2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
21 * The implementation of parametric integer linear programming in this file
22 * was inspired by the paper "Parametric Integer Programming" and the
23 * report "Solving systems of affine (in)equalities" by Paul Feautrier
26 * The strategy used for obtaining a feasible solution is different
27 * from the one used in isl_tab.c. In particular, in isl_tab.c,
28 * upon finding a constraint that is not yet satisfied, we pivot
29 * in a row that increases the constant term of row holding the
30 * constraint, making sure the sample solution remains feasible
31 * for all the constraints it already satisfied.
32 * Here, we always pivot in the row holding the constraint,
33 * choosing a column that induces the lexicographically smallest
34 * increment to the sample solution.
36 * By starting out from a sample value that is lexicographically
37 * smaller than any integer point in the problem space, the first
38 * feasible integer sample point we find will also be the lexicographically
39 * smallest. If all variables can be assumed to be non-negative,
40 * then the initial sample value may be chosen equal to zero.
41 * However, we will not make this assumption. Instead, we apply
42 * the "big parameter" trick. Any variable x is then not directly
43 * used in the tableau, but instead it is represented by another
44 * variable x' = M + x, where M is an arbitrarily large (positive)
45 * value. x' is therefore always non-negative, whatever the value of x.
46 * Taking as initial sample value x' = 0 corresponds to x = -M,
47 * which is always smaller than any possible value of x.
49 * The big parameter trick is used in the main tableau and
50 * also in the context tableau if isl_context_lex is used.
51 * In this case, each tableaus has its own big parameter.
52 * Before doing any real work, we check if all the parameters
53 * happen to be non-negative. If so, we drop the column corresponding
54 * to M from the initial context tableau.
55 * If isl_context_gbr is used, then the big parameter trick is only
56 * used in the main tableau.
60 struct isl_context_op {
61 /* detect nonnegative parameters in context and mark them in tab */
62 struct isl_tab *(*detect_nonnegative_parameters)(
63 struct isl_context *context, struct isl_tab *tab);
64 /* return temporary reference to basic set representation of context */
65 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
66 /* return temporary reference to tableau representation of context */
67 struct isl_tab *(*peek_tab)(struct isl_context *context);
68 /* add equality; check is 1 if eq may not be valid;
69 * update is 1 if we may want to call ineq_sign on context later.
71 void (*add_eq)(struct isl_context *context, isl_int *eq,
72 int check, int update);
73 /* add inequality; check is 1 if ineq may not be valid;
74 * update is 1 if we may want to call ineq_sign on context later.
76 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
77 int check, int update);
78 /* check sign of ineq based on previous information.
79 * strict is 1 if saturation should be treated as a positive sign.
81 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
82 isl_int *ineq, int strict);
83 /* check if inequality maintains feasibility */
84 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
85 /* return index of a div that corresponds to "div" */
86 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
88 /* add div "div" to context and return non-negativity */
89 int (*add_div)(struct isl_context *context, struct isl_vec *div);
90 int (*detect_equalities)(struct isl_context *context,
92 /* return row index of "best" split */
93 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
94 /* check if context has already been determined to be empty */
95 int (*is_empty)(struct isl_context *context);
96 /* check if context is still usable */
97 int (*is_ok)(struct isl_context *context);
98 /* save a copy/snapshot of context */
99 void *(*save)(struct isl_context *context);
100 /* restore saved context */
101 void (*restore)(struct isl_context *context, void *);
102 /* invalidate context */
103 void (*invalidate)(struct isl_context *context);
105 void (*free)(struct isl_context *context);
109 struct isl_context_op *op;
112 struct isl_context_lex {
113 struct isl_context context;
117 struct isl_partial_sol {
119 struct isl_basic_set *dom;
122 struct isl_partial_sol *next;
126 struct isl_sol_callback {
127 struct isl_tab_callback callback;
131 /* isl_sol is an interface for constructing a solution to
132 * a parametric integer linear programming problem.
133 * Every time the algorithm reaches a state where a solution
134 * can be read off from the tableau (including cases where the tableau
135 * is empty), the function "add" is called on the isl_sol passed
136 * to find_solutions_main.
138 * The context tableau is owned by isl_sol and is updated incrementally.
140 * There are currently two implementations of this interface,
141 * isl_sol_map, which simply collects the solutions in an isl_map
142 * and (optionally) the parts of the context where there is no solution
144 * isl_sol_for, which calls a user-defined function for each part of
153 struct isl_context *context;
154 struct isl_partial_sol *partial;
155 void (*add)(struct isl_sol *sol,
156 struct isl_basic_set *dom, struct isl_mat *M);
157 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
158 void (*free)(struct isl_sol *sol);
159 struct isl_sol_callback dec_level;
162 static void sol_free(struct isl_sol *sol)
164 struct isl_partial_sol *partial, *next;
167 for (partial = sol->partial; partial; partial = next) {
168 next = partial->next;
169 isl_basic_set_free(partial->dom);
170 isl_mat_free(partial->M);
176 /* Push a partial solution represented by a domain and mapping M
177 * onto the stack of partial solutions.
179 static void sol_push_sol(struct isl_sol *sol,
180 struct isl_basic_set *dom, struct isl_mat *M)
182 struct isl_partial_sol *partial;
184 if (sol->error || !dom)
187 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
191 partial->level = sol->level;
194 partial->next = sol->partial;
196 sol->partial = partial;
200 isl_basic_set_free(dom);
204 /* Pop one partial solution from the partial solution stack and
205 * pass it on to sol->add or sol->add_empty.
207 static void sol_pop_one(struct isl_sol *sol)
209 struct isl_partial_sol *partial;
211 partial = sol->partial;
212 sol->partial = partial->next;
215 sol->add(sol, partial->dom, partial->M);
217 sol->add_empty(sol, partial->dom);
221 /* Return a fresh copy of the domain represented by the context tableau.
223 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
225 struct isl_basic_set *bset;
230 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
231 bset = isl_basic_set_update_from_tab(bset,
232 sol->context->op->peek_tab(sol->context));
237 /* Check whether two partial solutions have the same mapping, where n_div
238 * is the number of divs that the two partial solutions have in common.
240 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
246 if (!s1->M != !s2->M)
251 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
253 for (i = 0; i < s1->M->n_row; ++i) {
254 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
255 s1->M->n_col-1-dim-n_div) != -1)
257 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
258 s2->M->n_col-1-dim-n_div) != -1)
260 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
266 /* Pop all solutions from the partial solution stack that were pushed onto
267 * the stack at levels that are deeper than the current level.
268 * If the two topmost elements on the stack have the same level
269 * and represent the same solution, then their domains are combined.
270 * This combined domain is the same as the current context domain
271 * as sol_pop is called each time we move back to a higher level.
273 static void sol_pop(struct isl_sol *sol)
275 struct isl_partial_sol *partial;
281 if (sol->level == 0) {
282 for (partial = sol->partial; partial; partial = sol->partial)
287 partial = sol->partial;
291 if (partial->level <= sol->level)
294 if (partial->next && partial->next->level == partial->level) {
295 n_div = isl_basic_set_dim(
296 sol->context->op->peek_basic_set(sol->context),
299 if (!same_solution(partial, partial->next, n_div)) {
303 struct isl_basic_set *bset;
305 bset = sol_domain(sol);
307 isl_basic_set_free(partial->next->dom);
308 partial->next->dom = bset;
309 partial->next->level = sol->level;
311 sol->partial = partial->next;
312 isl_basic_set_free(partial->dom);
313 isl_mat_free(partial->M);
320 static void sol_dec_level(struct isl_sol *sol)
330 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
332 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
334 sol_dec_level(callback->sol);
336 return callback->sol->error ? -1 : 0;
339 /* Move down to next level and push callback onto context tableau
340 * to decrease the level again when it gets rolled back across
341 * the current state. That is, dec_level will be called with
342 * the context tableau in the same state as it is when inc_level
345 static void sol_inc_level(struct isl_sol *sol)
353 tab = sol->context->op->peek_tab(sol->context);
354 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
358 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
362 if (isl_int_is_one(m))
365 for (i = 0; i < n_row; ++i)
366 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
369 /* Add the solution identified by the tableau and the context tableau.
371 * The layout of the variables is as follows.
372 * tab->n_var is equal to the total number of variables in the input
373 * map (including divs that were copied from the context)
374 * + the number of extra divs constructed
375 * Of these, the first tab->n_param and the last tab->n_div variables
376 * correspond to the variables in the context, i.e.,
377 * tab->n_param + tab->n_div = context_tab->n_var
378 * tab->n_param is equal to the number of parameters and input
379 * dimensions in the input map
380 * tab->n_div is equal to the number of divs in the context
382 * If there is no solution, then call add_empty with a basic set
383 * that corresponds to the context tableau. (If add_empty is NULL,
386 * If there is a solution, then first construct a matrix that maps
387 * all dimensions of the context to the output variables, i.e.,
388 * the output dimensions in the input map.
389 * The divs in the input map (if any) that do not correspond to any
390 * div in the context do not appear in the solution.
391 * The algorithm will make sure that they have an integer value,
392 * but these values themselves are of no interest.
393 * We have to be careful not to drop or rearrange any divs in the
394 * context because that would change the meaning of the matrix.
396 * To extract the value of the output variables, it should be noted
397 * that we always use a big parameter M in the main tableau and so
398 * the variable stored in this tableau is not an output variable x itself, but
399 * x' = M + x (in case of minimization)
401 * x' = M - x (in case of maximization)
402 * If x' appears in a column, then its optimal value is zero,
403 * which means that the optimal value of x is an unbounded number
404 * (-M for minimization and M for maximization).
405 * We currently assume that the output dimensions in the original map
406 * are bounded, so this cannot occur.
407 * Similarly, when x' appears in a row, then the coefficient of M in that
408 * row is necessarily 1.
409 * If the row in the tableau represents
410 * d x' = c + d M + e(y)
411 * then, in case of minimization, the corresponding row in the matrix
414 * with a d = m, the (updated) common denominator of the matrix.
415 * In case of maximization, the row will be
418 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
420 struct isl_basic_set *bset = NULL;
421 struct isl_mat *mat = NULL;
426 if (sol->error || !tab)
429 if (tab->empty && !sol->add_empty)
432 bset = sol_domain(sol);
435 sol_push_sol(sol, bset, NULL);
441 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
442 1 + tab->n_param + tab->n_div);
448 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
449 isl_int_set_si(mat->row[0][0], 1);
450 for (row = 0; row < sol->n_out; ++row) {
451 int i = tab->n_param + row;
454 isl_seq_clr(mat->row[1 + row], mat->n_col);
455 if (!tab->var[i].is_row) {
457 isl_die(mat->ctx, isl_error_invalid,
458 "unbounded optimum", goto error2);
462 r = tab->var[i].index;
464 isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
465 isl_die(mat->ctx, isl_error_invalid,
466 "unbounded optimum", goto error2);
467 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
468 isl_int_divexact(m, tab->mat->row[r][0], m);
469 scale_rows(mat, m, 1 + row);
470 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
471 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
472 for (j = 0; j < tab->n_param; ++j) {
474 if (tab->var[j].is_row)
476 col = tab->var[j].index;
477 isl_int_mul(mat->row[1 + row][1 + j], m,
478 tab->mat->row[r][off + col]);
480 for (j = 0; j < tab->n_div; ++j) {
482 if (tab->var[tab->n_var - tab->n_div+j].is_row)
484 col = tab->var[tab->n_var - tab->n_div+j].index;
485 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
486 tab->mat->row[r][off + col]);
489 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
495 sol_push_sol(sol, bset, mat);
500 isl_basic_set_free(bset);
508 struct isl_set *empty;
511 static void sol_map_free(struct isl_sol_map *sol_map)
515 if (sol_map->sol.context)
516 sol_map->sol.context->op->free(sol_map->sol.context);
517 isl_map_free(sol_map->map);
518 isl_set_free(sol_map->empty);
522 static void sol_map_free_wrap(struct isl_sol *sol)
524 sol_map_free((struct isl_sol_map *)sol);
527 /* This function is called for parts of the context where there is
528 * no solution, with "bset" corresponding to the context tableau.
529 * Simply add the basic set to the set "empty".
531 static void sol_map_add_empty(struct isl_sol_map *sol,
532 struct isl_basic_set *bset)
536 isl_assert(bset->ctx, sol->empty, goto error);
538 sol->empty = isl_set_grow(sol->empty, 1);
539 bset = isl_basic_set_simplify(bset);
540 bset = isl_basic_set_finalize(bset);
541 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
544 isl_basic_set_free(bset);
547 isl_basic_set_free(bset);
551 static void sol_map_add_empty_wrap(struct isl_sol *sol,
552 struct isl_basic_set *bset)
554 sol_map_add_empty((struct isl_sol_map *)sol, bset);
557 /* Add bset to sol's empty, but only if we are actually collecting
560 static void sol_map_add_empty_if_needed(struct isl_sol_map *sol,
561 struct isl_basic_set *bset)
564 sol_map_add_empty(sol, bset);
566 isl_basic_set_free(bset);
569 /* Given a basic map "dom" that represents the context and an affine
570 * matrix "M" that maps the dimensions of the context to the
571 * output variables, construct a basic map with the same parameters
572 * and divs as the context, the dimensions of the context as input
573 * dimensions and a number of output dimensions that is equal to
574 * the number of output dimensions in the input map.
576 * The constraints and divs of the context are simply copied
577 * from "dom". For each row
581 * is added, with d the common denominator of M.
583 static void sol_map_add(struct isl_sol_map *sol,
584 struct isl_basic_set *dom, struct isl_mat *M)
587 struct isl_basic_map *bmap = NULL;
588 isl_basic_set *context_bset;
596 if (sol->sol.error || !dom || !M)
599 n_out = sol->sol.n_out;
600 n_eq = dom->n_eq + n_out;
601 n_ineq = dom->n_ineq;
603 nparam = isl_basic_set_total_dim(dom) - n_div;
604 total = isl_map_dim(sol->map, isl_dim_all);
605 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
606 n_div, n_eq, 2 * n_div + n_ineq);
609 if (sol->sol.rational)
610 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
611 for (i = 0; i < dom->n_div; ++i) {
612 int k = isl_basic_map_alloc_div(bmap);
615 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
616 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
617 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
618 dom->div[i] + 1 + 1 + nparam, i);
620 for (i = 0; i < dom->n_eq; ++i) {
621 int k = isl_basic_map_alloc_equality(bmap);
624 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
625 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
626 isl_seq_cpy(bmap->eq[k] + 1 + total,
627 dom->eq[i] + 1 + nparam, n_div);
629 for (i = 0; i < dom->n_ineq; ++i) {
630 int k = isl_basic_map_alloc_inequality(bmap);
633 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
634 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
635 isl_seq_cpy(bmap->ineq[k] + 1 + total,
636 dom->ineq[i] + 1 + nparam, n_div);
638 for (i = 0; i < M->n_row - 1; ++i) {
639 int k = isl_basic_map_alloc_equality(bmap);
642 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
643 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
644 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
645 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
646 M->row[1 + i] + 1 + nparam, n_div);
648 bmap = isl_basic_map_simplify(bmap);
649 bmap = isl_basic_map_finalize(bmap);
650 sol->map = isl_map_grow(sol->map, 1);
651 sol->map = isl_map_add_basic_map(sol->map, bmap);
654 isl_basic_set_free(dom);
658 isl_basic_set_free(dom);
660 isl_basic_map_free(bmap);
664 static void sol_map_add_wrap(struct isl_sol *sol,
665 struct isl_basic_set *dom, struct isl_mat *M)
667 sol_map_add((struct isl_sol_map *)sol, dom, M);
671 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
672 * i.e., the constant term and the coefficients of all variables that
673 * appear in the context tableau.
674 * Note that the coefficient of the big parameter M is NOT copied.
675 * The context tableau may not have a big parameter and even when it
676 * does, it is a different big parameter.
678 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
681 unsigned off = 2 + tab->M;
683 isl_int_set(line[0], tab->mat->row[row][1]);
684 for (i = 0; i < tab->n_param; ++i) {
685 if (tab->var[i].is_row)
686 isl_int_set_si(line[1 + i], 0);
688 int col = tab->var[i].index;
689 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
692 for (i = 0; i < tab->n_div; ++i) {
693 if (tab->var[tab->n_var - tab->n_div + i].is_row)
694 isl_int_set_si(line[1 + tab->n_param + i], 0);
696 int col = tab->var[tab->n_var - tab->n_div + i].index;
697 isl_int_set(line[1 + tab->n_param + i],
698 tab->mat->row[row][off + col]);
703 /* Check if rows "row1" and "row2" have identical "parametric constants",
704 * as explained above.
705 * In this case, we also insist that the coefficients of the big parameter
706 * be the same as the values of the constants will only be the same
707 * if these coefficients are also the same.
709 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
712 unsigned off = 2 + tab->M;
714 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
717 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
718 tab->mat->row[row2][2]))
721 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
722 int pos = i < tab->n_param ? i :
723 tab->n_var - tab->n_div + i - tab->n_param;
726 if (tab->var[pos].is_row)
728 col = tab->var[pos].index;
729 if (isl_int_ne(tab->mat->row[row1][off + col],
730 tab->mat->row[row2][off + col]))
736 /* Return an inequality that expresses that the "parametric constant"
737 * should be non-negative.
738 * This function is only called when the coefficient of the big parameter
741 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
743 struct isl_vec *ineq;
745 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
749 get_row_parameter_line(tab, row, ineq->el);
751 ineq = isl_vec_normalize(ineq);
756 /* Return a integer division for use in a parametric cut based on the given row.
757 * In particular, let the parametric constant of the row be
761 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
762 * The div returned is equal to
764 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
766 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
770 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
774 isl_int_set(div->el[0], tab->mat->row[row][0]);
775 get_row_parameter_line(tab, row, div->el + 1);
776 div = isl_vec_normalize(div);
777 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
778 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
783 /* Return a integer division for use in transferring an integrality constraint
785 * In particular, let the parametric constant of the row be
789 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
790 * The the returned div is equal to
792 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
794 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
798 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
802 isl_int_set(div->el[0], tab->mat->row[row][0]);
803 get_row_parameter_line(tab, row, div->el + 1);
804 div = isl_vec_normalize(div);
805 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
810 /* Construct and return an inequality that expresses an upper bound
812 * In particular, if the div is given by
816 * then the inequality expresses
820 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
824 struct isl_vec *ineq;
829 total = isl_basic_set_total_dim(bset);
830 div_pos = 1 + total - bset->n_div + div;
832 ineq = isl_vec_alloc(bset->ctx, 1 + total);
836 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
837 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
841 /* Given a row in the tableau and a div that was created
842 * using get_row_split_div and that been constrained to equality, i.e.,
844 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
846 * replace the expression "\sum_i {a_i} y_i" in the row by d,
847 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
848 * The coefficients of the non-parameters in the tableau have been
849 * verified to be integral. We can therefore simply replace coefficient b
850 * by floor(b). For the coefficients of the parameters we have
851 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
854 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
856 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
857 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
859 isl_int_set_si(tab->mat->row[row][0], 1);
861 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
862 int drow = tab->var[tab->n_var - tab->n_div + div].index;
864 isl_assert(tab->mat->ctx,
865 isl_int_is_one(tab->mat->row[drow][0]), goto error);
866 isl_seq_combine(tab->mat->row[row] + 1,
867 tab->mat->ctx->one, tab->mat->row[row] + 1,
868 tab->mat->ctx->one, tab->mat->row[drow] + 1,
869 1 + tab->M + tab->n_col);
871 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
873 isl_int_set_si(tab->mat->row[row][2 + tab->M + dcol], 1);
882 /* Check if the (parametric) constant of the given row is obviously
883 * negative, meaning that we don't need to consult the context tableau.
884 * If there is a big parameter and its coefficient is non-zero,
885 * then this coefficient determines the outcome.
886 * Otherwise, we check whether the constant is negative and
887 * all non-zero coefficients of parameters are negative and
888 * belong to non-negative parameters.
890 static int is_obviously_neg(struct isl_tab *tab, int row)
894 unsigned off = 2 + tab->M;
897 if (isl_int_is_pos(tab->mat->row[row][2]))
899 if (isl_int_is_neg(tab->mat->row[row][2]))
903 if (isl_int_is_nonneg(tab->mat->row[row][1]))
905 for (i = 0; i < tab->n_param; ++i) {
906 /* Eliminated parameter */
907 if (tab->var[i].is_row)
909 col = tab->var[i].index;
910 if (isl_int_is_zero(tab->mat->row[row][off + col]))
912 if (!tab->var[i].is_nonneg)
914 if (isl_int_is_pos(tab->mat->row[row][off + col]))
917 for (i = 0; i < tab->n_div; ++i) {
918 if (tab->var[tab->n_var - tab->n_div + i].is_row)
920 col = tab->var[tab->n_var - tab->n_div + i].index;
921 if (isl_int_is_zero(tab->mat->row[row][off + col]))
923 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
925 if (isl_int_is_pos(tab->mat->row[row][off + col]))
931 /* Check if the (parametric) constant of the given row is obviously
932 * non-negative, meaning that we don't need to consult the context tableau.
933 * If there is a big parameter and its coefficient is non-zero,
934 * then this coefficient determines the outcome.
935 * Otherwise, we check whether the constant is non-negative and
936 * all non-zero coefficients of parameters are positive and
937 * belong to non-negative parameters.
939 static int is_obviously_nonneg(struct isl_tab *tab, int row)
943 unsigned off = 2 + tab->M;
946 if (isl_int_is_pos(tab->mat->row[row][2]))
948 if (isl_int_is_neg(tab->mat->row[row][2]))
952 if (isl_int_is_neg(tab->mat->row[row][1]))
954 for (i = 0; i < tab->n_param; ++i) {
955 /* Eliminated parameter */
956 if (tab->var[i].is_row)
958 col = tab->var[i].index;
959 if (isl_int_is_zero(tab->mat->row[row][off + col]))
961 if (!tab->var[i].is_nonneg)
963 if (isl_int_is_neg(tab->mat->row[row][off + col]))
966 for (i = 0; i < tab->n_div; ++i) {
967 if (tab->var[tab->n_var - tab->n_div + i].is_row)
969 col = tab->var[tab->n_var - tab->n_div + i].index;
970 if (isl_int_is_zero(tab->mat->row[row][off + col]))
972 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
974 if (isl_int_is_neg(tab->mat->row[row][off + col]))
980 /* Given a row r and two columns, return the column that would
981 * lead to the lexicographically smallest increment in the sample
982 * solution when leaving the basis in favor of the row.
983 * Pivoting with column c will increment the sample value by a non-negative
984 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
985 * corresponding to the non-parametric variables.
986 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
987 * with all other entries in this virtual row equal to zero.
988 * If variable v appears in a row, then a_{v,c} is the element in column c
991 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
992 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
993 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
994 * increment. Otherwise, it's c2.
996 static int lexmin_col_pair(struct isl_tab *tab,
997 int row, int col1, int col2, isl_int tmp)
1002 tr = tab->mat->row[row] + 2 + tab->M;
1004 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1008 if (!tab->var[i].is_row) {
1009 if (tab->var[i].index == col1)
1011 if (tab->var[i].index == col2)
1016 if (tab->var[i].index == row)
1019 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1020 s1 = isl_int_sgn(r[col1]);
1021 s2 = isl_int_sgn(r[col2]);
1022 if (s1 == 0 && s2 == 0)
1029 isl_int_mul(tmp, r[col2], tr[col1]);
1030 isl_int_submul(tmp, r[col1], tr[col2]);
1031 if (isl_int_is_pos(tmp))
1033 if (isl_int_is_neg(tmp))
1039 /* Given a row in the tableau, find and return the column that would
1040 * result in the lexicographically smallest, but positive, increment
1041 * in the sample point.
1042 * If there is no such column, then return tab->n_col.
1043 * If anything goes wrong, return -1.
1045 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1048 int col = tab->n_col;
1052 tr = tab->mat->row[row] + 2 + tab->M;
1056 for (j = tab->n_dead; j < tab->n_col; ++j) {
1057 if (tab->col_var[j] >= 0 &&
1058 (tab->col_var[j] < tab->n_param ||
1059 tab->col_var[j] >= tab->n_var - tab->n_div))
1062 if (!isl_int_is_pos(tr[j]))
1065 if (col == tab->n_col)
1068 col = lexmin_col_pair(tab, row, col, j, tmp);
1069 isl_assert(tab->mat->ctx, col >= 0, goto error);
1079 /* Return the first known violated constraint, i.e., a non-negative
1080 * constraint that currently has an either obviously negative value
1081 * or a previously determined to be negative value.
1083 * If any constraint has a negative coefficient for the big parameter,
1084 * if any, then we return one of these first.
1086 static int first_neg(struct isl_tab *tab)
1091 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1092 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1094 if (!isl_int_is_neg(tab->mat->row[row][2]))
1097 tab->row_sign[row] = isl_tab_row_neg;
1100 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1101 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1103 if (tab->row_sign) {
1104 if (tab->row_sign[row] == 0 &&
1105 is_obviously_neg(tab, row))
1106 tab->row_sign[row] = isl_tab_row_neg;
1107 if (tab->row_sign[row] != isl_tab_row_neg)
1109 } else if (!is_obviously_neg(tab, row))
1116 /* Resolve all known or obviously violated constraints through pivoting.
1117 * In particular, as long as we can find any violated constraint, we
1118 * look for a pivoting column that would result in the lexicographically
1119 * smallest increment in the sample point. If there is no such column
1120 * then the tableau is infeasible.
1122 static struct isl_tab *restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1123 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
1131 while ((row = first_neg(tab)) != -1) {
1132 col = lexmin_pivot_col(tab, row);
1133 if (col >= tab->n_col) {
1134 if (isl_tab_mark_empty(tab) < 0)
1140 if (isl_tab_pivot(tab, row, col) < 0)
1149 /* Given a row that represents an equality, look for an appropriate
1151 * In particular, if there are any non-zero coefficients among
1152 * the non-parameter variables, then we take the last of these
1153 * variables. Eliminating this variable in terms of the other
1154 * variables and/or parameters does not influence the property
1155 * that all column in the initial tableau are lexicographically
1156 * positive. The row corresponding to the eliminated variable
1157 * will only have non-zero entries below the diagonal of the
1158 * initial tableau. That is, we transform
1164 * If there is no such non-parameter variable, then we are dealing with
1165 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1166 * for elimination. This will ensure that the eliminated parameter
1167 * always has an integer value whenever all the other parameters are integral.
1168 * If there is no such parameter then we return -1.
1170 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1172 unsigned off = 2 + tab->M;
1175 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1177 if (tab->var[i].is_row)
1179 col = tab->var[i].index;
1180 if (col <= tab->n_dead)
1182 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1185 for (i = tab->n_dead; i < tab->n_col; ++i) {
1186 if (isl_int_is_one(tab->mat->row[row][off + i]))
1188 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1194 /* Add an equality that is known to be valid to the tableau.
1195 * We first check if we can eliminate a variable or a parameter.
1196 * If not, we add the equality as two inequalities.
1197 * In this case, the equality was a pure parameter equality and there
1198 * is no need to resolve any constraint violations.
1200 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1207 r = isl_tab_add_row(tab, eq);
1211 r = tab->con[r].index;
1212 i = last_var_col_or_int_par_col(tab, r);
1214 tab->con[r].is_nonneg = 1;
1215 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1217 isl_seq_neg(eq, eq, 1 + tab->n_var);
1218 r = isl_tab_add_row(tab, eq);
1221 tab->con[r].is_nonneg = 1;
1222 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1225 if (isl_tab_pivot(tab, r, i) < 0)
1227 if (isl_tab_kill_col(tab, i) < 0)
1238 /* Check if the given row is a pure constant.
1240 static int is_constant(struct isl_tab *tab, int row)
1242 unsigned off = 2 + tab->M;
1244 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1245 tab->n_col - tab->n_dead) == -1;
1248 /* Add an equality that may or may not be valid to the tableau.
1249 * If the resulting row is a pure constant, then it must be zero.
1250 * Otherwise, the resulting tableau is empty.
1252 * If the row is not a pure constant, then we add two inequalities,
1253 * each time checking that they can be satisfied.
1254 * In the end we try to use one of the two constraints to eliminate
1257 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1258 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1262 struct isl_tab_undo *snap;
1266 snap = isl_tab_snap(tab);
1267 r1 = isl_tab_add_row(tab, eq);
1270 tab->con[r1].is_nonneg = 1;
1271 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1274 row = tab->con[r1].index;
1275 if (is_constant(tab, row)) {
1276 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1277 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1278 if (isl_tab_mark_empty(tab) < 0)
1282 if (isl_tab_rollback(tab, snap) < 0)
1287 tab = restore_lexmin(tab);
1288 if (!tab || tab->empty)
1291 isl_seq_neg(eq, eq, 1 + tab->n_var);
1293 r2 = isl_tab_add_row(tab, eq);
1296 tab->con[r2].is_nonneg = 1;
1297 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1300 tab = restore_lexmin(tab);
1301 if (!tab || tab->empty)
1304 if (!tab->con[r1].is_row) {
1305 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1307 } else if (!tab->con[r2].is_row) {
1308 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1310 } else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) {
1311 unsigned off = 2 + tab->M;
1313 int row = tab->con[r1].index;
1314 i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead,
1315 tab->n_col - tab->n_dead);
1317 if (isl_tab_pivot(tab, row, tab->n_dead + i) < 0)
1319 if (isl_tab_kill_col(tab, tab->n_dead + i) < 0)
1325 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1326 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1328 isl_seq_neg(eq, eq, 1 + tab->n_var);
1329 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1330 isl_seq_neg(eq, eq, 1 + tab->n_var);
1331 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1343 /* Add an inequality to the tableau, resolving violations using
1346 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1353 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1354 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1359 r = isl_tab_add_row(tab, ineq);
1362 tab->con[r].is_nonneg = 1;
1363 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1365 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1366 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1371 tab = restore_lexmin(tab);
1372 if (tab && !tab->empty && tab->con[r].is_row &&
1373 isl_tab_row_is_redundant(tab, tab->con[r].index))
1374 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1382 /* Check if the coefficients of the parameters are all integral.
1384 static int integer_parameter(struct isl_tab *tab, int row)
1388 unsigned off = 2 + tab->M;
1390 for (i = 0; i < tab->n_param; ++i) {
1391 /* Eliminated parameter */
1392 if (tab->var[i].is_row)
1394 col = tab->var[i].index;
1395 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1396 tab->mat->row[row][0]))
1399 for (i = 0; i < tab->n_div; ++i) {
1400 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1402 col = tab->var[tab->n_var - tab->n_div + i].index;
1403 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1404 tab->mat->row[row][0]))
1410 /* Check if the coefficients of the non-parameter variables are all integral.
1412 static int integer_variable(struct isl_tab *tab, int row)
1415 unsigned off = 2 + tab->M;
1417 for (i = tab->n_dead; i < tab->n_col; ++i) {
1418 if (tab->col_var[i] >= 0 &&
1419 (tab->col_var[i] < tab->n_param ||
1420 tab->col_var[i] >= tab->n_var - tab->n_div))
1422 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1423 tab->mat->row[row][0]))
1429 /* Check if the constant term is integral.
1431 static int integer_constant(struct isl_tab *tab, int row)
1433 return isl_int_is_divisible_by(tab->mat->row[row][1],
1434 tab->mat->row[row][0]);
1437 #define I_CST 1 << 0
1438 #define I_PAR 1 << 1
1439 #define I_VAR 1 << 2
1441 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1442 * that is non-integer and therefore requires a cut and return
1443 * the index of the variable.
1444 * For parametric tableaus, there are three parts in a row,
1445 * the constant, the coefficients of the parameters and the rest.
1446 * For each part, we check whether the coefficients in that part
1447 * are all integral and if so, set the corresponding flag in *f.
1448 * If the constant and the parameter part are integral, then the
1449 * current sample value is integral and no cut is required
1450 * (irrespective of whether the variable part is integral).
1452 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1454 var = var < 0 ? tab->n_param : var + 1;
1456 for (; var < tab->n_var - tab->n_div; ++var) {
1459 if (!tab->var[var].is_row)
1461 row = tab->var[var].index;
1462 if (integer_constant(tab, row))
1463 ISL_FL_SET(flags, I_CST);
1464 if (integer_parameter(tab, row))
1465 ISL_FL_SET(flags, I_PAR);
1466 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1468 if (integer_variable(tab, row))
1469 ISL_FL_SET(flags, I_VAR);
1476 /* Check for first (non-parameter) variable that is non-integer and
1477 * therefore requires a cut and return the corresponding row.
1478 * For parametric tableaus, there are three parts in a row,
1479 * the constant, the coefficients of the parameters and the rest.
1480 * For each part, we check whether the coefficients in that part
1481 * are all integral and if so, set the corresponding flag in *f.
1482 * If the constant and the parameter part are integral, then the
1483 * current sample value is integral and no cut is required
1484 * (irrespective of whether the variable part is integral).
1486 static int first_non_integer_row(struct isl_tab *tab, int *f)
1488 int var = next_non_integer_var(tab, -1, f);
1490 return var < 0 ? -1 : tab->var[var].index;
1493 /* Add a (non-parametric) cut to cut away the non-integral sample
1494 * value of the given row.
1496 * If the row is given by
1498 * m r = f + \sum_i a_i y_i
1502 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1504 * The big parameter, if any, is ignored, since it is assumed to be big
1505 * enough to be divisible by any integer.
1506 * If the tableau is actually a parametric tableau, then this function
1507 * is only called when all coefficients of the parameters are integral.
1508 * The cut therefore has zero coefficients for the parameters.
1510 * The current value is known to be negative, so row_sign, if it
1511 * exists, is set accordingly.
1513 * Return the row of the cut or -1.
1515 static int add_cut(struct isl_tab *tab, int row)
1520 unsigned off = 2 + tab->M;
1522 if (isl_tab_extend_cons(tab, 1) < 0)
1524 r = isl_tab_allocate_con(tab);
1528 r_row = tab->mat->row[tab->con[r].index];
1529 isl_int_set(r_row[0], tab->mat->row[row][0]);
1530 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1531 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1532 isl_int_neg(r_row[1], r_row[1]);
1534 isl_int_set_si(r_row[2], 0);
1535 for (i = 0; i < tab->n_col; ++i)
1536 isl_int_fdiv_r(r_row[off + i],
1537 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1539 tab->con[r].is_nonneg = 1;
1540 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1543 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1545 return tab->con[r].index;
1548 /* Given a non-parametric tableau, add cuts until an integer
1549 * sample point is obtained or until the tableau is determined
1550 * to be integer infeasible.
1551 * As long as there is any non-integer value in the sample point,
1552 * we add appropriate cuts, if possible, for each of these
1553 * non-integer values and then resolve the violated
1554 * cut constraints using restore_lexmin.
1555 * If one of the corresponding rows is equal to an integral
1556 * combination of variables/constraints plus a non-integral constant,
1557 * then there is no way to obtain an integer point and we return
1558 * a tableau that is marked empty.
1560 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1571 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1573 if (ISL_FL_ISSET(flags, I_VAR)) {
1574 if (isl_tab_mark_empty(tab) < 0)
1578 row = tab->var[var].index;
1579 row = add_cut(tab, row);
1582 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1583 tab = restore_lexmin(tab);
1584 if (!tab || tab->empty)
1593 /* Check whether all the currently active samples also satisfy the inequality
1594 * "ineq" (treated as an equality if eq is set).
1595 * Remove those samples that do not.
1597 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1605 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1606 isl_assert(tab->mat->ctx, tab->samples, goto error);
1607 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1610 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1612 isl_seq_inner_product(ineq, tab->samples->row[i],
1613 1 + tab->n_var, &v);
1614 sgn = isl_int_sgn(v);
1615 if (eq ? (sgn == 0) : (sgn >= 0))
1617 tab = isl_tab_drop_sample(tab, i);
1629 /* Check whether the sample value of the tableau is finite,
1630 * i.e., either the tableau does not use a big parameter, or
1631 * all values of the variables are equal to the big parameter plus
1632 * some constant. This constant is the actual sample value.
1634 static int sample_is_finite(struct isl_tab *tab)
1641 for (i = 0; i < tab->n_var; ++i) {
1643 if (!tab->var[i].is_row)
1645 row = tab->var[i].index;
1646 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1652 /* Check if the context tableau of sol has any integer points.
1653 * Leave tab in empty state if no integer point can be found.
1654 * If an integer point can be found and if moreover it is finite,
1655 * then it is added to the list of sample values.
1657 * This function is only called when none of the currently active sample
1658 * values satisfies the most recently added constraint.
1660 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1662 struct isl_tab_undo *snap;
1668 snap = isl_tab_snap(tab);
1669 if (isl_tab_push_basis(tab) < 0)
1672 tab = cut_to_integer_lexmin(tab);
1676 if (!tab->empty && sample_is_finite(tab)) {
1677 struct isl_vec *sample;
1679 sample = isl_tab_get_sample_value(tab);
1681 tab = isl_tab_add_sample(tab, sample);
1684 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1693 /* Check if any of the currently active sample values satisfies
1694 * the inequality "ineq" (an equality if eq is set).
1696 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1704 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1705 isl_assert(tab->mat->ctx, tab->samples, return -1);
1706 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1709 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1711 isl_seq_inner_product(ineq, tab->samples->row[i],
1712 1 + tab->n_var, &v);
1713 sgn = isl_int_sgn(v);
1714 if (eq ? (sgn == 0) : (sgn >= 0))
1719 return i < tab->n_sample;
1722 /* Add a div specified by "div" to the tableau "tab" and return
1723 * 1 if the div is obviously non-negative.
1725 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1726 int (*add_ineq)(void *user, isl_int *), void *user)
1730 struct isl_mat *samples;
1733 r = isl_tab_add_div(tab, div, add_ineq, user);
1736 nonneg = tab->var[r].is_nonneg;
1737 tab->var[r].frozen = 1;
1739 samples = isl_mat_extend(tab->samples,
1740 tab->n_sample, 1 + tab->n_var);
1741 tab->samples = samples;
1744 for (i = tab->n_outside; i < samples->n_row; ++i) {
1745 isl_seq_inner_product(div->el + 1, samples->row[i],
1746 div->size - 1, &samples->row[i][samples->n_col - 1]);
1747 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1748 samples->row[i][samples->n_col - 1], div->el[0]);
1754 /* Add a div specified by "div" to both the main tableau and
1755 * the context tableau. In case of the main tableau, we only
1756 * need to add an extra div. In the context tableau, we also
1757 * need to express the meaning of the div.
1758 * Return the index of the div or -1 if anything went wrong.
1760 static int add_div(struct isl_tab *tab, struct isl_context *context,
1761 struct isl_vec *div)
1766 if ((nonneg = context->op->add_div(context, div)) < 0)
1769 if (!context->op->is_ok(context))
1772 if (isl_tab_extend_vars(tab, 1) < 0)
1774 r = isl_tab_allocate_var(tab);
1778 tab->var[r].is_nonneg = 1;
1779 tab->var[r].frozen = 1;
1782 return tab->n_div - 1;
1784 context->op->invalidate(context);
1788 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1791 unsigned total = isl_basic_map_total_dim(tab->bmap);
1793 for (i = 0; i < tab->bmap->n_div; ++i) {
1794 if (isl_int_ne(tab->bmap->div[i][0], denom))
1796 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
1803 /* Return the index of a div that corresponds to "div".
1804 * We first check if we already have such a div and if not, we create one.
1806 static int get_div(struct isl_tab *tab, struct isl_context *context,
1807 struct isl_vec *div)
1810 struct isl_tab *context_tab = context->op->peek_tab(context);
1815 d = find_div(context_tab, div->el + 1, div->el[0]);
1819 return add_div(tab, context, div);
1822 /* Add a parametric cut to cut away the non-integral sample value
1824 * Let a_i be the coefficients of the constant term and the parameters
1825 * and let b_i be the coefficients of the variables or constraints
1826 * in basis of the tableau.
1827 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1829 * The cut is expressed as
1831 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1833 * If q did not already exist in the context tableau, then it is added first.
1834 * If q is in a column of the main tableau then the "+ q" can be accomplished
1835 * by setting the corresponding entry to the denominator of the constraint.
1836 * If q happens to be in a row of the main tableau, then the corresponding
1837 * row needs to be added instead (taking care of the denominators).
1838 * Note that this is very unlikely, but perhaps not entirely impossible.
1840 * The current value of the cut is known to be negative (or at least
1841 * non-positive), so row_sign is set accordingly.
1843 * Return the row of the cut or -1.
1845 static int add_parametric_cut(struct isl_tab *tab, int row,
1846 struct isl_context *context)
1848 struct isl_vec *div;
1855 unsigned off = 2 + tab->M;
1860 div = get_row_parameter_div(tab, row);
1865 d = context->op->get_div(context, tab, div);
1869 if (isl_tab_extend_cons(tab, 1) < 0)
1871 r = isl_tab_allocate_con(tab);
1875 r_row = tab->mat->row[tab->con[r].index];
1876 isl_int_set(r_row[0], tab->mat->row[row][0]);
1877 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1878 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1879 isl_int_neg(r_row[1], r_row[1]);
1881 isl_int_set_si(r_row[2], 0);
1882 for (i = 0; i < tab->n_param; ++i) {
1883 if (tab->var[i].is_row)
1885 col = tab->var[i].index;
1886 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1887 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1888 tab->mat->row[row][0]);
1889 isl_int_neg(r_row[off + col], r_row[off + col]);
1891 for (i = 0; i < tab->n_div; ++i) {
1892 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1894 col = tab->var[tab->n_var - tab->n_div + i].index;
1895 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1896 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1897 tab->mat->row[row][0]);
1898 isl_int_neg(r_row[off + col], r_row[off + col]);
1900 for (i = 0; i < tab->n_col; ++i) {
1901 if (tab->col_var[i] >= 0 &&
1902 (tab->col_var[i] < tab->n_param ||
1903 tab->col_var[i] >= tab->n_var - tab->n_div))
1905 isl_int_fdiv_r(r_row[off + i],
1906 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1908 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1910 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1912 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1913 isl_int_divexact(r_row[0], r_row[0], gcd);
1914 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1915 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1916 r_row[0], tab->mat->row[d_row] + 1,
1917 off - 1 + tab->n_col);
1918 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1921 col = tab->var[tab->n_var - tab->n_div + d].index;
1922 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1925 tab->con[r].is_nonneg = 1;
1926 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1929 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1933 row = tab->con[r].index;
1935 if (d >= n && context->op->detect_equalities(context, tab) < 0)
1941 /* Construct a tableau for bmap that can be used for computing
1942 * the lexicographic minimum (or maximum) of bmap.
1943 * If not NULL, then dom is the domain where the minimum
1944 * should be computed. In this case, we set up a parametric
1945 * tableau with row signs (initialized to "unknown").
1946 * If M is set, then the tableau will use a big parameter.
1947 * If max is set, then a maximum should be computed instead of a minimum.
1948 * This means that for each variable x, the tableau will contain the variable
1949 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1950 * of the variables in all constraints are negated prior to adding them
1953 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
1954 struct isl_basic_set *dom, unsigned M, int max)
1957 struct isl_tab *tab;
1959 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
1960 isl_basic_map_total_dim(bmap), M);
1964 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1966 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
1967 tab->n_div = dom->n_div;
1968 tab->row_sign = isl_calloc_array(bmap->ctx,
1969 enum isl_tab_row_sign, tab->mat->n_row);
1973 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
1974 if (isl_tab_mark_empty(tab) < 0)
1979 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1980 tab->var[i].is_nonneg = 1;
1981 tab->var[i].frozen = 1;
1983 for (i = 0; i < bmap->n_eq; ++i) {
1985 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1986 bmap->eq[i] + 1 + tab->n_param,
1987 tab->n_var - tab->n_param - tab->n_div);
1988 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
1990 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1991 bmap->eq[i] + 1 + tab->n_param,
1992 tab->n_var - tab->n_param - tab->n_div);
1993 if (!tab || tab->empty)
1997 tab = restore_lexmin(tab);
1998 for (i = 0; i < bmap->n_ineq; ++i) {
2000 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2001 bmap->ineq[i] + 1 + tab->n_param,
2002 tab->n_var - tab->n_param - tab->n_div);
2003 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2005 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2006 bmap->ineq[i] + 1 + tab->n_param,
2007 tab->n_var - tab->n_param - tab->n_div);
2008 if (!tab || tab->empty)
2017 /* Given a main tableau where more than one row requires a split,
2018 * determine and return the "best" row to split on.
2020 * Given two rows in the main tableau, if the inequality corresponding
2021 * to the first row is redundant with respect to that of the second row
2022 * in the current tableau, then it is better to split on the second row,
2023 * since in the positive part, both row will be positive.
2024 * (In the negative part a pivot will have to be performed and just about
2025 * anything can happen to the sign of the other row.)
2027 * As a simple heuristic, we therefore select the row that makes the most
2028 * of the other rows redundant.
2030 * Perhaps it would also be useful to look at the number of constraints
2031 * that conflict with any given constraint.
2033 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2035 struct isl_tab_undo *snap;
2041 if (isl_tab_extend_cons(context_tab, 2) < 0)
2044 snap = isl_tab_snap(context_tab);
2046 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2047 struct isl_tab_undo *snap2;
2048 struct isl_vec *ineq = NULL;
2052 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2054 if (tab->row_sign[split] != isl_tab_row_any)
2057 ineq = get_row_parameter_ineq(tab, split);
2060 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2065 snap2 = isl_tab_snap(context_tab);
2067 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2068 struct isl_tab_var *var;
2072 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2074 if (tab->row_sign[row] != isl_tab_row_any)
2077 ineq = get_row_parameter_ineq(tab, row);
2080 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2084 var = &context_tab->con[context_tab->n_con - 1];
2085 if (!context_tab->empty &&
2086 !isl_tab_min_at_most_neg_one(context_tab, var))
2088 if (isl_tab_rollback(context_tab, snap2) < 0)
2091 if (best == -1 || r > best_r) {
2095 if (isl_tab_rollback(context_tab, snap) < 0)
2102 static struct isl_basic_set *context_lex_peek_basic_set(
2103 struct isl_context *context)
2105 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2108 return isl_tab_peek_bset(clex->tab);
2111 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2113 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2117 static void context_lex_extend(struct isl_context *context, int n)
2119 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2122 if (isl_tab_extend_cons(clex->tab, n) >= 0)
2124 isl_tab_free(clex->tab);
2128 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2129 int check, int update)
2131 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2132 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2134 clex->tab = add_lexmin_eq(clex->tab, eq);
2136 int v = tab_has_valid_sample(clex->tab, eq, 1);
2140 clex->tab = check_integer_feasible(clex->tab);
2143 clex->tab = check_samples(clex->tab, eq, 1);
2146 isl_tab_free(clex->tab);
2150 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2151 int check, int update)
2153 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2154 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2156 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2158 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2162 clex->tab = check_integer_feasible(clex->tab);
2165 clex->tab = check_samples(clex->tab, ineq, 0);
2168 isl_tab_free(clex->tab);
2172 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2174 struct isl_context *context = (struct isl_context *)user;
2175 context_lex_add_ineq(context, ineq, 0, 0);
2176 return context->op->is_ok(context) ? 0 : -1;
2179 /* Check which signs can be obtained by "ineq" on all the currently
2180 * active sample values. See row_sign for more information.
2182 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2188 enum isl_tab_row_sign res = isl_tab_row_unknown;
2190 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2191 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2192 return isl_tab_row_unknown);
2195 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2196 isl_seq_inner_product(tab->samples->row[i], ineq,
2197 1 + tab->n_var, &tmp);
2198 sgn = isl_int_sgn(tmp);
2199 if (sgn > 0 || (sgn == 0 && strict)) {
2200 if (res == isl_tab_row_unknown)
2201 res = isl_tab_row_pos;
2202 if (res == isl_tab_row_neg)
2203 res = isl_tab_row_any;
2206 if (res == isl_tab_row_unknown)
2207 res = isl_tab_row_neg;
2208 if (res == isl_tab_row_pos)
2209 res = isl_tab_row_any;
2211 if (res == isl_tab_row_any)
2219 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2220 isl_int *ineq, int strict)
2222 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2223 return tab_ineq_sign(clex->tab, ineq, strict);
2226 /* Check whether "ineq" can be added to the tableau without rendering
2229 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2231 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2232 struct isl_tab_undo *snap;
2238 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2241 snap = isl_tab_snap(clex->tab);
2242 if (isl_tab_push_basis(clex->tab) < 0)
2244 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2245 clex->tab = check_integer_feasible(clex->tab);
2248 feasible = !clex->tab->empty;
2249 if (isl_tab_rollback(clex->tab, snap) < 0)
2255 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2256 struct isl_vec *div)
2258 return get_div(tab, context, div);
2261 /* Add a div specified by "div" to the context tableau and return
2262 * 1 if the div is obviously non-negative.
2263 * context_tab_add_div will always return 1, because all variables
2264 * in a isl_context_lex tableau are non-negative.
2265 * However, if we are using a big parameter in the context, then this only
2266 * reflects the non-negativity of the variable used to _encode_ the
2267 * div, i.e., div' = M + div, so we can't draw any conclusions.
2269 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2271 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2273 nonneg = context_tab_add_div(clex->tab, div,
2274 context_lex_add_ineq_wrap, context);
2282 static int context_lex_detect_equalities(struct isl_context *context,
2283 struct isl_tab *tab)
2288 static int context_lex_best_split(struct isl_context *context,
2289 struct isl_tab *tab)
2291 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2292 struct isl_tab_undo *snap;
2295 snap = isl_tab_snap(clex->tab);
2296 if (isl_tab_push_basis(clex->tab) < 0)
2298 r = best_split(tab, clex->tab);
2300 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2306 static int context_lex_is_empty(struct isl_context *context)
2308 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2311 return clex->tab->empty;
2314 static void *context_lex_save(struct isl_context *context)
2316 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2317 struct isl_tab_undo *snap;
2319 snap = isl_tab_snap(clex->tab);
2320 if (isl_tab_push_basis(clex->tab) < 0)
2322 if (isl_tab_save_samples(clex->tab) < 0)
2328 static void context_lex_restore(struct isl_context *context, void *save)
2330 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2331 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2332 isl_tab_free(clex->tab);
2337 static int context_lex_is_ok(struct isl_context *context)
2339 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2343 /* For each variable in the context tableau, check if the variable can
2344 * only attain non-negative values. If so, mark the parameter as non-negative
2345 * in the main tableau. This allows for a more direct identification of some
2346 * cases of violated constraints.
2348 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2349 struct isl_tab *context_tab)
2352 struct isl_tab_undo *snap;
2353 struct isl_vec *ineq = NULL;
2354 struct isl_tab_var *var;
2357 if (context_tab->n_var == 0)
2360 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2364 if (isl_tab_extend_cons(context_tab, 1) < 0)
2367 snap = isl_tab_snap(context_tab);
2370 isl_seq_clr(ineq->el, ineq->size);
2371 for (i = 0; i < context_tab->n_var; ++i) {
2372 isl_int_set_si(ineq->el[1 + i], 1);
2373 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2375 var = &context_tab->con[context_tab->n_con - 1];
2376 if (!context_tab->empty &&
2377 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2379 if (i >= tab->n_param)
2380 j = i - tab->n_param + tab->n_var - tab->n_div;
2381 tab->var[j].is_nonneg = 1;
2384 isl_int_set_si(ineq->el[1 + i], 0);
2385 if (isl_tab_rollback(context_tab, snap) < 0)
2389 if (context_tab->M && n == context_tab->n_var) {
2390 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2402 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2403 struct isl_context *context, struct isl_tab *tab)
2405 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2406 struct isl_tab_undo *snap;
2411 snap = isl_tab_snap(clex->tab);
2412 if (isl_tab_push_basis(clex->tab) < 0)
2415 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2417 if (isl_tab_rollback(clex->tab, snap) < 0)
2426 static void context_lex_invalidate(struct isl_context *context)
2428 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2429 isl_tab_free(clex->tab);
2433 static void context_lex_free(struct isl_context *context)
2435 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2436 isl_tab_free(clex->tab);
2440 struct isl_context_op isl_context_lex_op = {
2441 context_lex_detect_nonnegative_parameters,
2442 context_lex_peek_basic_set,
2443 context_lex_peek_tab,
2445 context_lex_add_ineq,
2446 context_lex_ineq_sign,
2447 context_lex_test_ineq,
2448 context_lex_get_div,
2449 context_lex_add_div,
2450 context_lex_detect_equalities,
2451 context_lex_best_split,
2452 context_lex_is_empty,
2455 context_lex_restore,
2456 context_lex_invalidate,
2460 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2462 struct isl_tab *tab;
2464 bset = isl_basic_set_cow(bset);
2467 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2470 if (isl_tab_track_bset(tab, bset) < 0)
2472 tab = isl_tab_init_samples(tab);
2475 isl_basic_set_free(bset);
2479 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2481 struct isl_context_lex *clex;
2486 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2490 clex->context.op = &isl_context_lex_op;
2492 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2493 clex->tab = restore_lexmin(clex->tab);
2494 clex->tab = check_integer_feasible(clex->tab);
2498 return &clex->context;
2500 clex->context.op->free(&clex->context);
2504 struct isl_context_gbr {
2505 struct isl_context context;
2506 struct isl_tab *tab;
2507 struct isl_tab *shifted;
2508 struct isl_tab *cone;
2511 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2512 struct isl_context *context, struct isl_tab *tab)
2514 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2517 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2520 static struct isl_basic_set *context_gbr_peek_basic_set(
2521 struct isl_context *context)
2523 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2526 return isl_tab_peek_bset(cgbr->tab);
2529 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2531 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2535 /* Initialize the "shifted" tableau of the context, which
2536 * contains the constraints of the original tableau shifted
2537 * by the sum of all negative coefficients. This ensures
2538 * that any rational point in the shifted tableau can
2539 * be rounded up to yield an integer point in the original tableau.
2541 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2544 struct isl_vec *cst;
2545 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2546 unsigned dim = isl_basic_set_total_dim(bset);
2548 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2552 for (i = 0; i < bset->n_ineq; ++i) {
2553 isl_int_set(cst->el[i], bset->ineq[i][0]);
2554 for (j = 0; j < dim; ++j) {
2555 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2557 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2558 bset->ineq[i][1 + j]);
2562 cgbr->shifted = isl_tab_from_basic_set(bset);
2564 for (i = 0; i < bset->n_ineq; ++i)
2565 isl_int_set(bset->ineq[i][0], cst->el[i]);
2570 /* Check if the shifted tableau is non-empty, and if so
2571 * use the sample point to construct an integer point
2572 * of the context tableau.
2574 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2576 struct isl_vec *sample;
2579 gbr_init_shifted(cgbr);
2582 if (cgbr->shifted->empty)
2583 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2585 sample = isl_tab_get_sample_value(cgbr->shifted);
2586 sample = isl_vec_ceil(sample);
2591 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2598 for (i = 0; i < bset->n_eq; ++i)
2599 isl_int_set_si(bset->eq[i][0], 0);
2601 for (i = 0; i < bset->n_ineq; ++i)
2602 isl_int_set_si(bset->ineq[i][0], 0);
2607 static int use_shifted(struct isl_context_gbr *cgbr)
2609 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2612 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2614 struct isl_basic_set *bset;
2615 struct isl_basic_set *cone;
2617 if (isl_tab_sample_is_integer(cgbr->tab))
2618 return isl_tab_get_sample_value(cgbr->tab);
2620 if (use_shifted(cgbr)) {
2621 struct isl_vec *sample;
2623 sample = gbr_get_shifted_sample(cgbr);
2624 if (!sample || sample->size > 0)
2627 isl_vec_free(sample);
2631 bset = isl_tab_peek_bset(cgbr->tab);
2632 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2635 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
2638 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2641 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2642 struct isl_vec *sample;
2643 struct isl_tab_undo *snap;
2645 if (cgbr->tab->basis) {
2646 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2647 isl_mat_free(cgbr->tab->basis);
2648 cgbr->tab->basis = NULL;
2650 cgbr->tab->n_zero = 0;
2651 cgbr->tab->n_unbounded = 0;
2654 snap = isl_tab_snap(cgbr->tab);
2656 sample = isl_tab_sample(cgbr->tab);
2658 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2659 isl_vec_free(sample);
2666 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2667 cone = drop_constant_terms(cone);
2668 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2669 cone = isl_basic_set_underlying_set(cone);
2670 cone = isl_basic_set_gauss(cone, NULL);
2672 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2673 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2674 bset = isl_basic_set_underlying_set(bset);
2675 bset = isl_basic_set_gauss(bset, NULL);
2677 return isl_basic_set_sample_with_cone(bset, cone);
2680 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2682 struct isl_vec *sample;
2687 if (cgbr->tab->empty)
2690 sample = gbr_get_sample(cgbr);
2694 if (sample->size == 0) {
2695 isl_vec_free(sample);
2696 if (isl_tab_mark_empty(cgbr->tab) < 0)
2701 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2705 isl_tab_free(cgbr->tab);
2709 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2716 if (isl_tab_extend_cons(tab, 2) < 0)
2719 if (isl_tab_add_eq(tab, eq) < 0)
2728 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2729 int check, int update)
2731 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2733 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2735 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2736 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2738 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
2743 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2747 check_gbr_integer_feasible(cgbr);
2750 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2753 isl_tab_free(cgbr->tab);
2757 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2762 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2765 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2768 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2771 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2773 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2776 for (i = 0; i < dim; ++i) {
2777 if (!isl_int_is_neg(ineq[1 + i]))
2779 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2782 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2785 for (i = 0; i < dim; ++i) {
2786 if (!isl_int_is_neg(ineq[1 + i]))
2788 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2792 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2793 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2795 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2801 isl_tab_free(cgbr->tab);
2805 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2806 int check, int update)
2808 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2810 add_gbr_ineq(cgbr, ineq);
2815 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2819 check_gbr_integer_feasible(cgbr);
2822 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2825 isl_tab_free(cgbr->tab);
2829 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2831 struct isl_context *context = (struct isl_context *)user;
2832 context_gbr_add_ineq(context, ineq, 0, 0);
2833 return context->op->is_ok(context) ? 0 : -1;
2836 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2837 isl_int *ineq, int strict)
2839 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2840 return tab_ineq_sign(cgbr->tab, ineq, strict);
2843 /* Check whether "ineq" can be added to the tableau without rendering
2846 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2848 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2849 struct isl_tab_undo *snap;
2850 struct isl_tab_undo *shifted_snap = NULL;
2851 struct isl_tab_undo *cone_snap = NULL;
2857 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2860 snap = isl_tab_snap(cgbr->tab);
2862 shifted_snap = isl_tab_snap(cgbr->shifted);
2864 cone_snap = isl_tab_snap(cgbr->cone);
2865 add_gbr_ineq(cgbr, ineq);
2866 check_gbr_integer_feasible(cgbr);
2869 feasible = !cgbr->tab->empty;
2870 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2873 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2875 } else if (cgbr->shifted) {
2876 isl_tab_free(cgbr->shifted);
2877 cgbr->shifted = NULL;
2880 if (isl_tab_rollback(cgbr->cone, cone_snap))
2882 } else if (cgbr->cone) {
2883 isl_tab_free(cgbr->cone);
2890 /* Return the column of the last of the variables associated to
2891 * a column that has a non-zero coefficient.
2892 * This function is called in a context where only coefficients
2893 * of parameters or divs can be non-zero.
2895 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2899 unsigned dim = tab->n_var - tab->n_param - tab->n_div;
2901 if (tab->n_var == 0)
2904 for (i = tab->n_var - 1; i >= 0; --i) {
2905 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2907 if (tab->var[i].is_row)
2909 col = tab->var[i].index;
2910 if (!isl_int_is_zero(p[col]))
2917 /* Look through all the recently added equalities in the context
2918 * to see if we can propagate any of them to the main tableau.
2920 * The newly added equalities in the context are encoded as pairs
2921 * of inequalities starting at inequality "first".
2923 * We tentatively add each of these equalities to the main tableau
2924 * and if this happens to result in a row with a final coefficient
2925 * that is one or negative one, we use it to kill a column
2926 * in the main tableau. Otherwise, we discard the tentatively
2929 static void propagate_equalities(struct isl_context_gbr *cgbr,
2930 struct isl_tab *tab, unsigned first)
2933 struct isl_vec *eq = NULL;
2935 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2939 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2942 isl_seq_clr(eq->el + 1 + tab->n_param,
2943 tab->n_var - tab->n_param - tab->n_div);
2944 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2947 struct isl_tab_undo *snap;
2948 snap = isl_tab_snap(tab);
2950 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
2951 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
2952 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
2955 r = isl_tab_add_row(tab, eq->el);
2958 r = tab->con[r].index;
2959 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
2960 if (j < 0 || j < tab->n_dead ||
2961 !isl_int_is_one(tab->mat->row[r][0]) ||
2962 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
2963 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
2964 if (isl_tab_rollback(tab, snap) < 0)
2968 if (isl_tab_pivot(tab, r, j) < 0)
2970 if (isl_tab_kill_col(tab, j) < 0)
2973 tab = restore_lexmin(tab);
2981 isl_tab_free(cgbr->tab);
2985 static int context_gbr_detect_equalities(struct isl_context *context,
2986 struct isl_tab *tab)
2988 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2989 struct isl_ctx *ctx;
2991 enum isl_lp_result res;
2994 ctx = cgbr->tab->mat->ctx;
2997 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2998 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3001 if (isl_tab_track_bset(cgbr->cone, isl_basic_set_dup(bset)) < 0)
3004 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3007 n_ineq = cgbr->tab->bmap->n_ineq;
3008 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3009 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3010 propagate_equalities(cgbr, tab, n_ineq);
3014 isl_tab_free(cgbr->tab);
3019 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3020 struct isl_vec *div)
3022 return get_div(tab, context, div);
3025 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
3027 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3031 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3033 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3035 if (isl_tab_allocate_var(cgbr->cone) <0)
3038 cgbr->cone->bmap = isl_basic_map_extend_dim(cgbr->cone->bmap,
3039 isl_basic_map_get_dim(cgbr->cone->bmap), 1, 0, 2);
3040 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3043 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3044 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3047 return context_tab_add_div(cgbr->tab, div,
3048 context_gbr_add_ineq_wrap, context);
3051 static int context_gbr_best_split(struct isl_context *context,
3052 struct isl_tab *tab)
3054 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3055 struct isl_tab_undo *snap;
3058 snap = isl_tab_snap(cgbr->tab);
3059 r = best_split(tab, cgbr->tab);
3061 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3067 static int context_gbr_is_empty(struct isl_context *context)
3069 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3072 return cgbr->tab->empty;
3075 struct isl_gbr_tab_undo {
3076 struct isl_tab_undo *tab_snap;
3077 struct isl_tab_undo *shifted_snap;
3078 struct isl_tab_undo *cone_snap;
3081 static void *context_gbr_save(struct isl_context *context)
3083 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3084 struct isl_gbr_tab_undo *snap;
3086 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3090 snap->tab_snap = isl_tab_snap(cgbr->tab);
3091 if (isl_tab_save_samples(cgbr->tab) < 0)
3095 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3097 snap->shifted_snap = NULL;
3100 snap->cone_snap = isl_tab_snap(cgbr->cone);
3102 snap->cone_snap = NULL;
3110 static void context_gbr_restore(struct isl_context *context, void *save)
3112 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3113 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3116 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3117 isl_tab_free(cgbr->tab);
3121 if (snap->shifted_snap) {
3122 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3124 } else if (cgbr->shifted) {
3125 isl_tab_free(cgbr->shifted);
3126 cgbr->shifted = NULL;
3129 if (snap->cone_snap) {
3130 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3132 } else if (cgbr->cone) {
3133 isl_tab_free(cgbr->cone);
3142 isl_tab_free(cgbr->tab);
3146 static int context_gbr_is_ok(struct isl_context *context)
3148 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3152 static void context_gbr_invalidate(struct isl_context *context)
3154 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3155 isl_tab_free(cgbr->tab);
3159 static void context_gbr_free(struct isl_context *context)
3161 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3162 isl_tab_free(cgbr->tab);
3163 isl_tab_free(cgbr->shifted);
3164 isl_tab_free(cgbr->cone);
3168 struct isl_context_op isl_context_gbr_op = {
3169 context_gbr_detect_nonnegative_parameters,
3170 context_gbr_peek_basic_set,
3171 context_gbr_peek_tab,
3173 context_gbr_add_ineq,
3174 context_gbr_ineq_sign,
3175 context_gbr_test_ineq,
3176 context_gbr_get_div,
3177 context_gbr_add_div,
3178 context_gbr_detect_equalities,
3179 context_gbr_best_split,
3180 context_gbr_is_empty,
3183 context_gbr_restore,
3184 context_gbr_invalidate,
3188 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3190 struct isl_context_gbr *cgbr;
3195 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3199 cgbr->context.op = &isl_context_gbr_op;
3201 cgbr->shifted = NULL;
3203 cgbr->tab = isl_tab_from_basic_set(dom);
3204 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3207 if (isl_tab_track_bset(cgbr->tab,
3208 isl_basic_set_cow(isl_basic_set_copy(dom))) < 0)
3210 check_gbr_integer_feasible(cgbr);
3212 return &cgbr->context;
3214 cgbr->context.op->free(&cgbr->context);
3218 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3223 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3224 return isl_context_lex_alloc(dom);
3226 return isl_context_gbr_alloc(dom);
3229 /* Construct an isl_sol_map structure for accumulating the solution.
3230 * If track_empty is set, then we also keep track of the parts
3231 * of the context where there is no solution.
3232 * If max is set, then we are solving a maximization, rather than
3233 * a minimization problem, which means that the variables in the
3234 * tableau have value "M - x" rather than "M + x".
3236 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
3237 struct isl_basic_set *dom, int track_empty, int max)
3239 struct isl_sol_map *sol_map = NULL;
3244 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3248 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3249 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3250 sol_map->sol.dec_level.sol = &sol_map->sol;
3251 sol_map->sol.max = max;
3252 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3253 sol_map->sol.add = &sol_map_add_wrap;
3254 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3255 sol_map->sol.free = &sol_map_free_wrap;
3256 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
3261 sol_map->sol.context = isl_context_alloc(dom);
3262 if (!sol_map->sol.context)
3266 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
3267 1, ISL_SET_DISJOINT);
3268 if (!sol_map->empty)
3272 isl_basic_set_free(dom);
3275 isl_basic_set_free(dom);
3276 sol_map_free(sol_map);
3280 /* Check whether all coefficients of (non-parameter) variables
3281 * are non-positive, meaning that no pivots can be performed on the row.
3283 static int is_critical(struct isl_tab *tab, int row)
3286 unsigned off = 2 + tab->M;
3288 for (j = tab->n_dead; j < tab->n_col; ++j) {
3289 if (tab->col_var[j] >= 0 &&
3290 (tab->col_var[j] < tab->n_param ||
3291 tab->col_var[j] >= tab->n_var - tab->n_div))
3294 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3301 /* Check whether the inequality represented by vec is strict over the integers,
3302 * i.e., there are no integer values satisfying the constraint with
3303 * equality. This happens if the gcd of the coefficients is not a divisor
3304 * of the constant term. If so, scale the constraint down by the gcd
3305 * of the coefficients.
3307 static int is_strict(struct isl_vec *vec)
3313 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3314 if (!isl_int_is_one(gcd)) {
3315 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3316 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3317 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3324 /* Determine the sign of the given row of the main tableau.
3325 * The result is one of
3326 * isl_tab_row_pos: always non-negative; no pivot needed
3327 * isl_tab_row_neg: always non-positive; pivot
3328 * isl_tab_row_any: can be both positive and negative; split
3330 * We first handle some simple cases
3331 * - the row sign may be known already
3332 * - the row may be obviously non-negative
3333 * - the parametric constant may be equal to that of another row
3334 * for which we know the sign. This sign will be either "pos" or
3335 * "any". If it had been "neg" then we would have pivoted before.
3337 * If none of these cases hold, we check the value of the row for each
3338 * of the currently active samples. Based on the signs of these values
3339 * we make an initial determination of the sign of the row.
3341 * all zero -> unk(nown)
3342 * all non-negative -> pos
3343 * all non-positive -> neg
3344 * both negative and positive -> all
3346 * If we end up with "all", we are done.
3347 * Otherwise, we perform a check for positive and/or negative
3348 * values as follows.
3350 * samples neg unk pos
3356 * There is no special sign for "zero", because we can usually treat zero
3357 * as either non-negative or non-positive, whatever works out best.
3358 * However, if the row is "critical", meaning that pivoting is impossible
3359 * then we don't want to limp zero with the non-positive case, because
3360 * then we we would lose the solution for those values of the parameters
3361 * where the value of the row is zero. Instead, we treat 0 as non-negative
3362 * ensuring a split if the row can attain both zero and negative values.
3363 * The same happens when the original constraint was one that could not
3364 * be satisfied with equality by any integer values of the parameters.
3365 * In this case, we normalize the constraint, but then a value of zero
3366 * for the normalized constraint is actually a positive value for the
3367 * original constraint, so again we need to treat zero as non-negative.
3368 * In both these cases, we have the following decision tree instead:
3370 * all non-negative -> pos
3371 * all negative -> neg
3372 * both negative and non-negative -> all
3380 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3381 struct isl_sol *sol, int row)
3383 struct isl_vec *ineq = NULL;
3384 enum isl_tab_row_sign res = isl_tab_row_unknown;
3389 if (tab->row_sign[row] != isl_tab_row_unknown)
3390 return tab->row_sign[row];
3391 if (is_obviously_nonneg(tab, row))
3392 return isl_tab_row_pos;
3393 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3394 if (tab->row_sign[row2] == isl_tab_row_unknown)
3396 if (identical_parameter_line(tab, row, row2))
3397 return tab->row_sign[row2];
3400 critical = is_critical(tab, row);
3402 ineq = get_row_parameter_ineq(tab, row);
3406 strict = is_strict(ineq);
3408 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3409 critical || strict);
3411 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3412 /* test for negative values */
3414 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3415 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3417 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3421 res = isl_tab_row_pos;
3423 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3425 if (res == isl_tab_row_neg) {
3426 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3427 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3431 if (res == isl_tab_row_neg) {
3432 /* test for positive values */
3434 if (!critical && !strict)
3435 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3437 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3441 res = isl_tab_row_any;
3448 return isl_tab_row_unknown;
3451 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3453 /* Find solutions for values of the parameters that satisfy the given
3456 * We currently take a snapshot of the context tableau that is reset
3457 * when we return from this function, while we make a copy of the main
3458 * tableau, leaving the original main tableau untouched.
3459 * These are fairly arbitrary choices. Making a copy also of the context
3460 * tableau would obviate the need to undo any changes made to it later,
3461 * while taking a snapshot of the main tableau could reduce memory usage.
3462 * If we were to switch to taking a snapshot of the main tableau,
3463 * we would have to keep in mind that we need to save the row signs
3464 * and that we need to do this before saving the current basis
3465 * such that the basis has been restore before we restore the row signs.
3467 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3473 saved = sol->context->op->save(sol->context);
3475 tab = isl_tab_dup(tab);
3479 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3481 find_solutions(sol, tab);
3484 sol->context->op->restore(sol->context, saved);
3490 /* Record the absence of solutions for those values of the parameters
3491 * that do not satisfy the given inequality with equality.
3493 static void no_sol_in_strict(struct isl_sol *sol,
3494 struct isl_tab *tab, struct isl_vec *ineq)
3499 if (!sol->context || sol->error)
3501 saved = sol->context->op->save(sol->context);
3503 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3505 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3514 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3516 sol->context->op->restore(sol->context, saved);
3522 /* Compute the lexicographic minimum of the set represented by the main
3523 * tableau "tab" within the context "sol->context_tab".
3524 * On entry the sample value of the main tableau is lexicographically
3525 * less than or equal to this lexicographic minimum.
3526 * Pivots are performed until a feasible point is found, which is then
3527 * necessarily equal to the minimum, or until the tableau is found to
3528 * be infeasible. Some pivots may need to be performed for only some
3529 * feasible values of the context tableau. If so, the context tableau
3530 * is split into a part where the pivot is needed and a part where it is not.
3532 * Whenever we enter the main loop, the main tableau is such that no
3533 * "obvious" pivots need to be performed on it, where "obvious" means
3534 * that the given row can be seen to be negative without looking at
3535 * the context tableau. In particular, for non-parametric problems,
3536 * no pivots need to be performed on the main tableau.
3537 * The caller of find_solutions is responsible for making this property
3538 * hold prior to the first iteration of the loop, while restore_lexmin
3539 * is called before every other iteration.
3541 * Inside the main loop, we first examine the signs of the rows of
3542 * the main tableau within the context of the context tableau.
3543 * If we find a row that is always non-positive for all values of
3544 * the parameters satisfying the context tableau and negative for at
3545 * least one value of the parameters, we perform the appropriate pivot
3546 * and start over. An exception is the case where no pivot can be
3547 * performed on the row. In this case, we require that the sign of
3548 * the row is negative for all values of the parameters (rather than just
3549 * non-positive). This special case is handled inside row_sign, which
3550 * will say that the row can have any sign if it determines that it can
3551 * attain both negative and zero values.
3553 * If we can't find a row that always requires a pivot, but we can find
3554 * one or more rows that require a pivot for some values of the parameters
3555 * (i.e., the row can attain both positive and negative signs), then we split
3556 * the context tableau into two parts, one where we force the sign to be
3557 * non-negative and one where we force is to be negative.
3558 * The non-negative part is handled by a recursive call (through find_in_pos).
3559 * Upon returning from this call, we continue with the negative part and
3560 * perform the required pivot.
3562 * If no such rows can be found, all rows are non-negative and we have
3563 * found a (rational) feasible point. If we only wanted a rational point
3565 * Otherwise, we check if all values of the sample point of the tableau
3566 * are integral for the variables. If so, we have found the minimal
3567 * integral point and we are done.
3568 * If the sample point is not integral, then we need to make a distinction
3569 * based on whether the constant term is non-integral or the coefficients
3570 * of the parameters. Furthermore, in order to decide how to handle
3571 * the non-integrality, we also need to know whether the coefficients
3572 * of the other columns in the tableau are integral. This leads
3573 * to the following table. The first two rows do not correspond
3574 * to a non-integral sample point and are only mentioned for completeness.
3576 * constant parameters other
3579 * int int rat | -> no problem
3581 * rat int int -> fail
3583 * rat int rat -> cut
3586 * rat rat rat | -> parametric cut
3589 * rat rat int | -> split context
3591 * If the parametric constant is completely integral, then there is nothing
3592 * to be done. If the constant term is non-integral, but all the other
3593 * coefficient are integral, then there is nothing that can be done
3594 * and the tableau has no integral solution.
3595 * If, on the other hand, one or more of the other columns have rational
3596 * coefficients, but the parameter coefficients are all integral, then
3597 * we can perform a regular (non-parametric) cut.
3598 * Finally, if there is any parameter coefficient that is non-integral,
3599 * then we need to involve the context tableau. There are two cases here.
3600 * If at least one other column has a rational coefficient, then we
3601 * can perform a parametric cut in the main tableau by adding a new
3602 * integer division in the context tableau.
3603 * If all other columns have integral coefficients, then we need to
3604 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3605 * is always integral. We do this by introducing an integer division
3606 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3607 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3608 * Since q is expressed in the tableau as
3609 * c + \sum a_i y_i - m q >= 0
3610 * -c - \sum a_i y_i + m q + m - 1 >= 0
3611 * it is sufficient to add the inequality
3612 * -c - \sum a_i y_i + m q >= 0
3613 * In the part of the context where this inequality does not hold, the
3614 * main tableau is marked as being empty.
3616 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3618 struct isl_context *context;
3620 if (!tab || sol->error)
3623 context = sol->context;
3627 if (context->op->is_empty(context))
3630 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
3633 enum isl_tab_row_sign sgn;
3637 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3638 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3640 sgn = row_sign(tab, sol, row);
3643 tab->row_sign[row] = sgn;
3644 if (sgn == isl_tab_row_any)
3646 if (sgn == isl_tab_row_any && split == -1)
3648 if (sgn == isl_tab_row_neg)
3651 if (row < tab->n_row)
3654 struct isl_vec *ineq;
3656 split = context->op->best_split(context, tab);
3659 ineq = get_row_parameter_ineq(tab, split);
3663 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3664 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3666 if (tab->row_sign[row] == isl_tab_row_any)
3667 tab->row_sign[row] = isl_tab_row_unknown;
3669 tab->row_sign[split] = isl_tab_row_pos;
3671 find_in_pos(sol, tab, ineq->el);
3672 tab->row_sign[split] = isl_tab_row_neg;
3674 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3675 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3677 context->op->add_ineq(context, ineq->el, 0, 1);
3685 row = first_non_integer_row(tab, &flags);
3688 if (ISL_FL_ISSET(flags, I_PAR)) {
3689 if (ISL_FL_ISSET(flags, I_VAR)) {
3690 if (isl_tab_mark_empty(tab) < 0)
3694 row = add_cut(tab, row);
3695 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3696 struct isl_vec *div;
3697 struct isl_vec *ineq;
3699 div = get_row_split_div(tab, row);
3702 d = context->op->get_div(context, tab, div);
3706 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3710 no_sol_in_strict(sol, tab, ineq);
3711 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3712 context->op->add_ineq(context, ineq->el, 1, 1);
3714 if (sol->error || !context->op->is_ok(context))
3716 tab = set_row_cst_to_div(tab, row, d);
3717 if (context->op->is_empty(context))
3720 row = add_parametric_cut(tab, row, context);
3733 /* Compute the lexicographic minimum of the set represented by the main
3734 * tableau "tab" within the context "sol->context_tab".
3736 * As a preprocessing step, we first transfer all the purely parametric
3737 * equalities from the main tableau to the context tableau, i.e.,
3738 * parameters that have been pivoted to a row.
3739 * These equalities are ignored by the main algorithm, because the
3740 * corresponding rows may not be marked as being non-negative.
3741 * In parts of the context where the added equality does not hold,
3742 * the main tableau is marked as being empty.
3744 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3753 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3757 if (tab->row_var[row] < 0)
3759 if (tab->row_var[row] >= tab->n_param &&
3760 tab->row_var[row] < tab->n_var - tab->n_div)
3762 if (tab->row_var[row] < tab->n_param)
3763 p = tab->row_var[row];
3765 p = tab->row_var[row]
3766 + tab->n_param - (tab->n_var - tab->n_div);
3768 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3771 get_row_parameter_line(tab, row, eq->el);
3772 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3773 eq = isl_vec_normalize(eq);
3776 no_sol_in_strict(sol, tab, eq);
3778 isl_seq_neg(eq->el, eq->el, eq->size);
3780 no_sol_in_strict(sol, tab, eq);
3781 isl_seq_neg(eq->el, eq->el, eq->size);
3783 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3787 if (isl_tab_mark_redundant(tab, row) < 0)
3790 if (sol->context->op->is_empty(sol->context))
3793 row = tab->n_redundant - 1;
3796 find_solutions(sol, tab);
3807 static void sol_map_find_solutions(struct isl_sol_map *sol_map,
3808 struct isl_tab *tab)
3810 find_solutions_main(&sol_map->sol, tab);
3813 /* Check if integer division "div" of "dom" also occurs in "bmap".
3814 * If so, return its position within the divs.
3815 * If not, return -1.
3817 static int find_context_div(struct isl_basic_map *bmap,
3818 struct isl_basic_set *dom, unsigned div)
3821 unsigned b_dim = isl_dim_total(bmap->dim);
3822 unsigned d_dim = isl_dim_total(dom->dim);
3824 if (isl_int_is_zero(dom->div[div][0]))
3826 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3829 for (i = 0; i < bmap->n_div; ++i) {
3830 if (isl_int_is_zero(bmap->div[i][0]))
3832 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3833 (b_dim - d_dim) + bmap->n_div) != -1)
3835 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3841 /* The correspondence between the variables in the main tableau,
3842 * the context tableau, and the input map and domain is as follows.
3843 * The first n_param and the last n_div variables of the main tableau
3844 * form the variables of the context tableau.
3845 * In the basic map, these n_param variables correspond to the
3846 * parameters and the input dimensions. In the domain, they correspond
3847 * to the parameters and the set dimensions.
3848 * The n_div variables correspond to the integer divisions in the domain.
3849 * To ensure that everything lines up, we may need to copy some of the
3850 * integer divisions of the domain to the map. These have to be placed
3851 * in the same order as those in the context and they have to be placed
3852 * after any other integer divisions that the map may have.
3853 * This function performs the required reordering.
3855 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3856 struct isl_basic_set *dom)
3862 for (i = 0; i < dom->n_div; ++i)
3863 if (find_context_div(bmap, dom, i) != -1)
3865 other = bmap->n_div - common;
3866 if (dom->n_div - common > 0) {
3867 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
3868 dom->n_div - common, 0, 0);
3872 for (i = 0; i < dom->n_div; ++i) {
3873 int pos = find_context_div(bmap, dom, i);
3875 pos = isl_basic_map_alloc_div(bmap);
3878 isl_int_set_si(bmap->div[pos][0], 0);
3880 if (pos != other + i)
3881 isl_basic_map_swap_div(bmap, pos, other + i);
3885 isl_basic_map_free(bmap);
3889 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3890 * some obvious symmetries.
3892 * We make sure the divs in the domain are properly ordered,
3893 * because they will be added one by one in the given order
3894 * during the construction of the solution map.
3896 static __isl_give isl_map *basic_map_partial_lexopt_base(
3897 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3898 __isl_give isl_set **empty, int max)
3900 isl_map *result = NULL;
3901 struct isl_tab *tab;
3902 struct isl_sol_map *sol_map = NULL;
3903 struct isl_context *context;
3906 dom = isl_basic_set_order_divs(dom);
3907 bmap = align_context_divs(bmap, dom);
3909 sol_map = sol_map_init(bmap, dom, !!empty, max);
3913 context = sol_map->sol.context;
3914 if (isl_basic_set_fast_is_empty(context->op->peek_basic_set(context)))
3916 else if (isl_basic_map_fast_is_empty(bmap))
3917 sol_map_add_empty_if_needed(sol_map,
3918 isl_basic_set_copy(context->op->peek_basic_set(context)));
3920 tab = tab_for_lexmin(bmap,
3921 context->op->peek_basic_set(context), 1, max);
3922 tab = context->op->detect_nonnegative_parameters(context, tab);
3923 sol_map_find_solutions(sol_map, tab);
3925 if (sol_map->sol.error)
3928 result = isl_map_copy(sol_map->map);
3930 *empty = isl_set_copy(sol_map->empty);
3931 sol_free(&sol_map->sol);
3932 isl_basic_map_free(bmap);
3935 sol_free(&sol_map->sol);
3936 isl_basic_map_free(bmap);
3940 /* Structure used during detection of parallel constraints.
3941 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
3942 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
3943 * val: the coefficients of the output variables
3945 struct isl_constraint_equal_info {
3946 isl_basic_map *bmap;
3952 /* Check whether the coefficients of the output variables
3953 * of the constraint in "entry" are equal to info->val.
3955 static int constraint_equal(const void *entry, const void *val)
3957 isl_int **row = (isl_int **)entry;
3958 const struct isl_constraint_equal_info *info = val;
3960 return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
3963 /* Check whether "bmap" has a pair of constraints that have
3964 * the same coefficients for the output variables.
3965 * Note that the coefficients of the existentially quantified
3966 * variables need to be zero since the existentially quantified
3967 * of the result are usually not the same as those of the input.
3968 * the isl_dim_out and isl_dim_div dimensions.
3969 * If so, return 1 and return the row indices of the two constraints
3970 * in *first and *second.
3972 static int parallel_constraints(__isl_keep isl_basic_map *bmap,
3973 int *first, int *second)
3976 isl_ctx *ctx = isl_basic_map_get_ctx(bmap);
3977 struct isl_hash_table *table = NULL;
3978 struct isl_hash_table_entry *entry;
3979 struct isl_constraint_equal_info info;
3983 ctx = isl_basic_map_get_ctx(bmap);
3984 table = isl_hash_table_alloc(ctx, bmap->n_ineq);
3988 info.n_in = isl_basic_map_dim(bmap, isl_dim_param) +
3989 isl_basic_map_dim(bmap, isl_dim_in);
3991 n_out = isl_basic_map_dim(bmap, isl_dim_out);
3992 n_div = isl_basic_map_dim(bmap, isl_dim_div);
3993 info.n_out = n_out + n_div;
3994 for (i = 0; i < bmap->n_ineq; ++i) {
3997 info.val = bmap->ineq[i] + 1 + info.n_in;
3998 if (isl_seq_first_non_zero(info.val, n_out) < 0)
4000 if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4002 hash = isl_seq_get_hash(info.val, info.n_out);
4003 entry = isl_hash_table_find(ctx, table, hash,
4004 constraint_equal, &info, 1);
4009 entry->data = &bmap->ineq[i];
4012 if (i < bmap->n_ineq) {
4013 *first = ((isl_int **)entry->data) - bmap->ineq;
4017 isl_hash_table_free(ctx, table);
4019 return i < bmap->n_ineq;
4021 isl_hash_table_free(ctx, table);
4025 /* Given a set of upper bounds on the last "input" variable m,
4026 * construct a set that assigns the minimal upper bound to m, i.e.,
4027 * construct a set that divides the space into cells where one
4028 * of the upper bounds is smaller than all the others and assign
4029 * this upper bound to m.
4031 * In particular, if there are n bounds b_i, then the result
4032 * consists of n basic sets, each one of the form
4035 * b_i <= b_j for j > i
4036 * b_i < b_j for j < i
4038 static __isl_give isl_set *set_minimum(__isl_take isl_dim *dim,
4039 __isl_take isl_mat *var)
4042 isl_basic_set *bset = NULL;
4044 isl_set *set = NULL;
4049 ctx = isl_dim_get_ctx(dim);
4050 set = isl_set_alloc_dim(isl_dim_copy(dim),
4051 var->n_row, ISL_SET_DISJOINT);
4053 for (i = 0; i < var->n_row; ++i) {
4054 bset = isl_basic_set_alloc_dim(isl_dim_copy(dim), 0,
4056 k = isl_basic_set_alloc_equality(bset);
4059 isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4060 isl_int_set_si(bset->eq[k][var->n_col], -1);
4061 for (j = 0; j < var->n_row; ++j) {
4064 k = isl_basic_set_alloc_inequality(bset);
4067 isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4068 ctx->negone, var->row[i],
4070 isl_int_set_si(bset->ineq[k][var->n_col], 0);
4072 isl_int_sub_ui(bset->ineq[k][0],
4073 bset->ineq[k][0], 1);
4075 bset = isl_basic_set_finalize(bset);
4076 set = isl_set_add_basic_set(set, bset);
4083 isl_basic_set_free(bset);
4090 /* Given that the last input variable of "bmap" represents the minimum
4091 * of the bounds in "cst", check whether we need to split the domain
4092 * based on which bound attains the minimum.
4094 * A split is needed when the minimum appears in an integer division
4095 * or in an equality. Otherwise, it is only needed if it appears in
4096 * an upper bound that is different from the upper bounds on which it
4099 static int need_split_map(__isl_keep isl_basic_map *bmap,
4100 __isl_keep isl_mat *cst)
4106 pos = cst->n_col - 1;
4107 total = isl_basic_map_dim(bmap, isl_dim_all);
4109 for (i = 0; i < bmap->n_div; ++i)
4110 if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4113 for (i = 0; i < bmap->n_eq; ++i)
4114 if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4117 for (i = 0; i < bmap->n_ineq; ++i) {
4118 if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4120 if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4122 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4123 total - pos - 1) >= 0)
4126 for (j = 0; j < cst->n_row; ++j)
4127 if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4129 if (j >= cst->n_row)
4136 static int need_split_set(__isl_keep isl_basic_set *bset,
4137 __isl_keep isl_mat *cst)
4139 return need_split_map((isl_basic_map *)bset, cst);
4142 /* Given a set of which the last set variable is the minimum
4143 * of the bounds in "cst", split each basic set in the set
4144 * in pieces where one of the bounds is (strictly) smaller than the others.
4145 * This subdivision is given in "min_expr".
4146 * The variable is subsequently projected out.
4148 * We only do the split when it is needed.
4149 * For example if the last input variable m = min(a,b) and the only
4150 * constraints in the given basic set are lower bounds on m,
4151 * i.e., l <= m = min(a,b), then we can simply project out m
4152 * to obtain l <= a and l <= b, without having to split on whether
4153 * m is equal to a or b.
4155 static __isl_give isl_set *split(__isl_take isl_set *empty,
4156 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4163 if (!empty || !min_expr || !cst)
4166 n_in = isl_set_dim(empty, isl_dim_set);
4167 dim = isl_set_get_dim(empty);
4168 dim = isl_dim_drop(dim, isl_dim_set, n_in - 1, 1);
4169 res = isl_set_empty(dim);
4171 for (i = 0; i < empty->n; ++i) {
4174 set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i]));
4175 if (need_split_set(empty->p[i], cst))
4176 set = isl_set_intersect(set, isl_set_copy(min_expr));
4177 set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1);
4179 res = isl_set_union_disjoint(res, set);
4182 isl_set_free(empty);
4183 isl_set_free(min_expr);
4187 isl_set_free(empty);
4188 isl_set_free(min_expr);
4193 /* Given a map of which the last input variable is the minimum
4194 * of the bounds in "cst", split each basic set in the set
4195 * in pieces where one of the bounds is (strictly) smaller than the others.
4196 * This subdivision is given in "min_expr".
4197 * The variable is subsequently projected out.
4199 * The implementation is essentially the same as that of "split".
4201 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4202 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4209 if (!opt || !min_expr || !cst)
4212 n_in = isl_map_dim(opt, isl_dim_in);
4213 dim = isl_map_get_dim(opt);
4214 dim = isl_dim_drop(dim, isl_dim_in, n_in - 1, 1);
4215 res = isl_map_empty(dim);
4217 for (i = 0; i < opt->n; ++i) {
4220 map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4221 if (need_split_map(opt->p[i], cst))
4222 map = isl_map_intersect_domain(map,
4223 isl_set_copy(min_expr));
4224 map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4226 res = isl_map_union_disjoint(res, map);
4230 isl_set_free(min_expr);
4235 isl_set_free(min_expr);
4240 static __isl_give isl_map *basic_map_partial_lexopt(
4241 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4242 __isl_give isl_set **empty, int max);
4244 /* Given a basic map with at least two parallel constraints (as found
4245 * by the function parallel_constraints), first look for more constraints
4246 * parallel to the two constraint and replace the found list of parallel
4247 * constraints by a single constraint with as "input" part the minimum
4248 * of the input parts of the list of constraints. Then, recursively call
4249 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4250 * and plug in the definition of the minimum in the result.
4252 * More specifically, given a set of constraints
4256 * Replace this set by a single constraint
4260 * with u a new parameter with constraints
4264 * Any solution to the new system is also a solution for the original system
4267 * a x >= -u >= -b_i(p)
4269 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4270 * therefore be plugged into the solution.
4272 static __isl_give isl_map *basic_map_partial_lexopt_symm(
4273 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4274 __isl_give isl_set **empty, int max, int first, int second)
4278 unsigned n_in, n_out, n_div;
4280 isl_vec *var = NULL;
4281 isl_mat *cst = NULL;
4284 isl_dim *map_dim, *set_dim;
4286 map_dim = isl_basic_map_get_dim(bmap);
4287 set_dim = empty ? isl_basic_set_get_dim(dom) : NULL;
4289 n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4290 isl_basic_map_dim(bmap, isl_dim_in);
4291 n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in;
4293 ctx = isl_basic_map_get_ctx(bmap);
4294 list = isl_alloc_array(ctx, int, bmap->n_ineq);
4295 var = isl_vec_alloc(ctx, n_out);
4301 isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
4302 for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
4303 if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out))
4307 cst = isl_mat_alloc(ctx, n, 1 + n_in);
4311 for (i = 0; i < n; ++i)
4312 isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);
4314 bmap = isl_basic_map_cow(bmap);
4317 for (i = n - 1; i >= 0; --i)
4318 if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
4321 bmap = isl_basic_map_add(bmap, isl_dim_in, 1);
4322 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
4323 k = isl_basic_map_alloc_inequality(bmap);
4326 isl_seq_clr(bmap->ineq[k], 1 + n_in);
4327 isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
4328 isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
4329 bmap = isl_basic_map_finalize(bmap);
4331 n_div = isl_basic_set_dim(dom, isl_dim_div);
4332 dom = isl_basic_set_add(dom, isl_dim_set, 1);
4333 dom = isl_basic_set_extend_constraints(dom, 0, n);
4334 for (i = 0; i < n; ++i) {
4335 k = isl_basic_set_alloc_inequality(dom);
4338 isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
4339 isl_int_set_si(dom->ineq[k][1 + n_in], -1);
4340 isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
4343 min_expr = set_minimum(isl_basic_set_get_dim(dom), isl_mat_copy(cst));
4348 opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4351 *empty = split(*empty,
4352 isl_set_copy(min_expr), isl_mat_copy(cst));
4353 *empty = isl_set_reset_dim(*empty, set_dim);
4356 opt = split_domain(opt, min_expr, cst);
4357 opt = isl_map_reset_dim(opt, map_dim);
4361 isl_dim_free(map_dim);
4362 isl_dim_free(set_dim);
4366 isl_basic_set_free(dom);
4367 isl_basic_map_free(bmap);
4371 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4372 * equalities and removing redundant constraints.
4374 * We first check if there are any parallel constraints (left).
4375 * If not, we are in the base case.
4376 * If there are parallel constraints, we replace them by a single
4377 * constraint in basic_map_partial_lexopt_symm and then call
4378 * this function recursively to look for more parallel constraints.
4380 static __isl_give isl_map *basic_map_partial_lexopt(
4381 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4382 __isl_give isl_set **empty, int max)
4390 if (bmap->ctx->opt->pip_symmetry)
4391 par = parallel_constraints(bmap, &first, &second);
4395 return basic_map_partial_lexopt_base(bmap, dom, empty, max);
4397 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
4400 isl_basic_set_free(dom);
4401 isl_basic_map_free(bmap);
4405 /* Compute the lexicographic minimum (or maximum if "max" is set)
4406 * of "bmap" over the domain "dom" and return the result as a map.
4407 * If "empty" is not NULL, then *empty is assigned a set that
4408 * contains those parts of the domain where there is no solution.
4409 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4410 * then we compute the rational optimum. Otherwise, we compute
4411 * the integral optimum.
4413 * We perform some preprocessing. As the PILP solver does not
4414 * handle implicit equalities very well, we first make sure all
4415 * the equalities are explicitly available.
4417 * We also add context constraints to the basic map and remove
4418 * redundant constraints. This is only needed because of the
4419 * way we handle simple symmetries. In particular, we currently look
4420 * for symmetries on the constraints, before we set up the main tableau.
4421 * It is then no good to look for symmetries on possibly redundant constraints.
4423 struct isl_map *isl_tab_basic_map_partial_lexopt(
4424 struct isl_basic_map *bmap, struct isl_basic_set *dom,
4425 struct isl_set **empty, int max)
4432 isl_assert(bmap->ctx,
4433 isl_basic_map_compatible_domain(bmap, dom), goto error);
4435 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
4436 bmap = isl_basic_map_detect_equalities(bmap);
4437 bmap = isl_basic_map_remove_redundancies(bmap);
4439 return basic_map_partial_lexopt(bmap, dom, empty, max);
4441 isl_basic_set_free(dom);
4442 isl_basic_map_free(bmap);
4446 struct isl_sol_for {
4448 int (*fn)(__isl_take isl_basic_set *dom,
4449 __isl_take isl_mat *map, void *user);
4453 static void sol_for_free(struct isl_sol_for *sol_for)
4455 if (sol_for->sol.context)
4456 sol_for->sol.context->op->free(sol_for->sol.context);
4460 static void sol_for_free_wrap(struct isl_sol *sol)
4462 sol_for_free((struct isl_sol_for *)sol);
4465 /* Add the solution identified by the tableau and the context tableau.
4467 * See documentation of sol_add for more details.
4469 * Instead of constructing a basic map, this function calls a user
4470 * defined function with the current context as a basic set and
4471 * an affine matrix representing the relation between the input and output.
4472 * The number of rows in this matrix is equal to one plus the number
4473 * of output variables. The number of columns is equal to one plus
4474 * the total dimension of the context, i.e., the number of parameters,
4475 * input variables and divs. Since some of the columns in the matrix
4476 * may refer to the divs, the basic set is not simplified.
4477 * (Simplification may reorder or remove divs.)
4479 static void sol_for_add(struct isl_sol_for *sol,
4480 struct isl_basic_set *dom, struct isl_mat *M)
4482 if (sol->sol.error || !dom || !M)
4485 dom = isl_basic_set_simplify(dom);
4486 dom = isl_basic_set_finalize(dom);
4488 if (sol->fn(isl_basic_set_copy(dom), isl_mat_copy(M), sol->user) < 0)
4491 isl_basic_set_free(dom);
4495 isl_basic_set_free(dom);
4500 static void sol_for_add_wrap(struct isl_sol *sol,
4501 struct isl_basic_set *dom, struct isl_mat *M)
4503 sol_for_add((struct isl_sol_for *)sol, dom, M);
4506 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4507 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4511 struct isl_sol_for *sol_for = NULL;
4512 struct isl_dim *dom_dim;
4513 struct isl_basic_set *dom = NULL;
4515 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
4519 dom_dim = isl_dim_domain(isl_dim_copy(bmap->dim));
4520 dom = isl_basic_set_universe(dom_dim);
4522 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4523 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4524 sol_for->sol.dec_level.sol = &sol_for->sol;
4526 sol_for->user = user;
4527 sol_for->sol.max = max;
4528 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4529 sol_for->sol.add = &sol_for_add_wrap;
4530 sol_for->sol.add_empty = NULL;
4531 sol_for->sol.free = &sol_for_free_wrap;
4533 sol_for->sol.context = isl_context_alloc(dom);
4534 if (!sol_for->sol.context)
4537 isl_basic_set_free(dom);
4540 isl_basic_set_free(dom);
4541 sol_for_free(sol_for);
4545 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4546 struct isl_tab *tab)
4548 find_solutions_main(&sol_for->sol, tab);
4551 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4552 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4556 struct isl_sol_for *sol_for = NULL;
4558 bmap = isl_basic_map_copy(bmap);
4562 bmap = isl_basic_map_detect_equalities(bmap);
4563 sol_for = sol_for_init(bmap, max, fn, user);
4565 if (isl_basic_map_fast_is_empty(bmap))
4568 struct isl_tab *tab;
4569 struct isl_context *context = sol_for->sol.context;
4570 tab = tab_for_lexmin(bmap,
4571 context->op->peek_basic_set(context), 1, max);
4572 tab = context->op->detect_nonnegative_parameters(context, tab);
4573 sol_for_find_solutions(sol_for, tab);
4574 if (sol_for->sol.error)
4578 sol_free(&sol_for->sol);
4579 isl_basic_map_free(bmap);
4582 sol_free(&sol_for->sol);
4583 isl_basic_map_free(bmap);
4587 int isl_basic_map_foreach_lexmin(__isl_keep isl_basic_map *bmap,
4588 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4592 return isl_basic_map_foreach_lexopt(bmap, 0, fn, user);
4595 int isl_basic_map_foreach_lexmax(__isl_keep isl_basic_map *bmap,
4596 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_mat *map,
4600 return isl_basic_map_foreach_lexopt(bmap, 1, fn, user);