].region = r;
4982 triv[level].side = 0;
4985 r = triv[level].region;
4986 side = triv[level].side;
4987 base = 2 * (side/2);
4989 if (side >= region[r].len) {
4994 if (isl_tab_rollback(tab, triv[level].snap) < 0)
4999 if (triv[level].update) {
5000 if (force_better_solution(tab, sol, n_op) < 0)
5002 triv[level].update = 0;
5005 if (side == base && base >= 2) {
5006 for (j = base - 2; j < base; ++j) {
5008 isl_int_set_si(v->el[1 + region[r].pos + j], 1);
5009 if (add_lexmin_eq(tab, v->el) < 0)
5014 triv[level].snap = isl_tab_snap(tab);
5015 if (isl_tab_push_basis(tab) < 0)
5019 isl_int_set_si(v->el[0], -1);
5020 isl_int_set_si(v->el[1 + region[r].pos + side], -1);
5021 isl_int_set_si(v->el[1 + region[r].pos + (side ^ 1)], 1);
5022 tab = add_lexmin_ineq(tab, v->el);
5032 isl_basic_set_free(bset);
5039 isl_basic_set_free(bset);
5044 /* Return the lexicographically smallest rational point in "bset",
5045 * assuming that all variables are non-negative.
5046 * If "bset" is empty, then return a zero-length vector.
5048 __isl_give isl_vec *isl_tab_basic_set_non_neg_lexmin(
5049 __isl_take isl_basic_set *bset)
5051 struct isl_tab *tab;
5052 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
5055 tab = tab_for_lexmin(bset, NULL, 0, 0);
5059 sol = isl_vec_alloc(ctx, 0);
5061 sol = isl_tab_get_sample_value(tab);
5063 isl_basic_set_free(bset);
5067 isl_basic_set_free(bset);
5071 struct isl_sol_pma {
5073 isl_pw_multi_aff *pma;
5077 static void sol_pma_free(struct isl_sol_pma *sol_pma)
5081 if (sol_pma->sol.context)
5082 sol_pma->sol.context->op->free(sol_pma->sol.context);
5083 isl_pw_multi_aff_free(sol_pma->pma);
5084 isl_set_free(sol_pma->empty);
5088 /* This function is called for parts of the context where there is
5089 * no solution, with "bset" corresponding to the context tableau.
5090 * Simply add the basic set to the set "empty".
5092 static void sol_pma_add_empty(struct isl_sol_pma *sol,
5093 __isl_take isl_basic_set *bset)
5097 isl_assert(bset->ctx, sol->empty, goto error);
5099 sol->empty = isl_set_grow(sol->empty, 1);
5100 bset = isl_basic_set_simplify(bset);
5101 bset = isl_basic_set_finalize(bset);
5102 sol->empty = isl_set_add_basic_set(sol->empty, bset);
5107 isl_basic_set_free(bset);
5111 /* Given a basic map "dom" that represents the context and an affine
5112 * matrix "M" that maps the dimensions of the context to the
5113 * output variables, construct an isl_pw_multi_aff with a single
5114 * cell corresponding to "dom" and affine expressions copied from "M".
5116 static void sol_pma_add(struct isl_sol_pma *sol,
5117 __isl_take isl_basic_set *dom, __isl_take isl_mat *M)
5120 isl_local_space *ls;
5122 isl_multi_aff *maff;
5123 isl_pw_multi_aff *pma;
5125 maff = isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol->pma));
5126 ls = isl_basic_set_get_local_space(dom);
5127 for (i = 1; i < M->n_row; ++i) {
5128 aff = isl_aff_alloc(isl_local_space_copy(ls));
5130 isl_int_set(aff->v->el[0], M->row[0][0]);
5131 isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col);
5133 aff = isl_aff_normalize(aff);
5134 maff = isl_multi_aff_set_aff(maff, i - 1, aff);
5136 isl_local_space_free(ls);
5138 dom = isl_basic_set_simplify(dom);
5139 pma = isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom), maff);
5140 sol->pma = isl_pw_multi_aff_add_disjoint(sol->pma, pma);
5145 static void sol_pma_free_wrap(struct isl_sol *sol)
5147 sol_pma_free((struct isl_sol_pma *)sol);
5150 static void sol_pma_add_empty_wrap(struct isl_sol *sol,
5151 __isl_take isl_basic_set *bset)
5153 sol_pma_add_empty((struct isl_sol_pma *)sol, bset);
5156 static void sol_pma_add_wrap(struct isl_sol *sol,
5157 __isl_take isl_basic_set *dom, __isl_take isl_mat *M)
5159 sol_pma_add((struct isl_sol_pma *)sol, dom, M);
5162 /* Construct an isl_sol_pma structure for accumulating the solution.
5163 * If track_empty is set, then we also keep track of the parts
5164 * of the context where there is no solution.
5165 * If max is set, then we are solving a maximization, rather than
5166 * a minimization problem, which means that the variables in the
5167 * tableau have value "M - x" rather than "M + x".
5169 static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap,
5170 __isl_take isl_basic_set *dom, int track_empty, int max)
5172 struct isl_sol_pma *sol_pma = NULL;
5177 sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma);
5181 sol_pma->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
5182 sol_pma->sol.dec_level.callback.run = &sol_dec_level_wrap;
5183 sol_pma->sol.dec_level.sol = &sol_pma->sol;
5184 sol_pma->sol.max = max;
5185 sol_pma->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
5186 sol_pma->sol.add = &sol_pma_add_wrap;
5187 sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL;
5188 sol_pma->sol.free = &sol_pma_free_wrap;
5189 sol_pma->pma = isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap));
5193 sol_pma->sol.context = isl_context_alloc(dom);
5194 if (!sol_pma->sol.context)
5198 sol_pma->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
5199 1, ISL_SET_DISJOINT);
5200 if (!sol_pma->empty)
5204 isl_basic_set_free(dom);
5205 return &sol_pma->sol;
5207 isl_basic_set_free(dom);
5208 sol_pma_free(sol_pma);
5212 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5213 * some obvious symmetries.
5215 * We call basic_map_partial_lexopt_base and extract the results.
5217 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pma(
5218 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5219 __isl_give isl_set **empty, int max)
5221 isl_pw_multi_aff *result = NULL;
5222 struct isl_sol *sol;
5223 struct isl_sol_pma *sol_pma;
5225 sol = basic_map_partial_lexopt_base(bmap, dom, empty, max,
5229 sol_pma = (struct isl_sol_pma *) sol;
5231 result = isl_pw_multi_aff_copy(sol_pma->pma);
5233 *empty = isl_set_copy(sol_pma->empty);
5234 sol_free(&sol_pma->sol);
5238 /* Given that the last input variable of "maff" represents the minimum
5239 * of some bounds, check whether we need to plug in the expression
5242 * In particular, check if the last input variable appears in any
5243 * of the expressions in "maff".
5245 static int need_substitution(__isl_keep isl_multi_aff *maff)
5250 pos = isl_multi_aff_dim(maff, isl_dim_in) - 1;
5252 for (i = 0; i < maff->n; ++i)
5253 if (isl_aff_involves_dims(maff->p[i], isl_dim_in, pos, 1))
5259 /* Given a set of upper bounds on the last "input" variable m,
5260 * construct a piecewise affine expression that selects
5261 * the minimal upper bound to m, i.e.,
5262 * divide the space into cells where one
5263 * of the upper bounds is smaller than all the others and select
5264 * this upper bound on that cell.
5266 * In particular, if there are n bounds b_i, then the result
5267 * consists of n cell, each one of the form
5269 * b_i <= b_j for j > i
5270 * b_i < b_j for j < i
5272 * The affine expression on this cell is
5276 static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space,
5277 __isl_take isl_mat *var)
5280 isl_aff *aff = NULL;
5281 isl_basic_set *bset = NULL;
5283 isl_pw_aff *paff = NULL;
5284 isl_space *pw_space;
5285 isl_local_space *ls = NULL;
5290 ctx = isl_space_get_ctx(space);
5291 ls = isl_local_space_from_space(isl_space_copy(space));
5292 pw_space = isl_space_copy(space);
5293 pw_space = isl_space_from_domain(pw_space);
5294 pw_space = isl_space_add_dims(pw_space, isl_dim_out, 1);
5295 paff = isl_pw_aff_alloc_size(pw_space, var->n_row);
5297 for (i = 0; i < var->n_row; ++i) {
5300 aff = isl_aff_alloc(isl_local_space_copy(ls));
5301 bset = isl_basic_set_alloc_space(isl_space_copy(space), 0,
5305 isl_int_set_si(aff->v->el[0], 1);
5306 isl_seq_cpy(aff->v->el + 1, var->row[i], var->n_col);
5307 isl_int_set_si(aff->v->el[1 + var->n_col], 0);
5308 bset = select_minimum(bset, var, i);
5309 paff_i = isl_pw_aff_alloc(isl_set_from_basic_set(bset), aff);
5310 paff = isl_pw_aff_add_disjoint(paff, paff_i);
5313 isl_local_space_free(ls);
5314 isl_space_free(space);
5319 isl_basic_set_free(bset);
5320 isl_pw_aff_free(paff);
5321 isl_local_space_free(ls);
5322 isl_space_free(space);
5327 /* Given a piecewise multi-affine expression of which the last input variable
5328 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5329 * This minimum expression is given in "min_expr_pa".
5330 * The set "min_expr" contains the same information, but in the form of a set.
5331 * The variable is subsequently projected out.
5333 * The implementation is similar to those of "split" and "split_domain".
5334 * If the variable appears in a given expression, then minimum expression
5335 * is plugged in. Otherwise, if the variable appears in the constraints
5336 * and a split is required, then the domain is split. Otherwise, no split
5339 static __isl_give isl_pw_multi_aff *split_domain_pma(
5340 __isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa,
5341 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
5346 isl_pw_multi_aff *res;
5348 if (!opt || !min_expr || !cst)
5351 n_in = isl_pw_multi_aff_dim(opt, isl_dim_in);
5352 space = isl_pw_multi_aff_get_space(opt);
5353 space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1);
5354 res = isl_pw_multi_aff_empty(space);
5356 for (i = 0; i < opt->n; ++i) {
5357 isl_pw_multi_aff *pma;
5359 pma = isl_pw_multi_aff_alloc(isl_set_copy(opt->p[i].set),
5360 isl_multi_aff_copy(opt->p[i].maff));
5361 if (need_substitution(opt->p[i].maff))
5362 pma = isl_pw_multi_aff_substitute(pma,
5363 isl_dim_in, n_in - 1, min_expr_pa);
5364 else if (need_split_set(opt->p[i].set, cst))
5365 pma = isl_pw_multi_aff_intersect_domain(pma,
5366 isl_set_copy(min_expr));
5367 pma = isl_pw_multi_aff_project_out(pma,
5368 isl_dim_in, n_in - 1, 1);
5370 res = isl_pw_multi_aff_add_disjoint(res, pma);
5373 isl_pw_multi_aff_free(opt);
5374 isl_pw_aff_free(min_expr_pa);
5375 isl_set_free(min_expr);
5379 isl_pw_multi_aff_free(opt);
5380 isl_pw_aff_free(min_expr_pa);
5381 isl_set_free(min_expr);
5386 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma(
5387 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5388 __isl_give isl_set **empty, int max);
5390 /* This function is called from basic_map_partial_lexopt_symm.
5391 * The last variable of "bmap" and "dom" corresponds to the minimum
5392 * of the bounds in "cst". "map_space" is the space of the original
5393 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5394 * is the space of the original domain.
5396 * We recursively call basic_map_partial_lexopt and then plug in
5397 * the definition of the minimum in the result.
5399 static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_pma_core(
5400 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5401 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
5402 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
5404 isl_pw_multi_aff *opt;
5405 isl_pw_aff *min_expr_pa;
5407 union isl_lex_res res;
5409 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
5410 min_expr_pa = set_minimum_pa(isl_basic_set_get_space(dom),
5413 opt = basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5416 *empty = split(*empty,
5417 isl_set_copy(min_expr), isl_mat_copy(cst));
5418 *empty = isl_set_reset_space(*empty, set_space);
5421 opt = split_domain_pma(opt, min_expr_pa, min_expr, cst);
5422 opt = isl_pw_multi_aff_reset_space(opt, map_space);
5428 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_symm_pma(
5429 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5430 __isl_give isl_set **empty, int max, int first, int second)
5432 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
5433 first, second, &basic_map_partial_lexopt_symm_pma_core).pma;
5436 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5437 * equalities and removing redundant constraints.
5439 * We first check if there are any parallel constraints (left).
5440 * If not, we are in the base case.
5441 * If there are parallel constraints, we replace them by a single
5442 * constraint in basic_map_partial_lexopt_symm_pma and then call
5443 * this function recursively to look for more parallel constraints.
5445 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma(
5446 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5447 __isl_give isl_set **empty, int max)
5455 if (bmap->ctx->opt->pip_symmetry)
5456 par = parallel_constraints(bmap, &first, &second);
5460 return basic_map_partial_lexopt_base_pma(bmap, dom, empty, max);
5462 return basic_map_partial_lexopt_symm_pma(bmap, dom, empty, max,
5465 isl_basic_set_free(dom);
5466 isl_basic_map_free(bmap);
5470 /* Compute the lexicographic minimum (or maximum if "max" is set)
5471 * of "bmap" over the domain "dom" and return the result as a piecewise
5472 * multi-affine expression.
5473 * If "empty" is not NULL, then *empty is assigned a set that
5474 * contains those parts of the domain where there is no solution.
5475 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5476 * then we compute the rational optimum. Otherwise, we compute
5477 * the integral optimum.
5479 * We perform some preprocessing. As the PILP solver does not
5480 * handle implicit equalities very well, we first make sure all
5481 * the equalities are explicitly available.
5483 * We also add context constraints to the basic map and remove
5484 * redundant constraints. This is only needed because of the
5485 * way we handle simple symmetries. In particular, we currently look
5486 * for symmetries on the constraints, before we set up the main tableau.
5487 * It is then no good to look for symmetries on possibly redundant constraints.
5489 __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexopt_pw_multi_aff(
5490 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5491 __isl_give isl_set **empty, int max)
5498 isl_assert(bmap->ctx,
5499 isl_basic_map_compatible_domain(bmap, dom), goto error);
5501 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
5502 return basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5504 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
5505 bmap = isl_basic_map_detect_equalities(bmap);
5506 bmap = isl_basic_map_remove_redundancies(bmap);
5508 return basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5510 isl_basic_set_free(dom);
5511 isl_basic_map_free(bmap);