2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_map_private.h"
13 #include "isl_sample.h"
16 * The implementation of parametric integer linear programming in this file
17 * was inspired by the paper "Parametric Integer Programming" and the
18 * report "Solving systems of affine (in)equalities" by Paul Feautrier
21 * The strategy used for obtaining a feasible solution is different
22 * from the one used in isl_tab.c. In particular, in isl_tab.c,
23 * upon finding a constraint that is not yet satisfied, we pivot
24 * in a row that increases the constant term of row holding the
25 * constraint, making sure the sample solution remains feasible
26 * for all the constraints it already satisfied.
27 * Here, we always pivot in the row holding the constraint,
28 * choosing a column that induces the lexicographically smallest
29 * increment to the sample solution.
31 * By starting out from a sample value that is lexicographically
32 * smaller than any integer point in the problem space, the first
33 * feasible integer sample point we find will also be the lexicographically
34 * smallest. If all variables can be assumed to be non-negative,
35 * then the initial sample value may be chosen equal to zero.
36 * However, we will not make this assumption. Instead, we apply
37 * the "big parameter" trick. Any variable x is then not directly
38 * used in the tableau, but instead it its represented by another
39 * variable x' = M + x, where M is an arbitrarily large (positive)
40 * value. x' is therefore always non-negative, whatever the value of x.
41 * Taking as initial smaple value x' = 0 corresponds to x = -M,
42 * which is always smaller than any possible value of x.
44 * The big parameter trick is used in the main tableau and
45 * also in the context tableau if isl_context_lex is used.
46 * In this case, each tableaus has its own big parameter.
47 * Before doing any real work, we check if all the parameters
48 * happen to be non-negative. If so, we drop the column corresponding
49 * to M from the initial context tableau.
50 * If isl_context_gbr is used, then the big parameter trick is only
51 * used in the main tableau.
55 struct isl_context_op {
56 /* detect nonnegative parameters in context and mark them in tab */
57 struct isl_tab *(*detect_nonnegative_parameters)(
58 struct isl_context *context, struct isl_tab *tab);
59 /* return temporary reference to basic set representation of context */
60 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
61 /* return temporary reference to tableau representation of context */
62 struct isl_tab *(*peek_tab)(struct isl_context *context);
63 /* add equality; check is 1 if eq may not be valid;
64 * update is 1 if we may want to call ineq_sign on context later.
66 void (*add_eq)(struct isl_context *context, isl_int *eq,
67 int check, int update);
68 /* add inequality; check is 1 if ineq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
72 int check, int update);
73 /* check sign of ineq based on previous information.
74 * strict is 1 if saturation should be treated as a positive sign.
76 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
77 isl_int *ineq, int strict);
78 /* check if inequality maintains feasibility */
79 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
80 /* return index of a div that corresponds to "div" */
81 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
83 /* add div "div" to context and return non-negativity */
84 int (*add_div)(struct isl_context *context, struct isl_vec *div);
85 int (*detect_equalities)(struct isl_context *context,
87 /* return row index of "best" split */
88 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
89 /* check if context has already been determined to be empty */
90 int (*is_empty)(struct isl_context *context);
91 /* check if context is still usable */
92 int (*is_ok)(struct isl_context *context);
93 /* save a copy/snapshot of context */
94 void *(*save)(struct isl_context *context);
95 /* restore saved context */
96 void (*restore)(struct isl_context *context, void *);
97 /* invalidate context */
98 void (*invalidate)(struct isl_context *context);
100 void (*free)(struct isl_context *context);
104 struct isl_context_op *op;
107 struct isl_context_lex {
108 struct isl_context context;
112 struct isl_partial_sol {
114 struct isl_basic_set *dom;
117 struct isl_partial_sol *next;
121 struct isl_sol_callback {
122 struct isl_tab_callback callback;
126 /* isl_sol is an interface for constructing a solution to
127 * a parametric integer linear programming problem.
128 * Every time the algorithm reaches a state where a solution
129 * can be read off from the tableau (including cases where the tableau
130 * is empty), the function "add" is called on the isl_sol passed
131 * to find_solutions_main.
133 * The context tableau is owned by isl_sol and is updated incrementally.
135 * There are currently two implementations of this interface,
136 * isl_sol_map, which simply collects the solutions in an isl_map
137 * and (optionally) the parts of the context where there is no solution
139 * isl_sol_for, which calls a user-defined function for each part of
148 struct isl_context *context;
149 struct isl_partial_sol *partial;
150 void (*add)(struct isl_sol *sol,
151 struct isl_basic_set *dom, struct isl_mat *M);
152 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
153 void (*free)(struct isl_sol *sol);
154 struct isl_sol_callback dec_level;
157 static void sol_free(struct isl_sol *sol)
159 struct isl_partial_sol *partial, *next;
162 for (partial = sol->partial; partial; partial = next) {
163 next = partial->next;
164 isl_basic_set_free(partial->dom);
165 isl_mat_free(partial->M);
171 /* Push a partial solution represented by a domain and mapping M
172 * onto the stack of partial solutions.
174 static void sol_push_sol(struct isl_sol *sol,
175 struct isl_basic_set *dom, struct isl_mat *M)
177 struct isl_partial_sol *partial;
179 if (sol->error || !dom)
182 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
186 partial->level = sol->level;
189 partial->next = sol->partial;
191 sol->partial = partial;
195 isl_basic_set_free(dom);
199 /* Pop one partial solution from the partial solution stack and
200 * pass it on to sol->add or sol->add_empty.
202 static void sol_pop_one(struct isl_sol *sol)
204 struct isl_partial_sol *partial;
206 partial = sol->partial;
207 sol->partial = partial->next;
210 sol->add(sol, partial->dom, partial->M);
212 sol->add_empty(sol, partial->dom);
216 /* Return a fresh copy of the domain represented by the context tableau.
218 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
220 struct isl_basic_set *bset;
225 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
226 bset = isl_basic_set_update_from_tab(bset,
227 sol->context->op->peek_tab(sol->context));
232 /* Check whether two partial solutions have the same mapping, where n_div
233 * is the number of divs that the two partial solutions have in common.
235 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
241 if (!s1->M != !s2->M)
246 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
248 for (i = 0; i < s1->M->n_row; ++i) {
249 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
250 s1->M->n_col-1-dim-n_div) != -1)
252 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
253 s2->M->n_col-1-dim-n_div) != -1)
255 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
261 /* Pop all solutions from the partial solution stack that were pushed onto
262 * the stack at levels that are deeper than the current level.
263 * If the two topmost elements on the stack have the same level
264 * and represent the same solution, then their domains are combined.
265 * This combined domain is the same as the current context domain
266 * as sol_pop is called each time we move back to a higher level.
268 static void sol_pop(struct isl_sol *sol)
270 struct isl_partial_sol *partial;
276 if (sol->level == 0) {
277 for (partial = sol->partial; partial; partial = sol->partial)
282 partial = sol->partial;
286 if (partial->level <= sol->level)
289 if (partial->next && partial->next->level == partial->level) {
290 n_div = isl_basic_set_dim(
291 sol->context->op->peek_basic_set(sol->context),
294 if (!same_solution(partial, partial->next, n_div)) {
298 struct isl_basic_set *bset;
300 bset = sol_domain(sol);
302 isl_basic_set_free(partial->next->dom);
303 partial->next->dom = bset;
304 partial->next->level = sol->level;
306 sol->partial = partial->next;
307 isl_basic_set_free(partial->dom);
308 isl_mat_free(partial->M);
315 static void sol_dec_level(struct isl_sol *sol)
325 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
327 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
329 sol_dec_level(callback->sol);
331 return callback->sol->error ? -1 : 0;
334 /* Move down to next level and push callback onto context tableau
335 * to decrease the level again when it gets rolled back across
336 * the current state. That is, dec_level will be called with
337 * the context tableau in the same state as it is when inc_level
340 static void sol_inc_level(struct isl_sol *sol)
348 tab = sol->context->op->peek_tab(sol->context);
349 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
353 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
357 if (isl_int_is_one(m))
360 for (i = 0; i < n_row; ++i)
361 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
364 /* Add the solution identified by the tableau and the context tableau.
366 * The layout of the variables is as follows.
367 * tab->n_var is equal to the total number of variables in the input
368 * map (including divs that were copied from the context)
369 * + the number of extra divs constructed
370 * Of these, the first tab->n_param and the last tab->n_div variables
371 * correspond to the variables in the context, i.e.,
372 * tab->n_param + tab->n_div = context_tab->n_var
373 * tab->n_param is equal to the number of parameters and input
374 * dimensions in the input map
375 * tab->n_div is equal to the number of divs in the context
377 * If there is no solution, then call add_empty with a basic set
378 * that corresponds to the context tableau. (If add_empty is NULL,
381 * If there is a solution, then first construct a matrix that maps
382 * all dimensions of the context to the output variables, i.e.,
383 * the output dimensions in the input map.
384 * The divs in the input map (if any) that do not correspond to any
385 * div in the context do not appear in the solution.
386 * The algorithm will make sure that they have an integer value,
387 * but these values themselves are of no interest.
388 * We have to be careful not to drop or rearrange any divs in the
389 * context because that would change the meaning of the matrix.
391 * To extract the value of the output variables, it should be noted
392 * that we always use a big parameter M in the main tableau and so
393 * the variable stored in this tableau is not an output variable x itself, but
394 * x' = M + x (in case of minimization)
396 * x' = M - x (in case of maximization)
397 * If x' appears in a column, then its optimal value is zero,
398 * which means that the optimal value of x is an unbounded number
399 * (-M for minimization and M for maximization).
400 * We currently assume that the output dimensions in the original map
401 * are bounded, so this cannot occur.
402 * Similarly, when x' appears in a row, then the coefficient of M in that
403 * row is necessarily 1.
404 * If the row in the tableau represents
405 * d x' = c + d M + e(y)
406 * then, in case of minimization, the corresponding row in the matrix
409 * with a d = m, the (updated) common denominator of the matrix.
410 * In case of maximization, the row will be
413 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
415 struct isl_basic_set *bset = NULL;
416 struct isl_mat *mat = NULL;
421 if (sol->error || !tab)
424 if (tab->empty && !sol->add_empty)
427 bset = sol_domain(sol);
430 sol_push_sol(sol, bset, NULL);
436 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
437 1 + tab->n_param + tab->n_div);
443 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
444 isl_int_set_si(mat->row[0][0], 1);
445 for (row = 0; row < sol->n_out; ++row) {
446 int i = tab->n_param + row;
449 isl_seq_clr(mat->row[1 + row], mat->n_col);
450 if (!tab->var[i].is_row) {
452 isl_assert(mat->ctx, !tab->M, goto error2);
456 r = tab->var[i].index;
459 isl_assert(mat->ctx, isl_int_eq(tab->mat->row[r][2],
460 tab->mat->row[r][0]),
462 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
463 isl_int_divexact(m, tab->mat->row[r][0], m);
464 scale_rows(mat, m, 1 + row);
465 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
466 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
467 for (j = 0; j < tab->n_param; ++j) {
469 if (tab->var[j].is_row)
471 col = tab->var[j].index;
472 isl_int_mul(mat->row[1 + row][1 + j], m,
473 tab->mat->row[r][off + col]);
475 for (j = 0; j < tab->n_div; ++j) {
477 if (tab->var[tab->n_var - tab->n_div+j].is_row)
479 col = tab->var[tab->n_var - tab->n_div+j].index;
480 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
481 tab->mat->row[r][off + col]);
484 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
490 sol_push_sol(sol, bset, mat);
495 isl_basic_set_free(bset);
503 struct isl_set *empty;
506 static void sol_map_free(struct isl_sol_map *sol_map)
508 if (sol_map->sol.context)
509 sol_map->sol.context->op->free(sol_map->sol.context);
510 isl_map_free(sol_map->map);
511 isl_set_free(sol_map->empty);
515 static void sol_map_free_wrap(struct isl_sol *sol)
517 sol_map_free((struct isl_sol_map *)sol);
520 /* This function is called for parts of the context where there is
521 * no solution, with "bset" corresponding to the context tableau.
522 * Simply add the basic set to the set "empty".
524 static void sol_map_add_empty(struct isl_sol_map *sol,
525 struct isl_basic_set *bset)
529 isl_assert(bset->ctx, sol->empty, goto error);
531 sol->empty = isl_set_grow(sol->empty, 1);
532 bset = isl_basic_set_simplify(bset);
533 bset = isl_basic_set_finalize(bset);
534 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
537 isl_basic_set_free(bset);
540 isl_basic_set_free(bset);
544 static void sol_map_add_empty_wrap(struct isl_sol *sol,
545 struct isl_basic_set *bset)
547 sol_map_add_empty((struct isl_sol_map *)sol, bset);
550 /* Add bset to sol's empty, but only if we are actually collecting
553 static void sol_map_add_empty_if_needed(struct isl_sol_map *sol,
554 struct isl_basic_set *bset)
557 sol_map_add_empty(sol, bset);
559 isl_basic_set_free(bset);
562 /* Given a basic map "dom" that represents the context and an affine
563 * matrix "M" that maps the dimensions of the context to the
564 * output variables, construct a basic map with the same parameters
565 * and divs as the context, the dimensions of the context as input
566 * dimensions and a number of output dimensions that is equal to
567 * the number of output dimensions in the input map.
569 * The constraints and divs of the context are simply copied
570 * from "dom". For each row
574 * is added, with d the common denominator of M.
576 static void sol_map_add(struct isl_sol_map *sol,
577 struct isl_basic_set *dom, struct isl_mat *M)
580 struct isl_basic_map *bmap = NULL;
581 isl_basic_set *context_bset;
589 if (sol->sol.error || !dom || !M)
592 n_out = sol->sol.n_out;
593 n_eq = dom->n_eq + n_out;
594 n_ineq = dom->n_ineq;
596 nparam = isl_basic_set_total_dim(dom) - n_div;
597 total = isl_map_dim(sol->map, isl_dim_all);
598 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
599 n_div, n_eq, 2 * n_div + n_ineq);
602 if (sol->sol.rational)
603 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
604 for (i = 0; i < dom->n_div; ++i) {
605 int k = isl_basic_map_alloc_div(bmap);
608 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
609 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
610 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
611 dom->div[i] + 1 + 1 + nparam, i);
613 for (i = 0; i < dom->n_eq; ++i) {
614 int k = isl_basic_map_alloc_equality(bmap);
617 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
618 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
619 isl_seq_cpy(bmap->eq[k] + 1 + total,
620 dom->eq[i] + 1 + nparam, n_div);
622 for (i = 0; i < dom->n_ineq; ++i) {
623 int k = isl_basic_map_alloc_inequality(bmap);
626 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
627 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
628 isl_seq_cpy(bmap->ineq[k] + 1 + total,
629 dom->ineq[i] + 1 + nparam, n_div);
631 for (i = 0; i < M->n_row - 1; ++i) {
632 int k = isl_basic_map_alloc_equality(bmap);
635 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
636 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
637 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
638 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
639 M->row[1 + i] + 1 + nparam, n_div);
641 bmap = isl_basic_map_simplify(bmap);
642 bmap = isl_basic_map_finalize(bmap);
643 sol->map = isl_map_grow(sol->map, 1);
644 sol->map = isl_map_add_basic_map(sol->map, bmap);
647 isl_basic_set_free(dom);
651 isl_basic_set_free(dom);
653 isl_basic_map_free(bmap);
657 static void sol_map_add_wrap(struct isl_sol *sol,
658 struct isl_basic_set *dom, struct isl_mat *M)
660 sol_map_add((struct isl_sol_map *)sol, dom, M);
664 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
665 * i.e., the constant term and the coefficients of all variables that
666 * appear in the context tableau.
667 * Note that the coefficient of the big parameter M is NOT copied.
668 * The context tableau may not have a big parameter and even when it
669 * does, it is a different big parameter.
671 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
674 unsigned off = 2 + tab->M;
676 isl_int_set(line[0], tab->mat->row[row][1]);
677 for (i = 0; i < tab->n_param; ++i) {
678 if (tab->var[i].is_row)
679 isl_int_set_si(line[1 + i], 0);
681 int col = tab->var[i].index;
682 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
685 for (i = 0; i < tab->n_div; ++i) {
686 if (tab->var[tab->n_var - tab->n_div + i].is_row)
687 isl_int_set_si(line[1 + tab->n_param + i], 0);
689 int col = tab->var[tab->n_var - tab->n_div + i].index;
690 isl_int_set(line[1 + tab->n_param + i],
691 tab->mat->row[row][off + col]);
696 /* Check if rows "row1" and "row2" have identical "parametric constants",
697 * as explained above.
698 * In this case, we also insist that the coefficients of the big parameter
699 * be the same as the values of the constants will only be the same
700 * if these coefficients are also the same.
702 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
705 unsigned off = 2 + tab->M;
707 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
710 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
711 tab->mat->row[row2][2]))
714 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
715 int pos = i < tab->n_param ? i :
716 tab->n_var - tab->n_div + i - tab->n_param;
719 if (tab->var[pos].is_row)
721 col = tab->var[pos].index;
722 if (isl_int_ne(tab->mat->row[row1][off + col],
723 tab->mat->row[row2][off + col]))
729 /* Return an inequality that expresses that the "parametric constant"
730 * should be non-negative.
731 * This function is only called when the coefficient of the big parameter
734 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
736 struct isl_vec *ineq;
738 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
742 get_row_parameter_line(tab, row, ineq->el);
744 ineq = isl_vec_normalize(ineq);
749 /* Return a integer division for use in a parametric cut based on the given row.
750 * In particular, let the parametric constant of the row be
754 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
755 * The div returned is equal to
757 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
759 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
763 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
767 isl_int_set(div->el[0], tab->mat->row[row][0]);
768 get_row_parameter_line(tab, row, div->el + 1);
769 div = isl_vec_normalize(div);
770 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
771 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
776 /* Return a integer division for use in transferring an integrality constraint
778 * In particular, let the parametric constant of the row be
782 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
783 * The the returned div is equal to
785 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
787 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
791 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
795 isl_int_set(div->el[0], tab->mat->row[row][0]);
796 get_row_parameter_line(tab, row, div->el + 1);
797 div = isl_vec_normalize(div);
798 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
803 /* Construct and return an inequality that expresses an upper bound
805 * In particular, if the div is given by
809 * then the inequality expresses
813 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
817 struct isl_vec *ineq;
822 total = isl_basic_set_total_dim(bset);
823 div_pos = 1 + total - bset->n_div + div;
825 ineq = isl_vec_alloc(bset->ctx, 1 + total);
829 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
830 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
834 /* Given a row in the tableau and a div that was created
835 * using get_row_split_div and that been constrained to equality, i.e.,
837 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
839 * replace the expression "\sum_i {a_i} y_i" in the row by d,
840 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
841 * The coefficients of the non-parameters in the tableau have been
842 * verified to be integral. We can therefore simply replace coefficient b
843 * by floor(b). For the coefficients of the parameters we have
844 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
847 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
849 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
850 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
852 isl_int_set_si(tab->mat->row[row][0], 1);
854 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
855 int drow = tab->var[tab->n_var - tab->n_div + div].index;
857 isl_assert(tab->mat->ctx,
858 isl_int_is_one(tab->mat->row[drow][0]), goto error);
859 isl_seq_combine(tab->mat->row[row] + 1,
860 tab->mat->ctx->one, tab->mat->row[row] + 1,
861 tab->mat->ctx->one, tab->mat->row[drow] + 1,
862 1 + tab->M + tab->n_col);
864 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
866 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
875 /* Check if the (parametric) constant of the given row is obviously
876 * negative, meaning that we don't need to consult the context tableau.
877 * If there is a big parameter and its coefficient is non-zero,
878 * then this coefficient determines the outcome.
879 * Otherwise, we check whether the constant is negative and
880 * all non-zero coefficients of parameters are negative and
881 * belong to non-negative parameters.
883 static int is_obviously_neg(struct isl_tab *tab, int row)
887 unsigned off = 2 + tab->M;
890 if (isl_int_is_pos(tab->mat->row[row][2]))
892 if (isl_int_is_neg(tab->mat->row[row][2]))
896 if (isl_int_is_nonneg(tab->mat->row[row][1]))
898 for (i = 0; i < tab->n_param; ++i) {
899 /* Eliminated parameter */
900 if (tab->var[i].is_row)
902 col = tab->var[i].index;
903 if (isl_int_is_zero(tab->mat->row[row][off + col]))
905 if (!tab->var[i].is_nonneg)
907 if (isl_int_is_pos(tab->mat->row[row][off + col]))
910 for (i = 0; i < tab->n_div; ++i) {
911 if (tab->var[tab->n_var - tab->n_div + i].is_row)
913 col = tab->var[tab->n_var - tab->n_div + i].index;
914 if (isl_int_is_zero(tab->mat->row[row][off + col]))
916 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
918 if (isl_int_is_pos(tab->mat->row[row][off + col]))
924 /* Check if the (parametric) constant of the given row is obviously
925 * non-negative, meaning that we don't need to consult the context tableau.
926 * If there is a big parameter and its coefficient is non-zero,
927 * then this coefficient determines the outcome.
928 * Otherwise, we check whether the constant is non-negative and
929 * all non-zero coefficients of parameters are positive and
930 * belong to non-negative parameters.
932 static int is_obviously_nonneg(struct isl_tab *tab, int row)
936 unsigned off = 2 + tab->M;
939 if (isl_int_is_pos(tab->mat->row[row][2]))
941 if (isl_int_is_neg(tab->mat->row[row][2]))
945 if (isl_int_is_neg(tab->mat->row[row][1]))
947 for (i = 0; i < tab->n_param; ++i) {
948 /* Eliminated parameter */
949 if (tab->var[i].is_row)
951 col = tab->var[i].index;
952 if (isl_int_is_zero(tab->mat->row[row][off + col]))
954 if (!tab->var[i].is_nonneg)
956 if (isl_int_is_neg(tab->mat->row[row][off + col]))
959 for (i = 0; i < tab->n_div; ++i) {
960 if (tab->var[tab->n_var - tab->n_div + i].is_row)
962 col = tab->var[tab->n_var - tab->n_div + i].index;
963 if (isl_int_is_zero(tab->mat->row[row][off + col]))
965 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
967 if (isl_int_is_neg(tab->mat->row[row][off + col]))
973 /* Given a row r and two columns, return the column that would
974 * lead to the lexicographically smallest increment in the sample
975 * solution when leaving the basis in favor of the row.
976 * Pivoting with column c will increment the sample value by a non-negative
977 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
978 * corresponding to the non-parametric variables.
979 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
980 * with all other entries in this virtual row equal to zero.
981 * If variable v appears in a row, then a_{v,c} is the element in column c
984 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
985 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
986 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
987 * increment. Otherwise, it's c2.
989 static int lexmin_col_pair(struct isl_tab *tab,
990 int row, int col1, int col2, isl_int tmp)
995 tr = tab->mat->row[row] + 2 + tab->M;
997 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1001 if (!tab->var[i].is_row) {
1002 if (tab->var[i].index == col1)
1004 if (tab->var[i].index == col2)
1009 if (tab->var[i].index == row)
1012 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1013 s1 = isl_int_sgn(r[col1]);
1014 s2 = isl_int_sgn(r[col2]);
1015 if (s1 == 0 && s2 == 0)
1022 isl_int_mul(tmp, r[col2], tr[col1]);
1023 isl_int_submul(tmp, r[col1], tr[col2]);
1024 if (isl_int_is_pos(tmp))
1026 if (isl_int_is_neg(tmp))
1032 /* Given a row in the tableau, find and return the column that would
1033 * result in the lexicographically smallest, but positive, increment
1034 * in the sample point.
1035 * If there is no such column, then return tab->n_col.
1036 * If anything goes wrong, return -1.
1038 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1041 int col = tab->n_col;
1045 tr = tab->mat->row[row] + 2 + tab->M;
1049 for (j = tab->n_dead; j < tab->n_col; ++j) {
1050 if (tab->col_var[j] >= 0 &&
1051 (tab->col_var[j] < tab->n_param ||
1052 tab->col_var[j] >= tab->n_var - tab->n_div))
1055 if (!isl_int_is_pos(tr[j]))
1058 if (col == tab->n_col)
1061 col = lexmin_col_pair(tab, row, col, j, tmp);
1062 isl_assert(tab->mat->ctx, col >= 0, goto error);
1072 /* Return the first known violated constraint, i.e., a non-negative
1073 * contraint that currently has an either obviously negative value
1074 * or a previously determined to be negative value.
1076 * If any constraint has a negative coefficient for the big parameter,
1077 * if any, then we return one of these first.
1079 static int first_neg(struct isl_tab *tab)
1084 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1085 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1087 if (isl_int_is_neg(tab->mat->row[row][2]))
1090 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1091 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1093 if (tab->row_sign) {
1094 if (tab->row_sign[row] == 0 &&
1095 is_obviously_neg(tab, row))
1096 tab->row_sign[row] = isl_tab_row_neg;
1097 if (tab->row_sign[row] != isl_tab_row_neg)
1099 } else if (!is_obviously_neg(tab, row))
1106 /* Resolve all known or obviously violated constraints through pivoting.
1107 * In particular, as long as we can find any violated constraint, we
1108 * look for a pivoting column that would result in the lexicographicallly
1109 * smallest increment in the sample point. If there is no such column
1110 * then the tableau is infeasible.
1112 static struct isl_tab *restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1113 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
1121 while ((row = first_neg(tab)) != -1) {
1122 col = lexmin_pivot_col(tab, row);
1123 if (col >= tab->n_col) {
1124 if (isl_tab_mark_empty(tab) < 0)
1130 if (isl_tab_pivot(tab, row, col) < 0)
1139 /* Given a row that represents an equality, look for an appropriate
1141 * In particular, if there are any non-zero coefficients among
1142 * the non-parameter variables, then we take the last of these
1143 * variables. Eliminating this variable in terms of the other
1144 * variables and/or parameters does not influence the property
1145 * that all column in the initial tableau are lexicographically
1146 * positive. The row corresponding to the eliminated variable
1147 * will only have non-zero entries below the diagonal of the
1148 * initial tableau. That is, we transform
1154 * If there is no such non-parameter variable, then we are dealing with
1155 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1156 * for elimination. This will ensure that the eliminated parameter
1157 * always has an integer value whenever all the other parameters are integral.
1158 * If there is no such parameter then we return -1.
1160 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1162 unsigned off = 2 + tab->M;
1165 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1167 if (tab->var[i].is_row)
1169 col = tab->var[i].index;
1170 if (col <= tab->n_dead)
1172 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1175 for (i = tab->n_dead; i < tab->n_col; ++i) {
1176 if (isl_int_is_one(tab->mat->row[row][off + i]))
1178 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1184 /* Add an equality that is known to be valid to the tableau.
1185 * We first check if we can eliminate a variable or a parameter.
1186 * If not, we add the equality as two inequalities.
1187 * In this case, the equality was a pure parameter equality and there
1188 * is no need to resolve any constraint violations.
1190 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1197 r = isl_tab_add_row(tab, eq);
1201 r = tab->con[r].index;
1202 i = last_var_col_or_int_par_col(tab, r);
1204 tab->con[r].is_nonneg = 1;
1205 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1207 isl_seq_neg(eq, eq, 1 + tab->n_var);
1208 r = isl_tab_add_row(tab, eq);
1211 tab->con[r].is_nonneg = 1;
1212 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1215 if (isl_tab_pivot(tab, r, i) < 0)
1217 if (isl_tab_kill_col(tab, i) < 0)
1221 tab = restore_lexmin(tab);
1230 /* Check if the given row is a pure constant.
1232 static int is_constant(struct isl_tab *tab, int row)
1234 unsigned off = 2 + tab->M;
1236 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1237 tab->n_col - tab->n_dead) == -1;
1240 /* Add an equality that may or may not be valid to the tableau.
1241 * If the resulting row is a pure constant, then it must be zero.
1242 * Otherwise, the resulting tableau is empty.
1244 * If the row is not a pure constant, then we add two inequalities,
1245 * each time checking that they can be satisfied.
1246 * In the end we try to use one of the two constraints to eliminate
1249 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1250 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1254 struct isl_tab_undo *snap;
1258 snap = isl_tab_snap(tab);
1259 r1 = isl_tab_add_row(tab, eq);
1262 tab->con[r1].is_nonneg = 1;
1263 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1266 row = tab->con[r1].index;
1267 if (is_constant(tab, row)) {
1268 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1269 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1270 if (isl_tab_mark_empty(tab) < 0)
1274 if (isl_tab_rollback(tab, snap) < 0)
1279 tab = restore_lexmin(tab);
1280 if (!tab || tab->empty)
1283 isl_seq_neg(eq, eq, 1 + tab->n_var);
1285 r2 = isl_tab_add_row(tab, eq);
1288 tab->con[r2].is_nonneg = 1;
1289 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1292 tab = restore_lexmin(tab);
1293 if (!tab || tab->empty)
1296 if (!tab->con[r1].is_row) {
1297 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1299 } else if (!tab->con[r2].is_row) {
1300 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1302 } else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) {
1303 unsigned off = 2 + tab->M;
1305 int row = tab->con[r1].index;
1306 i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead,
1307 tab->n_col - tab->n_dead);
1309 if (isl_tab_pivot(tab, row, tab->n_dead + i) < 0)
1311 if (isl_tab_kill_col(tab, tab->n_dead + i) < 0)
1317 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1318 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1320 isl_seq_neg(eq, eq, 1 + tab->n_var);
1321 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1322 isl_seq_neg(eq, eq, 1 + tab->n_var);
1323 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1335 /* Add an inequality to the tableau, resolving violations using
1338 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1345 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1346 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1351 r = isl_tab_add_row(tab, ineq);
1354 tab->con[r].is_nonneg = 1;
1355 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1357 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1358 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1363 tab = restore_lexmin(tab);
1364 if (tab && !tab->empty && tab->con[r].is_row &&
1365 isl_tab_row_is_redundant(tab, tab->con[r].index))
1366 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1374 /* Check if the coefficients of the parameters are all integral.
1376 static int integer_parameter(struct isl_tab *tab, int row)
1380 unsigned off = 2 + tab->M;
1382 for (i = 0; i < tab->n_param; ++i) {
1383 /* Eliminated parameter */
1384 if (tab->var[i].is_row)
1386 col = tab->var[i].index;
1387 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1388 tab->mat->row[row][0]))
1391 for (i = 0; i < tab->n_div; ++i) {
1392 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1394 col = tab->var[tab->n_var - tab->n_div + i].index;
1395 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1396 tab->mat->row[row][0]))
1402 /* Check if the coefficients of the non-parameter variables are all integral.
1404 static int integer_variable(struct isl_tab *tab, int row)
1407 unsigned off = 2 + tab->M;
1409 for (i = tab->n_dead; i < tab->n_col; ++i) {
1410 if (tab->col_var[i] >= 0 &&
1411 (tab->col_var[i] < tab->n_param ||
1412 tab->col_var[i] >= tab->n_var - tab->n_div))
1414 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1415 tab->mat->row[row][0]))
1421 /* Check if the constant term is integral.
1423 static int integer_constant(struct isl_tab *tab, int row)
1425 return isl_int_is_divisible_by(tab->mat->row[row][1],
1426 tab->mat->row[row][0]);
1429 #define I_CST 1 << 0
1430 #define I_PAR 1 << 1
1431 #define I_VAR 1 << 2
1433 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1434 * that is non-integer and therefore requires a cut and return
1435 * the index of the variable.
1436 * For parametric tableaus, there are three parts in a row,
1437 * the constant, the coefficients of the parameters and the rest.
1438 * For each part, we check whether the coefficients in that part
1439 * are all integral and if so, set the corresponding flag in *f.
1440 * If the constant and the parameter part are integral, then the
1441 * current sample value is integral and no cut is required
1442 * (irrespective of whether the variable part is integral).
1444 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1446 var = var < 0 ? tab->n_param : var + 1;
1448 for (; var < tab->n_var - tab->n_div; ++var) {
1451 if (!tab->var[var].is_row)
1453 row = tab->var[var].index;
1454 if (integer_constant(tab, row))
1455 ISL_FL_SET(flags, I_CST);
1456 if (integer_parameter(tab, row))
1457 ISL_FL_SET(flags, I_PAR);
1458 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1460 if (integer_variable(tab, row))
1461 ISL_FL_SET(flags, I_VAR);
1468 /* Check for first (non-parameter) variable that is non-integer and
1469 * therefore requires a cut and return the corresponding row.
1470 * For parametric tableaus, there are three parts in a row,
1471 * the constant, the coefficients of the parameters and the rest.
1472 * For each part, we check whether the coefficients in that part
1473 * are all integral and if so, set the corresponding flag in *f.
1474 * If the constant and the parameter part are integral, then the
1475 * current sample value is integral and no cut is required
1476 * (irrespective of whether the variable part is integral).
1478 static int first_non_integer_row(struct isl_tab *tab, int *f)
1480 int var = next_non_integer_var(tab, -1, f);
1482 return var < 0 ? -1 : tab->var[var].index;
1485 /* Add a (non-parametric) cut to cut away the non-integral sample
1486 * value of the given row.
1488 * If the row is given by
1490 * m r = f + \sum_i a_i y_i
1494 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1496 * The big parameter, if any, is ignored, since it is assumed to be big
1497 * enough to be divisible by any integer.
1498 * If the tableau is actually a parametric tableau, then this function
1499 * is only called when all coefficients of the parameters are integral.
1500 * The cut therefore has zero coefficients for the parameters.
1502 * The current value is known to be negative, so row_sign, if it
1503 * exists, is set accordingly.
1505 * Return the row of the cut or -1.
1507 static int add_cut(struct isl_tab *tab, int row)
1512 unsigned off = 2 + tab->M;
1514 if (isl_tab_extend_cons(tab, 1) < 0)
1516 r = isl_tab_allocate_con(tab);
1520 r_row = tab->mat->row[tab->con[r].index];
1521 isl_int_set(r_row[0], tab->mat->row[row][0]);
1522 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1523 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1524 isl_int_neg(r_row[1], r_row[1]);
1526 isl_int_set_si(r_row[2], 0);
1527 for (i = 0; i < tab->n_col; ++i)
1528 isl_int_fdiv_r(r_row[off + i],
1529 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1531 tab->con[r].is_nonneg = 1;
1532 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1535 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1537 return tab->con[r].index;
1540 /* Given a non-parametric tableau, add cuts until an integer
1541 * sample point is obtained or until the tableau is determined
1542 * to be integer infeasible.
1543 * As long as there is any non-integer value in the sample point,
1544 * we add appropriate cuts, if possible, for each of these
1545 * non-integer values and then resolve the violated
1546 * cut constraints using restore_lexmin.
1547 * If one of the corresponding rows is equal to an integral
1548 * combination of variables/constraints plus a non-integral constant,
1549 * then there is no way to obtain an integer point and we return
1550 * a tableau that is marked empty.
1552 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1563 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1565 if (ISL_FL_ISSET(flags, I_VAR)) {
1566 if (isl_tab_mark_empty(tab) < 0)
1570 row = tab->var[var].index;
1571 row = add_cut(tab, row);
1574 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1575 tab = restore_lexmin(tab);
1576 if (!tab || tab->empty)
1585 /* Check whether all the currently active samples also satisfy the inequality
1586 * "ineq" (treated as an equality if eq is set).
1587 * Remove those samples that do not.
1589 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1597 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1598 isl_assert(tab->mat->ctx, tab->samples, goto error);
1599 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1602 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1604 isl_seq_inner_product(ineq, tab->samples->row[i],
1605 1 + tab->n_var, &v);
1606 sgn = isl_int_sgn(v);
1607 if (eq ? (sgn == 0) : (sgn >= 0))
1609 tab = isl_tab_drop_sample(tab, i);
1621 /* Check whether the sample value of the tableau is finite,
1622 * i.e., either the tableau does not use a big parameter, or
1623 * all values of the variables are equal to the big parameter plus
1624 * some constant. This constant is the actual sample value.
1626 static int sample_is_finite(struct isl_tab *tab)
1633 for (i = 0; i < tab->n_var; ++i) {
1635 if (!tab->var[i].is_row)
1637 row = tab->var[i].index;
1638 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1644 /* Check if the context tableau of sol has any integer points.
1645 * Leave tab in empty state if no integer point can be found.
1646 * If an integer point can be found and if moreover it is finite,
1647 * then it is added to the list of sample values.
1649 * This function is only called when none of the currently active sample
1650 * values satisfies the most recently added constraint.
1652 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1654 struct isl_tab_undo *snap;
1660 snap = isl_tab_snap(tab);
1661 if (isl_tab_push_basis(tab) < 0)
1664 tab = cut_to_integer_lexmin(tab);
1668 if (!tab->empty && sample_is_finite(tab)) {
1669 struct isl_vec *sample;
1671 sample = isl_tab_get_sample_value(tab);
1673 tab = isl_tab_add_sample(tab, sample);
1676 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1685 /* Check if any of the currently active sample values satisfies
1686 * the inequality "ineq" (an equality if eq is set).
1688 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1696 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1697 isl_assert(tab->mat->ctx, tab->samples, return -1);
1698 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1701 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1703 isl_seq_inner_product(ineq, tab->samples->row[i],
1704 1 + tab->n_var, &v);
1705 sgn = isl_int_sgn(v);
1706 if (eq ? (sgn == 0) : (sgn >= 0))
1711 return i < tab->n_sample;
1714 /* Add a div specifed by "div" to the tableau "tab" and return
1715 * 1 if the div is obviously non-negative.
1717 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1718 int (*add_ineq)(void *user, isl_int *), void *user)
1722 struct isl_mat *samples;
1725 r = isl_tab_add_div(tab, div, add_ineq, user);
1728 nonneg = tab->var[r].is_nonneg;
1729 tab->var[r].frozen = 1;
1731 samples = isl_mat_extend(tab->samples,
1732 tab->n_sample, 1 + tab->n_var);
1733 tab->samples = samples;
1736 for (i = tab->n_outside; i < samples->n_row; ++i) {
1737 isl_seq_inner_product(div->el + 1, samples->row[i],
1738 div->size - 1, &samples->row[i][samples->n_col - 1]);
1739 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1740 samples->row[i][samples->n_col - 1], div->el[0]);
1746 /* Add a div specified by "div" to both the main tableau and
1747 * the context tableau. In case of the main tableau, we only
1748 * need to add an extra div. In the context tableau, we also
1749 * need to express the meaning of the div.
1750 * Return the index of the div or -1 if anything went wrong.
1752 static int add_div(struct isl_tab *tab, struct isl_context *context,
1753 struct isl_vec *div)
1758 if ((nonneg = context->op->add_div(context, div)) < 0)
1761 if (!context->op->is_ok(context))
1764 if (isl_tab_extend_vars(tab, 1) < 0)
1766 r = isl_tab_allocate_var(tab);
1770 tab->var[r].is_nonneg = 1;
1771 tab->var[r].frozen = 1;
1774 return tab->n_div - 1;
1776 context->op->invalidate(context);
1780 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1783 unsigned total = isl_basic_map_total_dim(tab->bmap);
1785 for (i = 0; i < tab->bmap->n_div; ++i) {
1786 if (isl_int_ne(tab->bmap->div[i][0], denom))
1788 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, total))
1795 /* Return the index of a div that corresponds to "div".
1796 * We first check if we already have such a div and if not, we create one.
1798 static int get_div(struct isl_tab *tab, struct isl_context *context,
1799 struct isl_vec *div)
1802 struct isl_tab *context_tab = context->op->peek_tab(context);
1807 d = find_div(context_tab, div->el + 1, div->el[0]);
1811 return add_div(tab, context, div);
1814 /* Add a parametric cut to cut away the non-integral sample value
1816 * Let a_i be the coefficients of the constant term and the parameters
1817 * and let b_i be the coefficients of the variables or constraints
1818 * in basis of the tableau.
1819 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1821 * The cut is expressed as
1823 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1825 * If q did not already exist in the context tableau, then it is added first.
1826 * If q is in a column of the main tableau then the "+ q" can be accomplished
1827 * by setting the corresponding entry to the denominator of the constraint.
1828 * If q happens to be in a row of the main tableau, then the corresponding
1829 * row needs to be added instead (taking care of the denominators).
1830 * Note that this is very unlikely, but perhaps not entirely impossible.
1832 * The current value of the cut is known to be negative (or at least
1833 * non-positive), so row_sign is set accordingly.
1835 * Return the row of the cut or -1.
1837 static int add_parametric_cut(struct isl_tab *tab, int row,
1838 struct isl_context *context)
1840 struct isl_vec *div;
1847 unsigned off = 2 + tab->M;
1852 div = get_row_parameter_div(tab, row);
1857 d = context->op->get_div(context, tab, div);
1861 if (isl_tab_extend_cons(tab, 1) < 0)
1863 r = isl_tab_allocate_con(tab);
1867 r_row = tab->mat->row[tab->con[r].index];
1868 isl_int_set(r_row[0], tab->mat->row[row][0]);
1869 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1870 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1871 isl_int_neg(r_row[1], r_row[1]);
1873 isl_int_set_si(r_row[2], 0);
1874 for (i = 0; i < tab->n_param; ++i) {
1875 if (tab->var[i].is_row)
1877 col = tab->var[i].index;
1878 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1879 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1880 tab->mat->row[row][0]);
1881 isl_int_neg(r_row[off + col], r_row[off + col]);
1883 for (i = 0; i < tab->n_div; ++i) {
1884 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1886 col = tab->var[tab->n_var - tab->n_div + i].index;
1887 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1888 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1889 tab->mat->row[row][0]);
1890 isl_int_neg(r_row[off + col], r_row[off + col]);
1892 for (i = 0; i < tab->n_col; ++i) {
1893 if (tab->col_var[i] >= 0 &&
1894 (tab->col_var[i] < tab->n_param ||
1895 tab->col_var[i] >= tab->n_var - tab->n_div))
1897 isl_int_fdiv_r(r_row[off + i],
1898 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1900 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1902 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1904 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1905 isl_int_divexact(r_row[0], r_row[0], gcd);
1906 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1907 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1908 r_row[0], tab->mat->row[d_row] + 1,
1909 off - 1 + tab->n_col);
1910 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1913 col = tab->var[tab->n_var - tab->n_div + d].index;
1914 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1917 tab->con[r].is_nonneg = 1;
1918 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1921 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1925 row = tab->con[r].index;
1927 if (d >= n && context->op->detect_equalities(context, tab) < 0)
1933 /* Construct a tableau for bmap that can be used for computing
1934 * the lexicographic minimum (or maximum) of bmap.
1935 * If not NULL, then dom is the domain where the minimum
1936 * should be computed. In this case, we set up a parametric
1937 * tableau with row signs (initialized to "unknown").
1938 * If M is set, then the tableau will use a big parameter.
1939 * If max is set, then a maximum should be computed instead of a minimum.
1940 * This means that for each variable x, the tableau will contain the variable
1941 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1942 * of the variables in all constraints are negated prior to adding them
1945 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
1946 struct isl_basic_set *dom, unsigned M, int max)
1949 struct isl_tab *tab;
1951 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
1952 isl_basic_map_total_dim(bmap), M);
1956 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1958 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
1959 tab->n_div = dom->n_div;
1960 tab->row_sign = isl_calloc_array(bmap->ctx,
1961 enum isl_tab_row_sign, tab->mat->n_row);
1965 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
1966 if (isl_tab_mark_empty(tab) < 0)
1971 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1972 tab->var[i].is_nonneg = 1;
1973 tab->var[i].frozen = 1;
1975 for (i = 0; i < bmap->n_eq; ++i) {
1977 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1978 bmap->eq[i] + 1 + tab->n_param,
1979 tab->n_var - tab->n_param - tab->n_div);
1980 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
1982 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1983 bmap->eq[i] + 1 + tab->n_param,
1984 tab->n_var - tab->n_param - tab->n_div);
1985 if (!tab || tab->empty)
1988 for (i = 0; i < bmap->n_ineq; ++i) {
1990 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
1991 bmap->ineq[i] + 1 + tab->n_param,
1992 tab->n_var - tab->n_param - tab->n_div);
1993 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
1995 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
1996 bmap->ineq[i] + 1 + tab->n_param,
1997 tab->n_var - tab->n_param - tab->n_div);
1998 if (!tab || tab->empty)
2007 /* Given a main tableau where more than one row requires a split,
2008 * determine and return the "best" row to split on.
2010 * Given two rows in the main tableau, if the inequality corresponding
2011 * to the first row is redundant with respect to that of the second row
2012 * in the current tableau, then it is better to split on the second row,
2013 * since in the positive part, both row will be positive.
2014 * (In the negative part a pivot will have to be performed and just about
2015 * anything can happen to the sign of the other row.)
2017 * As a simple heuristic, we therefore select the row that makes the most
2018 * of the other rows redundant.
2020 * Perhaps it would also be useful to look at the number of constraints
2021 * that conflict with any given constraint.
2023 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2025 struct isl_tab_undo *snap;
2031 if (isl_tab_extend_cons(context_tab, 2) < 0)
2034 snap = isl_tab_snap(context_tab);
2036 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2037 struct isl_tab_undo *snap2;
2038 struct isl_vec *ineq = NULL;
2042 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2044 if (tab->row_sign[split] != isl_tab_row_any)
2047 ineq = get_row_parameter_ineq(tab, split);
2050 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2055 snap2 = isl_tab_snap(context_tab);
2057 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2058 struct isl_tab_var *var;
2062 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2064 if (tab->row_sign[row] != isl_tab_row_any)
2067 ineq = get_row_parameter_ineq(tab, row);
2070 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2074 var = &context_tab->con[context_tab->n_con - 1];
2075 if (!context_tab->empty &&
2076 !isl_tab_min_at_most_neg_one(context_tab, var))
2078 if (isl_tab_rollback(context_tab, snap2) < 0)
2081 if (best == -1 || r > best_r) {
2085 if (isl_tab_rollback(context_tab, snap) < 0)
2092 static struct isl_basic_set *context_lex_peek_basic_set(
2093 struct isl_context *context)
2095 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2098 return isl_tab_peek_bset(clex->tab);
2101 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2103 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2107 static void context_lex_extend(struct isl_context *context, int n)
2109 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2112 if (isl_tab_extend_cons(clex->tab, n) >= 0)
2114 isl_tab_free(clex->tab);
2118 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2119 int check, int update)
2121 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2122 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2124 clex->tab = add_lexmin_eq(clex->tab, eq);
2126 int v = tab_has_valid_sample(clex->tab, eq, 1);
2130 clex->tab = check_integer_feasible(clex->tab);
2133 clex->tab = check_samples(clex->tab, eq, 1);
2136 isl_tab_free(clex->tab);
2140 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2141 int check, int update)
2143 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2144 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2146 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2148 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2152 clex->tab = check_integer_feasible(clex->tab);
2155 clex->tab = check_samples(clex->tab, ineq, 0);
2158 isl_tab_free(clex->tab);
2162 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2164 struct isl_context *context = (struct isl_context *)user;
2165 context_lex_add_ineq(context, ineq, 0, 0);
2166 return context->op->is_ok(context) ? 0 : -1;
2169 /* Check which signs can be obtained by "ineq" on all the currently
2170 * active sample values. See row_sign for more information.
2172 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2178 int res = isl_tab_row_unknown;
2180 isl_assert(tab->mat->ctx, tab->samples, return 0);
2181 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return 0);
2184 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2185 isl_seq_inner_product(tab->samples->row[i], ineq,
2186 1 + tab->n_var, &tmp);
2187 sgn = isl_int_sgn(tmp);
2188 if (sgn > 0 || (sgn == 0 && strict)) {
2189 if (res == isl_tab_row_unknown)
2190 res = isl_tab_row_pos;
2191 if (res == isl_tab_row_neg)
2192 res = isl_tab_row_any;
2195 if (res == isl_tab_row_unknown)
2196 res = isl_tab_row_neg;
2197 if (res == isl_tab_row_pos)
2198 res = isl_tab_row_any;
2200 if (res == isl_tab_row_any)
2208 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2209 isl_int *ineq, int strict)
2211 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2212 return tab_ineq_sign(clex->tab, ineq, strict);
2215 /* Check whether "ineq" can be added to the tableau without rendering
2218 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2220 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2221 struct isl_tab_undo *snap;
2227 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2230 snap = isl_tab_snap(clex->tab);
2231 if (isl_tab_push_basis(clex->tab) < 0)
2233 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2234 clex->tab = check_integer_feasible(clex->tab);
2237 feasible = !clex->tab->empty;
2238 if (isl_tab_rollback(clex->tab, snap) < 0)
2244 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2245 struct isl_vec *div)
2247 return get_div(tab, context, div);
2250 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2252 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2253 return context_tab_add_div(clex->tab, div,
2254 context_lex_add_ineq_wrap, context);
2257 static int context_lex_detect_equalities(struct isl_context *context,
2258 struct isl_tab *tab)
2263 static int context_lex_best_split(struct isl_context *context,
2264 struct isl_tab *tab)
2266 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2267 struct isl_tab_undo *snap;
2270 snap = isl_tab_snap(clex->tab);
2271 if (isl_tab_push_basis(clex->tab) < 0)
2273 r = best_split(tab, clex->tab);
2275 if (isl_tab_rollback(clex->tab, snap) < 0)
2281 static int context_lex_is_empty(struct isl_context *context)
2283 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2286 return clex->tab->empty;
2289 static void *context_lex_save(struct isl_context *context)
2291 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2292 struct isl_tab_undo *snap;
2294 snap = isl_tab_snap(clex->tab);
2295 if (isl_tab_push_basis(clex->tab) < 0)
2297 if (isl_tab_save_samples(clex->tab) < 0)
2303 static void context_lex_restore(struct isl_context *context, void *save)
2305 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2306 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2307 isl_tab_free(clex->tab);
2312 static int context_lex_is_ok(struct isl_context *context)
2314 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2318 /* For each variable in the context tableau, check if the variable can
2319 * only attain non-negative values. If so, mark the parameter as non-negative
2320 * in the main tableau. This allows for a more direct identification of some
2321 * cases of violated constraints.
2323 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2324 struct isl_tab *context_tab)
2327 struct isl_tab_undo *snap;
2328 struct isl_vec *ineq = NULL;
2329 struct isl_tab_var *var;
2332 if (context_tab->n_var == 0)
2335 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2339 if (isl_tab_extend_cons(context_tab, 1) < 0)
2342 snap = isl_tab_snap(context_tab);
2345 isl_seq_clr(ineq->el, ineq->size);
2346 for (i = 0; i < context_tab->n_var; ++i) {
2347 isl_int_set_si(ineq->el[1 + i], 1);
2348 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2350 var = &context_tab->con[context_tab->n_con - 1];
2351 if (!context_tab->empty &&
2352 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2354 if (i >= tab->n_param)
2355 j = i - tab->n_param + tab->n_var - tab->n_div;
2356 tab->var[j].is_nonneg = 1;
2359 isl_int_set_si(ineq->el[1 + i], 0);
2360 if (isl_tab_rollback(context_tab, snap) < 0)
2364 if (context_tab->M && n == context_tab->n_var) {
2365 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2377 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2378 struct isl_context *context, struct isl_tab *tab)
2380 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2381 struct isl_tab_undo *snap;
2383 snap = isl_tab_snap(clex->tab);
2384 if (isl_tab_push_basis(clex->tab) < 0)
2387 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2389 if (isl_tab_rollback(clex->tab, snap) < 0)
2398 static void context_lex_invalidate(struct isl_context *context)
2400 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2401 isl_tab_free(clex->tab);
2405 static void context_lex_free(struct isl_context *context)
2407 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2408 isl_tab_free(clex->tab);
2412 struct isl_context_op isl_context_lex_op = {
2413 context_lex_detect_nonnegative_parameters,
2414 context_lex_peek_basic_set,
2415 context_lex_peek_tab,
2417 context_lex_add_ineq,
2418 context_lex_ineq_sign,
2419 context_lex_test_ineq,
2420 context_lex_get_div,
2421 context_lex_add_div,
2422 context_lex_detect_equalities,
2423 context_lex_best_split,
2424 context_lex_is_empty,
2427 context_lex_restore,
2428 context_lex_invalidate,
2432 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2434 struct isl_tab *tab;
2436 bset = isl_basic_set_cow(bset);
2439 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2442 if (isl_tab_track_bset(tab, bset) < 0)
2444 tab = isl_tab_init_samples(tab);
2447 isl_basic_set_free(bset);
2451 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2453 struct isl_context_lex *clex;
2458 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2462 clex->context.op = &isl_context_lex_op;
2464 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2465 clex->tab = restore_lexmin(clex->tab);
2466 clex->tab = check_integer_feasible(clex->tab);
2470 return &clex->context;
2472 clex->context.op->free(&clex->context);
2476 struct isl_context_gbr {
2477 struct isl_context context;
2478 struct isl_tab *tab;
2479 struct isl_tab *shifted;
2480 struct isl_tab *cone;
2483 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2484 struct isl_context *context, struct isl_tab *tab)
2486 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2487 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2490 static struct isl_basic_set *context_gbr_peek_basic_set(
2491 struct isl_context *context)
2493 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2496 return isl_tab_peek_bset(cgbr->tab);
2499 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2501 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2505 /* Initialize the "shifted" tableau of the context, which
2506 * contains the constraints of the original tableau shifted
2507 * by the sum of all negative coefficients. This ensures
2508 * that any rational point in the shifted tableau can
2509 * be rounded up to yield an integer point in the original tableau.
2511 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2514 struct isl_vec *cst;
2515 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2516 unsigned dim = isl_basic_set_total_dim(bset);
2518 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2522 for (i = 0; i < bset->n_ineq; ++i) {
2523 isl_int_set(cst->el[i], bset->ineq[i][0]);
2524 for (j = 0; j < dim; ++j) {
2525 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2527 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2528 bset->ineq[i][1 + j]);
2532 cgbr->shifted = isl_tab_from_basic_set(bset);
2534 for (i = 0; i < bset->n_ineq; ++i)
2535 isl_int_set(bset->ineq[i][0], cst->el[i]);
2540 /* Check if the shifted tableau is non-empty, and if so
2541 * use the sample point to construct an integer point
2542 * of the context tableau.
2544 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2546 struct isl_vec *sample;
2549 gbr_init_shifted(cgbr);
2552 if (cgbr->shifted->empty)
2553 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2555 sample = isl_tab_get_sample_value(cgbr->shifted);
2556 sample = isl_vec_ceil(sample);
2561 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2568 for (i = 0; i < bset->n_eq; ++i)
2569 isl_int_set_si(bset->eq[i][0], 0);
2571 for (i = 0; i < bset->n_ineq; ++i)
2572 isl_int_set_si(bset->ineq[i][0], 0);
2577 static int use_shifted(struct isl_context_gbr *cgbr)
2579 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2582 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2584 struct isl_basic_set *bset;
2585 struct isl_basic_set *cone;
2587 if (isl_tab_sample_is_integer(cgbr->tab))
2588 return isl_tab_get_sample_value(cgbr->tab);
2590 if (use_shifted(cgbr)) {
2591 struct isl_vec *sample;
2593 sample = gbr_get_shifted_sample(cgbr);
2594 if (!sample || sample->size > 0)
2597 isl_vec_free(sample);
2601 bset = isl_tab_peek_bset(cgbr->tab);
2602 cgbr->cone = isl_tab_from_recession_cone(bset);
2605 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2608 cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone);
2612 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2613 struct isl_vec *sample;
2614 struct isl_tab_undo *snap;
2616 if (cgbr->tab->basis) {
2617 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2618 isl_mat_free(cgbr->tab->basis);
2619 cgbr->tab->basis = NULL;
2621 cgbr->tab->n_zero = 0;
2622 cgbr->tab->n_unbounded = 0;
2626 snap = isl_tab_snap(cgbr->tab);
2628 sample = isl_tab_sample(cgbr->tab);
2630 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2631 isl_vec_free(sample);
2638 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2639 cone = drop_constant_terms(cone);
2640 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2641 cone = isl_basic_set_underlying_set(cone);
2642 cone = isl_basic_set_gauss(cone, NULL);
2644 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2645 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2646 bset = isl_basic_set_underlying_set(bset);
2647 bset = isl_basic_set_gauss(bset, NULL);
2649 return isl_basic_set_sample_with_cone(bset, cone);
2652 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2654 struct isl_vec *sample;
2659 if (cgbr->tab->empty)
2662 sample = gbr_get_sample(cgbr);
2666 if (sample->size == 0) {
2667 isl_vec_free(sample);
2668 if (isl_tab_mark_empty(cgbr->tab) < 0)
2673 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2677 isl_tab_free(cgbr->tab);
2681 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2688 if (isl_tab_extend_cons(tab, 2) < 0)
2691 tab = isl_tab_add_eq(tab, eq);
2699 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2700 int check, int update)
2702 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2704 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2706 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2707 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2709 cgbr->cone = isl_tab_add_eq(cgbr->cone, eq);
2713 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2717 check_gbr_integer_feasible(cgbr);
2720 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2723 isl_tab_free(cgbr->tab);
2727 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2732 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2735 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2738 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2741 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2743 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2746 for (i = 0; i < dim; ++i) {
2747 if (!isl_int_is_neg(ineq[1 + i]))
2749 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2752 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2755 for (i = 0; i < dim; ++i) {
2756 if (!isl_int_is_neg(ineq[1 + i]))
2758 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2762 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2763 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2765 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2771 isl_tab_free(cgbr->tab);
2775 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2776 int check, int update)
2778 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2780 add_gbr_ineq(cgbr, ineq);
2785 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2789 check_gbr_integer_feasible(cgbr);
2792 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2795 isl_tab_free(cgbr->tab);
2799 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2801 struct isl_context *context = (struct isl_context *)user;
2802 context_gbr_add_ineq(context, ineq, 0, 0);
2803 return context->op->is_ok(context) ? 0 : -1;
2806 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2807 isl_int *ineq, int strict)
2809 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2810 return tab_ineq_sign(cgbr->tab, ineq, strict);
2813 /* Check whether "ineq" can be added to the tableau without rendering
2816 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2818 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2819 struct isl_tab_undo *snap;
2820 struct isl_tab_undo *shifted_snap = NULL;
2821 struct isl_tab_undo *cone_snap = NULL;
2827 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2830 snap = isl_tab_snap(cgbr->tab);
2832 shifted_snap = isl_tab_snap(cgbr->shifted);
2834 cone_snap = isl_tab_snap(cgbr->cone);
2835 add_gbr_ineq(cgbr, ineq);
2836 check_gbr_integer_feasible(cgbr);
2839 feasible = !cgbr->tab->empty;
2840 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2843 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2845 } else if (cgbr->shifted) {
2846 isl_tab_free(cgbr->shifted);
2847 cgbr->shifted = NULL;
2850 if (isl_tab_rollback(cgbr->cone, cone_snap))
2852 } else if (cgbr->cone) {
2853 isl_tab_free(cgbr->cone);
2860 /* Return the column of the last of the variables associated to
2861 * a column that has a non-zero coefficient.
2862 * This function is called in a context where only coefficients
2863 * of parameters or divs can be non-zero.
2865 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2869 unsigned dim = tab->n_var - tab->n_param - tab->n_div;
2871 if (tab->n_var == 0)
2874 for (i = tab->n_var - 1; i >= 0; --i) {
2875 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2877 if (tab->var[i].is_row)
2879 col = tab->var[i].index;
2880 if (!isl_int_is_zero(p[col]))
2887 /* Look through all the recently added equalities in the context
2888 * to see if we can propagate any of them to the main tableau.
2890 * The newly added equalities in the context are encoded as pairs
2891 * of inequalities starting at inequality "first".
2893 * We tentatively add each of these equalities to the main tableau
2894 * and if this happens to result in a row with a final coefficient
2895 * that is one or negative one, we use it to kill a column
2896 * in the main tableau. Otherwise, we discard the tentatively
2899 static void propagate_equalities(struct isl_context_gbr *cgbr,
2900 struct isl_tab *tab, unsigned first)
2903 struct isl_vec *eq = NULL;
2905 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2909 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2912 isl_seq_clr(eq->el + 1 + tab->n_param,
2913 tab->n_var - tab->n_param - tab->n_div);
2914 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2917 struct isl_tab_undo *snap;
2918 snap = isl_tab_snap(tab);
2920 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
2921 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
2922 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
2925 r = isl_tab_add_row(tab, eq->el);
2928 r = tab->con[r].index;
2929 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
2930 if (j < 0 || j < tab->n_dead ||
2931 !isl_int_is_one(tab->mat->row[r][0]) ||
2932 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
2933 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
2934 if (isl_tab_rollback(tab, snap) < 0)
2938 if (isl_tab_pivot(tab, r, j) < 0)
2940 if (isl_tab_kill_col(tab, j) < 0)
2943 tab = restore_lexmin(tab);
2951 isl_tab_free(cgbr->tab);
2955 static int context_gbr_detect_equalities(struct isl_context *context,
2956 struct isl_tab *tab)
2958 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2959 struct isl_ctx *ctx;
2961 enum isl_lp_result res;
2964 ctx = cgbr->tab->mat->ctx;
2967 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2968 cgbr->cone = isl_tab_from_recession_cone(bset);
2971 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2974 cgbr->cone = isl_tab_detect_implicit_equalities(cgbr->cone);
2976 n_ineq = cgbr->tab->bmap->n_ineq;
2977 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
2978 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
2979 propagate_equalities(cgbr, tab, n_ineq);
2983 isl_tab_free(cgbr->tab);
2988 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
2989 struct isl_vec *div)
2991 return get_div(tab, context, div);
2994 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
2996 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3000 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3002 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3004 if (isl_tab_allocate_var(cgbr->cone) <0)
3007 cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap,
3008 isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2);
3009 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3012 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3013 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3016 return context_tab_add_div(cgbr->tab, div,
3017 context_gbr_add_ineq_wrap, context);
3020 static int context_gbr_best_split(struct isl_context *context,
3021 struct isl_tab *tab)
3023 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3024 struct isl_tab_undo *snap;
3027 snap = isl_tab_snap(cgbr->tab);
3028 r = best_split(tab, cgbr->tab);
3030 if (isl_tab_rollback(cgbr->tab, snap) < 0)
3036 static int context_gbr_is_empty(struct isl_context *context)
3038 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3041 return cgbr->tab->empty;
3044 struct isl_gbr_tab_undo {
3045 struct isl_tab_undo *tab_snap;
3046 struct isl_tab_undo *shifted_snap;
3047 struct isl_tab_undo *cone_snap;
3050 static void *context_gbr_save(struct isl_context *context)
3052 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3053 struct isl_gbr_tab_undo *snap;
3055 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3059 snap->tab_snap = isl_tab_snap(cgbr->tab);
3060 if (isl_tab_save_samples(cgbr->tab) < 0)
3064 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3066 snap->shifted_snap = NULL;
3069 snap->cone_snap = isl_tab_snap(cgbr->cone);
3071 snap->cone_snap = NULL;
3079 static void context_gbr_restore(struct isl_context *context, void *save)
3081 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3082 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3085 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3086 isl_tab_free(cgbr->tab);
3090 if (snap->shifted_snap) {
3091 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3093 } else if (cgbr->shifted) {
3094 isl_tab_free(cgbr->shifted);
3095 cgbr->shifted = NULL;
3098 if (snap->cone_snap) {
3099 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3101 } else if (cgbr->cone) {
3102 isl_tab_free(cgbr->cone);
3111 isl_tab_free(cgbr->tab);
3115 static int context_gbr_is_ok(struct isl_context *context)
3117 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3121 static void context_gbr_invalidate(struct isl_context *context)
3123 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3124 isl_tab_free(cgbr->tab);
3128 static void context_gbr_free(struct isl_context *context)
3130 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3131 isl_tab_free(cgbr->tab);
3132 isl_tab_free(cgbr->shifted);
3133 isl_tab_free(cgbr->cone);
3137 struct isl_context_op isl_context_gbr_op = {
3138 context_gbr_detect_nonnegative_parameters,
3139 context_gbr_peek_basic_set,
3140 context_gbr_peek_tab,
3142 context_gbr_add_ineq,
3143 context_gbr_ineq_sign,
3144 context_gbr_test_ineq,
3145 context_gbr_get_div,
3146 context_gbr_add_div,
3147 context_gbr_detect_equalities,
3148 context_gbr_best_split,
3149 context_gbr_is_empty,
3152 context_gbr_restore,
3153 context_gbr_invalidate,
3157 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3159 struct isl_context_gbr *cgbr;
3164 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3168 cgbr->context.op = &isl_context_gbr_op;
3170 cgbr->shifted = NULL;
3172 cgbr->tab = isl_tab_from_basic_set(dom);
3173 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3176 if (isl_tab_track_bset(cgbr->tab,
3177 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3179 check_gbr_integer_feasible(cgbr);
3181 return &cgbr->context;
3183 cgbr->context.op->free(&cgbr->context);
3187 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3192 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3193 return isl_context_lex_alloc(dom);
3195 return isl_context_gbr_alloc(dom);
3198 /* Construct an isl_sol_map structure for accumulating the solution.
3199 * If track_empty is set, then we also keep track of the parts
3200 * of the context where there is no solution.
3201 * If max is set, then we are solving a maximization, rather than
3202 * a minimization problem, which means that the variables in the
3203 * tableau have value "M - x" rather than "M + x".
3205 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
3206 struct isl_basic_set *dom, int track_empty, int max)
3208 struct isl_sol_map *sol_map;
3210 sol_map = isl_calloc_type(bset->ctx, struct isl_sol_map);
3214 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3215 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3216 sol_map->sol.dec_level.sol = &sol_map->sol;
3217 sol_map->sol.max = max;
3218 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3219 sol_map->sol.add = &sol_map_add_wrap;
3220 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3221 sol_map->sol.free = &sol_map_free_wrap;
3222 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
3227 sol_map->sol.context = isl_context_alloc(dom);
3228 if (!sol_map->sol.context)
3232 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
3233 1, ISL_SET_DISJOINT);
3234 if (!sol_map->empty)
3238 isl_basic_set_free(dom);
3241 isl_basic_set_free(dom);
3242 sol_map_free(sol_map);
3246 /* Check whether all coefficients of (non-parameter) variables
3247 * are non-positive, meaning that no pivots can be performed on the row.
3249 static int is_critical(struct isl_tab *tab, int row)
3252 unsigned off = 2 + tab->M;
3254 for (j = tab->n_dead; j < tab->n_col; ++j) {
3255 if (tab->col_var[j] >= 0 &&
3256 (tab->col_var[j] < tab->n_param ||
3257 tab->col_var[j] >= tab->n_var - tab->n_div))
3260 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3267 /* Check whether the inequality represented by vec is strict over the integers,
3268 * i.e., there are no integer values satisfying the constraint with
3269 * equality. This happens if the gcd of the coefficients is not a divisor
3270 * of the constant term. If so, scale the constraint down by the gcd
3271 * of the coefficients.
3273 static int is_strict(struct isl_vec *vec)
3279 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3280 if (!isl_int_is_one(gcd)) {
3281 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3282 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3283 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3290 /* Determine the sign of the given row of the main tableau.
3291 * The result is one of
3292 * isl_tab_row_pos: always non-negative; no pivot needed
3293 * isl_tab_row_neg: always non-positive; pivot
3294 * isl_tab_row_any: can be both positive and negative; split
3296 * We first handle some simple cases
3297 * - the row sign may be known already
3298 * - the row may be obviously non-negative
3299 * - the parametric constant may be equal to that of another row
3300 * for which we know the sign. This sign will be either "pos" or
3301 * "any". If it had been "neg" then we would have pivoted before.
3303 * If none of these cases hold, we check the value of the row for each
3304 * of the currently active samples. Based on the signs of these values
3305 * we make an initial determination of the sign of the row.
3307 * all zero -> unk(nown)
3308 * all non-negative -> pos
3309 * all non-positive -> neg
3310 * both negative and positive -> all
3312 * If we end up with "all", we are done.
3313 * Otherwise, we perform a check for positive and/or negative
3314 * values as follows.
3316 * samples neg unk pos
3322 * There is no special sign for "zero", because we can usually treat zero
3323 * as either non-negative or non-positive, whatever works out best.
3324 * However, if the row is "critical", meaning that pivoting is impossible
3325 * then we don't want to limp zero with the non-positive case, because
3326 * then we we would lose the solution for those values of the parameters
3327 * where the value of the row is zero. Instead, we treat 0 as non-negative
3328 * ensuring a split if the row can attain both zero and negative values.
3329 * The same happens when the original constraint was one that could not
3330 * be satisfied with equality by any integer values of the parameters.
3331 * In this case, we normalize the constraint, but then a value of zero
3332 * for the normalized constraint is actually a positive value for the
3333 * original constraint, so again we need to treat zero as non-negative.
3334 * In both these cases, we have the following decision tree instead:
3336 * all non-negative -> pos
3337 * all negative -> neg
3338 * both negative and non-negative -> all
3346 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3347 struct isl_sol *sol, int row)
3349 struct isl_vec *ineq = NULL;
3350 int res = isl_tab_row_unknown;
3355 if (tab->row_sign[row] != isl_tab_row_unknown)
3356 return tab->row_sign[row];
3357 if (is_obviously_nonneg(tab, row))
3358 return isl_tab_row_pos;
3359 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3360 if (tab->row_sign[row2] == isl_tab_row_unknown)
3362 if (identical_parameter_line(tab, row, row2))
3363 return tab->row_sign[row2];
3366 critical = is_critical(tab, row);
3368 ineq = get_row_parameter_ineq(tab, row);
3372 strict = is_strict(ineq);
3374 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3375 critical || strict);
3377 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3378 /* test for negative values */
3380 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3381 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3383 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3387 res = isl_tab_row_pos;
3389 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3391 if (res == isl_tab_row_neg) {
3392 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3393 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3397 if (res == isl_tab_row_neg) {
3398 /* test for positive values */
3400 if (!critical && !strict)
3401 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3403 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3407 res = isl_tab_row_any;
3417 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3419 /* Find solutions for values of the parameters that satisfy the given
3422 * We currently take a snapshot of the context tableau that is reset
3423 * when we return from this function, while we make a copy of the main
3424 * tableau, leaving the original main tableau untouched.
3425 * These are fairly arbitrary choices. Making a copy also of the context
3426 * tableau would obviate the need to undo any changes made to it later,
3427 * while taking a snapshot of the main tableau could reduce memory usage.
3428 * If we were to switch to taking a snapshot of the main tableau,
3429 * we would have to keep in mind that we need to save the row signs
3430 * and that we need to do this before saving the current basis
3431 * such that the basis has been restore before we restore the row signs.
3433 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3439 saved = sol->context->op->save(sol->context);
3441 tab = isl_tab_dup(tab);
3445 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3447 find_solutions(sol, tab);
3449 sol->context->op->restore(sol->context, saved);
3455 /* Record the absence of solutions for those values of the parameters
3456 * that do not satisfy the given inequality with equality.
3458 static void no_sol_in_strict(struct isl_sol *sol,
3459 struct isl_tab *tab, struct isl_vec *ineq)
3466 saved = sol->context->op->save(sol->context);
3468 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3470 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3479 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3481 sol->context->op->restore(sol->context, saved);
3487 /* Compute the lexicographic minimum of the set represented by the main
3488 * tableau "tab" within the context "sol->context_tab".
3489 * On entry the sample value of the main tableau is lexicographically
3490 * less than or equal to this lexicographic minimum.
3491 * Pivots are performed until a feasible point is found, which is then
3492 * necessarily equal to the minimum, or until the tableau is found to
3493 * be infeasible. Some pivots may need to be performed for only some
3494 * feasible values of the context tableau. If so, the context tableau
3495 * is split into a part where the pivot is needed and a part where it is not.
3497 * Whenever we enter the main loop, the main tableau is such that no
3498 * "obvious" pivots need to be performed on it, where "obvious" means
3499 * that the given row can be seen to be negative without looking at
3500 * the context tableau. In particular, for non-parametric problems,
3501 * no pivots need to be performed on the main tableau.
3502 * The caller of find_solutions is responsible for making this property
3503 * hold prior to the first iteration of the loop, while restore_lexmin
3504 * is called before every other iteration.
3506 * Inside the main loop, we first examine the signs of the rows of
3507 * the main tableau within the context of the context tableau.
3508 * If we find a row that is always non-positive for all values of
3509 * the parameters satisfying the context tableau and negative for at
3510 * least one value of the parameters, we perform the appropriate pivot
3511 * and start over. An exception is the case where no pivot can be
3512 * performed on the row. In this case, we require that the sign of
3513 * the row is negative for all values of the parameters (rather than just
3514 * non-positive). This special case is handled inside row_sign, which
3515 * will say that the row can have any sign if it determines that it can
3516 * attain both negative and zero values.
3518 * If we can't find a row that always requires a pivot, but we can find
3519 * one or more rows that require a pivot for some values of the parameters
3520 * (i.e., the row can attain both positive and negative signs), then we split
3521 * the context tableau into two parts, one where we force the sign to be
3522 * non-negative and one where we force is to be negative.
3523 * The non-negative part is handled by a recursive call (through find_in_pos).
3524 * Upon returning from this call, we continue with the negative part and
3525 * perform the required pivot.
3527 * If no such rows can be found, all rows are non-negative and we have
3528 * found a (rational) feasible point. If we only wanted a rational point
3530 * Otherwise, we check if all values of the sample point of the tableau
3531 * are integral for the variables. If so, we have found the minimal
3532 * integral point and we are done.
3533 * If the sample point is not integral, then we need to make a distinction
3534 * based on whether the constant term is non-integral or the coefficients
3535 * of the parameters. Furthermore, in order to decide how to handle
3536 * the non-integrality, we also need to know whether the coefficients
3537 * of the other columns in the tableau are integral. This leads
3538 * to the following table. The first two rows do not correspond
3539 * to a non-integral sample point and are only mentioned for completeness.
3541 * constant parameters other
3544 * int int rat | -> no problem
3546 * rat int int -> fail
3548 * rat int rat -> cut
3551 * rat rat rat | -> parametric cut
3554 * rat rat int | -> split context
3556 * If the parametric constant is completely integral, then there is nothing
3557 * to be done. If the constant term is non-integral, but all the other
3558 * coefficient are integral, then there is nothing that can be done
3559 * and the tableau has no integral solution.
3560 * If, on the other hand, one or more of the other columns have rational
3561 * coeffcients, but the parameter coefficients are all integral, then
3562 * we can perform a regular (non-parametric) cut.
3563 * Finally, if there is any parameter coefficient that is non-integral,
3564 * then we need to involve the context tableau. There are two cases here.
3565 * If at least one other column has a rational coefficient, then we
3566 * can perform a parametric cut in the main tableau by adding a new
3567 * integer division in the context tableau.
3568 * If all other columns have integral coefficients, then we need to
3569 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3570 * is always integral. We do this by introducing an integer division
3571 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3572 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3573 * Since q is expressed in the tableau as
3574 * c + \sum a_i y_i - m q >= 0
3575 * -c - \sum a_i y_i + m q + m - 1 >= 0
3576 * it is sufficient to add the inequality
3577 * -c - \sum a_i y_i + m q >= 0
3578 * In the part of the context where this inequality does not hold, the
3579 * main tableau is marked as being empty.
3581 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3583 struct isl_context *context;
3585 if (!tab || sol->error)
3588 context = sol->context;
3592 if (context->op->is_empty(context))
3595 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
3602 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3603 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3605 sgn = row_sign(tab, sol, row);
3608 tab->row_sign[row] = sgn;
3609 if (sgn == isl_tab_row_any)
3611 if (sgn == isl_tab_row_any && split == -1)
3613 if (sgn == isl_tab_row_neg)
3616 if (row < tab->n_row)
3619 struct isl_vec *ineq;
3621 split = context->op->best_split(context, tab);
3624 ineq = get_row_parameter_ineq(tab, split);
3628 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3629 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3631 if (tab->row_sign[row] == isl_tab_row_any)
3632 tab->row_sign[row] = isl_tab_row_unknown;
3634 tab->row_sign[split] = isl_tab_row_pos;
3636 find_in_pos(sol, tab, ineq->el);
3637 tab->row_sign[split] = isl_tab_row_neg;
3639 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3640 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3641 context->op->add_ineq(context, ineq->el, 0, 1);
3649 row = first_non_integer_row(tab, &flags);
3652 if (ISL_FL_ISSET(flags, I_PAR)) {
3653 if (ISL_FL_ISSET(flags, I_VAR)) {
3654 if (isl_tab_mark_empty(tab) < 0)
3658 row = add_cut(tab, row);
3659 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3660 struct isl_vec *div;
3661 struct isl_vec *ineq;
3663 div = get_row_split_div(tab, row);
3666 d = context->op->get_div(context, tab, div);
3670 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3672 no_sol_in_strict(sol, tab, ineq);
3673 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3674 context->op->add_ineq(context, ineq->el, 1, 1);
3676 if (sol->error || !context->op->is_ok(context))
3678 tab = set_row_cst_to_div(tab, row, d);
3679 if (context->op->is_empty(context))
3682 row = add_parametric_cut(tab, row, context);
3695 /* Compute the lexicographic minimum of the set represented by the main
3696 * tableau "tab" within the context "sol->context_tab".
3698 * As a preprocessing step, we first transfer all the purely parametric
3699 * equalities from the main tableau to the context tableau, i.e.,
3700 * parameters that have been pivoted to a row.
3701 * These equalities are ignored by the main algorithm, because the
3702 * corresponding rows may not be marked as being non-negative.
3703 * In parts of the context where the added equality does not hold,
3704 * the main tableau is marked as being empty.
3706 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3712 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3716 if (tab->row_var[row] < 0)
3718 if (tab->row_var[row] >= tab->n_param &&
3719 tab->row_var[row] < tab->n_var - tab->n_div)
3721 if (tab->row_var[row] < tab->n_param)
3722 p = tab->row_var[row];
3724 p = tab->row_var[row]
3725 + tab->n_param - (tab->n_var - tab->n_div);
3727 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3728 get_row_parameter_line(tab, row, eq->el);
3729 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3730 eq = isl_vec_normalize(eq);
3733 no_sol_in_strict(sol, tab, eq);
3735 isl_seq_neg(eq->el, eq->el, eq->size);
3737 no_sol_in_strict(sol, tab, eq);
3738 isl_seq_neg(eq->el, eq->el, eq->size);
3740 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3744 if (isl_tab_mark_redundant(tab, row) < 0)
3747 if (sol->context->op->is_empty(sol->context))
3750 row = tab->n_redundant - 1;
3753 find_solutions(sol, tab);
3764 static void sol_map_find_solutions(struct isl_sol_map *sol_map,
3765 struct isl_tab *tab)
3767 find_solutions_main(&sol_map->sol, tab);
3770 /* Check if integer division "div" of "dom" also occurs in "bmap".
3771 * If so, return its position within the divs.
3772 * If not, return -1.
3774 static int find_context_div(struct isl_basic_map *bmap,
3775 struct isl_basic_set *dom, unsigned div)
3778 unsigned b_dim = isl_dim_total(bmap->dim);
3779 unsigned d_dim = isl_dim_total(dom->dim);
3781 if (isl_int_is_zero(dom->div[div][0]))
3783 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3786 for (i = 0; i < bmap->n_div; ++i) {
3787 if (isl_int_is_zero(bmap->div[i][0]))
3789 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3790 (b_dim - d_dim) + bmap->n_div) != -1)
3792 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3798 /* The correspondence between the variables in the main tableau,
3799 * the context tableau, and the input map and domain is as follows.
3800 * The first n_param and the last n_div variables of the main tableau
3801 * form the variables of the context tableau.
3802 * In the basic map, these n_param variables correspond to the
3803 * parameters and the input dimensions. In the domain, they correspond
3804 * to the parameters and the set dimensions.
3805 * The n_div variables correspond to the integer divisions in the domain.
3806 * To ensure that everything lines up, we may need to copy some of the
3807 * integer divisions of the domain to the map. These have to be placed
3808 * in the same order as those in the context and they have to be placed
3809 * after any other integer divisions that the map may have.
3810 * This function performs the required reordering.
3812 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3813 struct isl_basic_set *dom)
3819 for (i = 0; i < dom->n_div; ++i)
3820 if (find_context_div(bmap, dom, i) != -1)
3822 other = bmap->n_div - common;
3823 if (dom->n_div - common > 0) {
3824 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
3825 dom->n_div - common, 0, 0);
3829 for (i = 0; i < dom->n_div; ++i) {
3830 int pos = find_context_div(bmap, dom, i);
3832 pos = isl_basic_map_alloc_div(bmap);
3835 isl_int_set_si(bmap->div[pos][0], 0);
3837 if (pos != other + i)
3838 isl_basic_map_swap_div(bmap, pos, other + i);
3842 isl_basic_map_free(bmap);
3846 /* Compute the lexicographic minimum (or maximum if "max" is set)
3847 * of "bmap" over the domain "dom" and return the result as a map.
3848 * If "empty" is not NULL, then *empty is assigned a set that
3849 * contains those parts of the domain where there is no solution.
3850 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
3851 * then we compute the rational optimum. Otherwise, we compute
3852 * the integral optimum.
3854 * We perform some preprocessing. As the PILP solver does not
3855 * handle implicit equalities very well, we first make sure all
3856 * the equalities are explicitly available.
3857 * We also make sure the divs in the domain are properly order,
3858 * because they will be added one by one in the given order
3859 * during the construction of the solution map.
3861 struct isl_map *isl_tab_basic_map_partial_lexopt(
3862 struct isl_basic_map *bmap, struct isl_basic_set *dom,
3863 struct isl_set **empty, int max)
3865 struct isl_tab *tab;
3866 struct isl_map *result = NULL;
3867 struct isl_sol_map *sol_map = NULL;
3868 struct isl_context *context;
3869 struct isl_basic_map *eq;
3876 isl_assert(bmap->ctx,
3877 isl_basic_map_compatible_domain(bmap, dom), goto error);
3879 eq = isl_basic_map_copy(bmap);
3880 eq = isl_basic_map_intersect_domain(eq, isl_basic_set_copy(dom));
3881 eq = isl_basic_map_affine_hull(eq);
3882 bmap = isl_basic_map_intersect(bmap, eq);
3885 dom = isl_basic_set_order_divs(dom);
3886 bmap = align_context_divs(bmap, dom);
3888 sol_map = sol_map_init(bmap, dom, !!empty, max);
3892 context = sol_map->sol.context;
3893 if (isl_basic_set_fast_is_empty(context->op->peek_basic_set(context)))
3895 else if (isl_basic_map_fast_is_empty(bmap))
3896 sol_map_add_empty_if_needed(sol_map,
3897 isl_basic_set_copy(context->op->peek_basic_set(context)));
3899 tab = tab_for_lexmin(bmap,
3900 context->op->peek_basic_set(context), 1, max);
3901 tab = context->op->detect_nonnegative_parameters(context, tab);
3902 sol_map_find_solutions(sol_map, tab);
3904 if (sol_map->sol.error)
3907 result = isl_map_copy(sol_map->map);
3909 *empty = isl_set_copy(sol_map->empty);
3910 sol_free(&sol_map->sol);
3911 isl_basic_map_free(bmap);
3914 sol_free(&sol_map->sol);
3915 isl_basic_map_free(bmap);
3919 struct isl_sol_for {
3921 int (*fn)(__isl_take isl_basic_set *dom,
3922 __isl_take isl_mat *map, void *user);
3926 static void sol_for_free(struct isl_sol_for *sol_for)
3928 if (sol_for->sol.context)
3929 sol_for->sol.context->op->free(sol_for->sol.context);
3933 static void sol_for_free_wrap(struct isl_sol *sol)
3935 sol_for_free((struct isl_sol_for *)sol);
3938 /* Add the solution identified by the tableau and the context tableau.
3940 * See documentation of sol_add for more details.
3942 * Instead of constructing a basic map, this function calls a user
3943 * defined function with the current context as a basic set and
3944 * an affine matrix reprenting the relation between the input and output.
3945 * The number of rows in this matrix is equal to one plus the number
3946 * of output variables. The number of columns is equal to one plus
3947 * the total dimension of the context, i.e., the number of parameters,
3948 * input variables and divs. Since some of the columns in the matrix
3949 * may refer to the divs, the basic set is not simplified.
3950 * (Simplification may reorder or remove divs.)
3952 static void sol_for_add(struct isl_sol_for *sol,
3953 struct isl_basic_set *dom, struct isl_mat *M)
3955 if (sol->sol.error || !dom || !M)
3958 dom = isl_basic_set_simplify(dom);
3959 dom = isl_basic_set_finalize(dom);
3961 if (sol->fn(isl_basic_set_copy(dom), isl_mat_copy(M), sol->user) < 0)
3964 isl_basic_set_free(dom);
3968 isl_basic_set_free(dom);
3973 static void sol_for_add_wrap(struct isl_sol *sol,
3974 struct isl_basic_set *dom, struct isl_mat *M)
3976 sol_for_add((struct isl_sol_for *)sol, dom, M);
3979 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
3980 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
3984 struct isl_sol_for *sol_for = NULL;
3985 struct isl_dim *dom_dim;
3986 struct isl_basic_set *dom = NULL;
3988 sol_for = isl_calloc_type(bset->ctx, struct isl_sol_for);
3992 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
3993 dom = isl_basic_set_universe(dom_dim);
3995 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3996 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
3997 sol_for->sol.dec_level.sol = &sol_for->sol;
3999 sol_for->user = user;
4000 sol_for->sol.max = max;
4001 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4002 sol_for->sol.add = &sol_for_add_wrap;
4003 sol_for->sol.add_empty = NULL;
4004 sol_for->sol.free = &sol_for_free_wrap;
4006 sol_for->sol.context = isl_context_alloc(dom);
4007 if (!sol_for->sol.context)
4010 isl_basic_set_free(dom);
4013 isl_basic_set_free(dom);
4014 sol_for_free(sol_for);
4018 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4019 struct isl_tab *tab)
4021 find_solutions_main(&sol_for->sol, tab);
4024 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4025 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4029 struct isl_sol_for *sol_for = NULL;
4031 bmap = isl_basic_map_copy(bmap);
4035 bmap = isl_basic_map_detect_equalities(bmap);
4036 sol_for = sol_for_init(bmap, max, fn, user);
4038 if (isl_basic_map_fast_is_empty(bmap))
4041 struct isl_tab *tab;
4042 struct isl_context *context = sol_for->sol.context;
4043 tab = tab_for_lexmin(bmap,
4044 context->op->peek_basic_set(context), 1, max);
4045 tab = context->op->detect_nonnegative_parameters(context, tab);
4046 sol_for_find_solutions(sol_for, tab);
4047 if (sol_for->sol.error)
4051 sol_free(&sol_for->sol);
4052 isl_basic_map_free(bmap);
4055 sol_free(&sol_for->sol);
4056 isl_basic_map_free(bmap);
4060 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
4061 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4065 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
4068 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
4069 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4073 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);