2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_aff_private.h>
20 #include <isl_options_private.h>
21 #include <isl_config.h>
24 * The implementation of parametric integer linear programming in this file
25 * was inspired by the paper "Parametric Integer Programming" and the
26 * report "Solving systems of affine (in)equalities" by Paul Feautrier
29 * The strategy used for obtaining a feasible solution is different
30 * from the one used in isl_tab.c. In particular, in isl_tab.c,
31 * upon finding a constraint that is not yet satisfied, we pivot
32 * in a row that increases the constant term of the row holding the
33 * constraint, making sure the sample solution remains feasible
34 * for all the constraints it already satisfied.
35 * Here, we always pivot in the row holding the constraint,
36 * choosing a column that induces the lexicographically smallest
37 * increment to the sample solution.
39 * By starting out from a sample value that is lexicographically
40 * smaller than any integer point in the problem space, the first
41 * feasible integer sample point we find will also be the lexicographically
42 * smallest. If all variables can be assumed to be non-negative,
43 * then the initial sample value may be chosen equal to zero.
44 * However, we will not make this assumption. Instead, we apply
45 * the "big parameter" trick. Any variable x is then not directly
46 * used in the tableau, but instead it is represented by another
47 * variable x' = M + x, where M is an arbitrarily large (positive)
48 * value. x' is therefore always non-negative, whatever the value of x.
49 * Taking as initial sample value x' = 0 corresponds to x = -M,
50 * which is always smaller than any possible value of x.
52 * The big parameter trick is used in the main tableau and
53 * also in the context tableau if isl_context_lex is used.
54 * In this case, each tableaus has its own big parameter.
55 * Before doing any real work, we check if all the parameters
56 * happen to be non-negative. If so, we drop the column corresponding
57 * to M from the initial context tableau.
58 * If isl_context_gbr is used, then the big parameter trick is only
59 * used in the main tableau.
63 struct isl_context_op {
64 /* detect nonnegative parameters in context and mark them in tab */
65 struct isl_tab *(*detect_nonnegative_parameters)(
66 struct isl_context *context, struct isl_tab *tab);
67 /* return temporary reference to basic set representation of context */
68 struct isl_basic_set *(*peek_basic_set)(struct isl_context *context);
69 /* return temporary reference to tableau representation of context */
70 struct isl_tab *(*peek_tab)(struct isl_context *context);
71 /* add equality; check is 1 if eq may not be valid;
72 * update is 1 if we may want to call ineq_sign on context later.
74 void (*add_eq)(struct isl_context *context, isl_int *eq,
75 int check, int update);
76 /* add inequality; check is 1 if ineq may not be valid;
77 * update is 1 if we may want to call ineq_sign on context later.
79 void (*add_ineq)(struct isl_context *context, isl_int *ineq,
80 int check, int update);
81 /* check sign of ineq based on previous information.
82 * strict is 1 if saturation should be treated as a positive sign.
84 enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context,
85 isl_int *ineq, int strict);
86 /* check if inequality maintains feasibility */
87 int (*test_ineq)(struct isl_context *context, isl_int *ineq);
88 /* return index of a div that corresponds to "div" */
89 int (*get_div)(struct isl_context *context, struct isl_tab *tab,
91 /* add div "div" to context and return non-negativity */
92 int (*add_div)(struct isl_context *context, struct isl_vec *div);
93 int (*detect_equalities)(struct isl_context *context,
95 /* return row index of "best" split */
96 int (*best_split)(struct isl_context *context, struct isl_tab *tab);
97 /* check if context has already been determined to be empty */
98 int (*is_empty)(struct isl_context *context);
99 /* check if context is still usable */
100 int (*is_ok)(struct isl_context *context);
101 /* save a copy/snapshot of context */
102 void *(*save)(struct isl_context *context);
103 /* restore saved context */
104 void (*restore)(struct isl_context *context, void *);
105 /* invalidate context */
106 void (*invalidate)(struct isl_context *context);
108 void (*free)(struct isl_context *context);
112 struct isl_context_op *op;
115 struct isl_context_lex {
116 struct isl_context context;
120 struct isl_partial_sol {
122 struct isl_basic_set *dom;
125 struct isl_partial_sol *next;
129 struct isl_sol_callback {
130 struct isl_tab_callback callback;
134 /* isl_sol is an interface for constructing a solution to
135 * a parametric integer linear programming problem.
136 * Every time the algorithm reaches a state where a solution
137 * can be read off from the tableau (including cases where the tableau
138 * is empty), the function "add" is called on the isl_sol passed
139 * to find_solutions_main.
141 * The context tableau is owned by isl_sol and is updated incrementally.
143 * There are currently two implementations of this interface,
144 * isl_sol_map, which simply collects the solutions in an isl_map
145 * and (optionally) the parts of the context where there is no solution
147 * isl_sol_for, which calls a user-defined function for each part of
156 struct isl_context *context;
157 struct isl_partial_sol *partial;
158 void (*add)(struct isl_sol *sol,
159 struct isl_basic_set *dom, struct isl_mat *M);
160 void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset);
161 void (*free)(struct isl_sol *sol);
162 struct isl_sol_callback dec_level;
165 static void sol_free(struct isl_sol *sol)
167 struct isl_partial_sol *partial, *next;
170 for (partial = sol->partial; partial; partial = next) {
171 next = partial->next;
172 isl_basic_set_free(partial->dom);
173 isl_mat_free(partial->M);
179 /* Push a partial solution represented by a domain and mapping M
180 * onto the stack of partial solutions.
182 static void sol_push_sol(struct isl_sol *sol,
183 struct isl_basic_set *dom, struct isl_mat *M)
185 struct isl_partial_sol *partial;
187 if (sol->error || !dom)
190 partial = isl_alloc_type(dom->ctx, struct isl_partial_sol);
194 partial->level = sol->level;
197 partial->next = sol->partial;
199 sol->partial = partial;
203 isl_basic_set_free(dom);
207 /* Pop one partial solution from the partial solution stack and
208 * pass it on to sol->add or sol->add_empty.
210 static void sol_pop_one(struct isl_sol *sol)
212 struct isl_partial_sol *partial;
214 partial = sol->partial;
215 sol->partial = partial->next;
218 sol->add(sol, partial->dom, partial->M);
220 sol->add_empty(sol, partial->dom);
224 /* Return a fresh copy of the domain represented by the context tableau.
226 static struct isl_basic_set *sol_domain(struct isl_sol *sol)
228 struct isl_basic_set *bset;
233 bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context));
234 bset = isl_basic_set_update_from_tab(bset,
235 sol->context->op->peek_tab(sol->context));
240 /* Check whether two partial solutions have the same mapping, where n_div
241 * is the number of divs that the two partial solutions have in common.
243 static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2,
249 if (!s1->M != !s2->M)
254 dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div;
256 for (i = 0; i < s1->M->n_row; ++i) {
257 if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div,
258 s1->M->n_col-1-dim-n_div) != -1)
260 if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div,
261 s2->M->n_col-1-dim-n_div) != -1)
263 if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div))
269 /* Pop all solutions from the partial solution stack that were pushed onto
270 * the stack at levels that are deeper than the current level.
271 * If the two topmost elements on the stack have the same level
272 * and represent the same solution, then their domains are combined.
273 * This combined domain is the same as the current context domain
274 * as sol_pop is called each time we move back to a higher level.
276 static void sol_pop(struct isl_sol *sol)
278 struct isl_partial_sol *partial;
284 if (sol->level == 0) {
285 for (partial = sol->partial; partial; partial = sol->partial)
290 partial = sol->partial;
294 if (partial->level <= sol->level)
297 if (partial->next && partial->next->level == partial->level) {
298 n_div = isl_basic_set_dim(
299 sol->context->op->peek_basic_set(sol->context),
302 if (!same_solution(partial, partial->next, n_div)) {
306 struct isl_basic_set *bset;
308 bset = sol_domain(sol);
310 isl_basic_set_free(partial->next->dom);
311 partial->next->dom = bset;
312 partial->next->level = sol->level;
314 sol->partial = partial->next;
315 isl_basic_set_free(partial->dom);
316 isl_mat_free(partial->M);
323 static void sol_dec_level(struct isl_sol *sol)
333 static int sol_dec_level_wrap(struct isl_tab_callback *cb)
335 struct isl_sol_callback *callback = (struct isl_sol_callback *)cb;
337 sol_dec_level(callback->sol);
339 return callback->sol->error ? -1 : 0;
342 /* Move down to next level and push callback onto context tableau
343 * to decrease the level again when it gets rolled back across
344 * the current state. That is, dec_level will be called with
345 * the context tableau in the same state as it is when inc_level
348 static void sol_inc_level(struct isl_sol *sol)
356 tab = sol->context->op->peek_tab(sol->context);
357 if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0)
361 static void scale_rows(struct isl_mat *mat, isl_int m, int n_row)
365 if (isl_int_is_one(m))
368 for (i = 0; i < n_row; ++i)
369 isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col);
372 /* Add the solution identified by the tableau and the context tableau.
374 * The layout of the variables is as follows.
375 * tab->n_var is equal to the total number of variables in the input
376 * map (including divs that were copied from the context)
377 * + the number of extra divs constructed
378 * Of these, the first tab->n_param and the last tab->n_div variables
379 * correspond to the variables in the context, i.e.,
380 * tab->n_param + tab->n_div = context_tab->n_var
381 * tab->n_param is equal to the number of parameters and input
382 * dimensions in the input map
383 * tab->n_div is equal to the number of divs in the context
385 * If there is no solution, then call add_empty with a basic set
386 * that corresponds to the context tableau. (If add_empty is NULL,
389 * If there is a solution, then first construct a matrix that maps
390 * all dimensions of the context to the output variables, i.e.,
391 * the output dimensions in the input map.
392 * The divs in the input map (if any) that do not correspond to any
393 * div in the context do not appear in the solution.
394 * The algorithm will make sure that they have an integer value,
395 * but these values themselves are of no interest.
396 * We have to be careful not to drop or rearrange any divs in the
397 * context because that would change the meaning of the matrix.
399 * To extract the value of the output variables, it should be noted
400 * that we always use a big parameter M in the main tableau and so
401 * the variable stored in this tableau is not an output variable x itself, but
402 * x' = M + x (in case of minimization)
404 * x' = M - x (in case of maximization)
405 * If x' appears in a column, then its optimal value is zero,
406 * which means that the optimal value of x is an unbounded number
407 * (-M for minimization and M for maximization).
408 * We currently assume that the output dimensions in the original map
409 * are bounded, so this cannot occur.
410 * Similarly, when x' appears in a row, then the coefficient of M in that
411 * row is necessarily 1.
412 * If the row in the tableau represents
413 * d x' = c + d M + e(y)
414 * then, in case of minimization, the corresponding row in the matrix
417 * with a d = m, the (updated) common denominator of the matrix.
418 * In case of maximization, the row will be
421 static void sol_add(struct isl_sol *sol, struct isl_tab *tab)
423 struct isl_basic_set *bset = NULL;
424 struct isl_mat *mat = NULL;
429 if (sol->error || !tab)
432 if (tab->empty && !sol->add_empty)
434 if (sol->context->op->is_empty(sol->context))
437 bset = sol_domain(sol);
440 sol_push_sol(sol, bset, NULL);
446 mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out,
447 1 + tab->n_param + tab->n_div);
453 isl_seq_clr(mat->row[0] + 1, mat->n_col - 1);
454 isl_int_set_si(mat->row[0][0], 1);
455 for (row = 0; row < sol->n_out; ++row) {
456 int i = tab->n_param + row;
459 isl_seq_clr(mat->row[1 + row], mat->n_col);
460 if (!tab->var[i].is_row) {
462 isl_die(mat->ctx, isl_error_invalid,
463 "unbounded optimum", goto error2);
467 r = tab->var[i].index;
469 isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0]))
470 isl_die(mat->ctx, isl_error_invalid,
471 "unbounded optimum", goto error2);
472 isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]);
473 isl_int_divexact(m, tab->mat->row[r][0], m);
474 scale_rows(mat, m, 1 + row);
475 isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]);
476 isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]);
477 for (j = 0; j < tab->n_param; ++j) {
479 if (tab->var[j].is_row)
481 col = tab->var[j].index;
482 isl_int_mul(mat->row[1 + row][1 + j], m,
483 tab->mat->row[r][off + col]);
485 for (j = 0; j < tab->n_div; ++j) {
487 if (tab->var[tab->n_var - tab->n_div+j].is_row)
489 col = tab->var[tab->n_var - tab->n_div+j].index;
490 isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m,
491 tab->mat->row[r][off + col]);
494 isl_seq_neg(mat->row[1 + row], mat->row[1 + row],
500 sol_push_sol(sol, bset, mat);
505 isl_basic_set_free(bset);
513 struct isl_set *empty;
516 static void sol_map_free(struct isl_sol_map *sol_map)
520 if (sol_map->sol.context)
521 sol_map->sol.context->op->free(sol_map->sol.context);
522 isl_map_free(sol_map->map);
523 isl_set_free(sol_map->empty);
527 static void sol_map_free_wrap(struct isl_sol *sol)
529 sol_map_free((struct isl_sol_map *)sol);
532 /* This function is called for parts of the context where there is
533 * no solution, with "bset" corresponding to the context tableau.
534 * Simply add the basic set to the set "empty".
536 static void sol_map_add_empty(struct isl_sol_map *sol,
537 struct isl_basic_set *bset)
541 isl_assert(bset->ctx, sol->empty, goto error);
543 sol->empty = isl_set_grow(sol->empty, 1);
544 bset = isl_basic_set_simplify(bset);
545 bset = isl_basic_set_finalize(bset);
546 sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset));
549 isl_basic_set_free(bset);
552 isl_basic_set_free(bset);
556 static void sol_map_add_empty_wrap(struct isl_sol *sol,
557 struct isl_basic_set *bset)
559 sol_map_add_empty((struct isl_sol_map *)sol, bset);
562 /* Given a basic map "dom" that represents the context and an affine
563 * matrix "M" that maps the dimensions of the context to the
564 * output variables, construct a basic map with the same parameters
565 * and divs as the context, the dimensions of the context as input
566 * dimensions and a number of output dimensions that is equal to
567 * the number of output dimensions in the input map.
569 * The constraints and divs of the context are simply copied
570 * from "dom". For each row
574 * is added, with d the common denominator of M.
576 static void sol_map_add(struct isl_sol_map *sol,
577 struct isl_basic_set *dom, struct isl_mat *M)
580 struct isl_basic_map *bmap = NULL;
588 if (sol->sol.error || !dom || !M)
591 n_out = sol->sol.n_out;
592 n_eq = dom->n_eq + n_out;
593 n_ineq = dom->n_ineq;
595 nparam = isl_basic_set_total_dim(dom) - n_div;
596 total = isl_map_dim(sol->map, isl_dim_all);
597 bmap = isl_basic_map_alloc_space(isl_map_get_space(sol->map),
598 n_div, n_eq, 2 * n_div + n_ineq);
601 if (sol->sol.rational)
602 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
603 for (i = 0; i < dom->n_div; ++i) {
604 int k = isl_basic_map_alloc_div(bmap);
607 isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam);
608 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
609 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
610 dom->div[i] + 1 + 1 + nparam, i);
612 for (i = 0; i < dom->n_eq; ++i) {
613 int k = isl_basic_map_alloc_equality(bmap);
616 isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam);
617 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
618 isl_seq_cpy(bmap->eq[k] + 1 + total,
619 dom->eq[i] + 1 + nparam, n_div);
621 for (i = 0; i < dom->n_ineq; ++i) {
622 int k = isl_basic_map_alloc_inequality(bmap);
625 isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam);
626 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
627 isl_seq_cpy(bmap->ineq[k] + 1 + total,
628 dom->ineq[i] + 1 + nparam, n_div);
630 for (i = 0; i < M->n_row - 1; ++i) {
631 int k = isl_basic_map_alloc_equality(bmap);
634 isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam);
635 isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out);
636 isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]);
637 isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out,
638 M->row[1 + i] + 1 + nparam, n_div);
640 bmap = isl_basic_map_simplify(bmap);
641 bmap = isl_basic_map_finalize(bmap);
642 sol->map = isl_map_grow(sol->map, 1);
643 sol->map = isl_map_add_basic_map(sol->map, bmap);
644 isl_basic_set_free(dom);
650 isl_basic_set_free(dom);
652 isl_basic_map_free(bmap);
656 static void sol_map_add_wrap(struct isl_sol *sol,
657 struct isl_basic_set *dom, struct isl_mat *M)
659 sol_map_add((struct isl_sol_map *)sol, dom, M);
663 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
664 * i.e., the constant term and the coefficients of all variables that
665 * appear in the context tableau.
666 * Note that the coefficient of the big parameter M is NOT copied.
667 * The context tableau may not have a big parameter and even when it
668 * does, it is a different big parameter.
670 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
673 unsigned off = 2 + tab->M;
675 isl_int_set(line[0], tab->mat->row[row][1]);
676 for (i = 0; i < tab->n_param; ++i) {
677 if (tab->var[i].is_row)
678 isl_int_set_si(line[1 + i], 0);
680 int col = tab->var[i].index;
681 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
684 for (i = 0; i < tab->n_div; ++i) {
685 if (tab->var[tab->n_var - tab->n_div + i].is_row)
686 isl_int_set_si(line[1 + tab->n_param + i], 0);
688 int col = tab->var[tab->n_var - tab->n_div + i].index;
689 isl_int_set(line[1 + tab->n_param + i],
690 tab->mat->row[row][off + col]);
695 /* Check if rows "row1" and "row2" have identical "parametric constants",
696 * as explained above.
697 * In this case, we also insist that the coefficients of the big parameter
698 * be the same as the values of the constants will only be the same
699 * if these coefficients are also the same.
701 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
704 unsigned off = 2 + tab->M;
706 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
709 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
710 tab->mat->row[row2][2]))
713 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
714 int pos = i < tab->n_param ? i :
715 tab->n_var - tab->n_div + i - tab->n_param;
718 if (tab->var[pos].is_row)
720 col = tab->var[pos].index;
721 if (isl_int_ne(tab->mat->row[row1][off + col],
722 tab->mat->row[row2][off + col]))
728 /* Return an inequality that expresses that the "parametric constant"
729 * should be non-negative.
730 * This function is only called when the coefficient of the big parameter
733 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
735 struct isl_vec *ineq;
737 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
741 get_row_parameter_line(tab, row, ineq->el);
743 ineq = isl_vec_normalize(ineq);
748 /* Return a integer division for use in a parametric cut based on the given row.
749 * In particular, let the parametric constant of the row be
753 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
754 * The div returned is equal to
756 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
758 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
762 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
766 isl_int_set(div->el[0], tab->mat->row[row][0]);
767 get_row_parameter_line(tab, row, div->el + 1);
768 div = isl_vec_normalize(div);
769 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
770 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
775 /* Return a integer division for use in transferring an integrality constraint
777 * In particular, let the parametric constant of the row be
781 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
782 * The the returned div is equal to
784 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
786 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
790 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
794 isl_int_set(div->el[0], tab->mat->row[row][0]);
795 get_row_parameter_line(tab, row, div->el + 1);
796 div = isl_vec_normalize(div);
797 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
802 /* Construct and return an inequality that expresses an upper bound
804 * In particular, if the div is given by
808 * then the inequality expresses
812 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
816 struct isl_vec *ineq;
821 total = isl_basic_set_total_dim(bset);
822 div_pos = 1 + total - bset->n_div + div;
824 ineq = isl_vec_alloc(bset->ctx, 1 + total);
828 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
829 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
833 /* Given a row in the tableau and a div that was created
834 * using get_row_split_div and that has been constrained to equality, i.e.,
836 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
838 * replace the expression "\sum_i {a_i} y_i" in the row by d,
839 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
840 * The coefficients of the non-parameters in the tableau have been
841 * verified to be integral. We can therefore simply replace coefficient b
842 * by floor(b). For the coefficients of the parameters we have
843 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
846 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
848 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
849 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
851 isl_int_set_si(tab->mat->row[row][0], 1);
853 if (tab->var[tab->n_var - tab->n_div + div].is_row) {
854 int drow = tab->var[tab->n_var - tab->n_div + div].index;
856 isl_assert(tab->mat->ctx,
857 isl_int_is_one(tab->mat->row[drow][0]), goto error);
858 isl_seq_combine(tab->mat->row[row] + 1,
859 tab->mat->ctx->one, tab->mat->row[row] + 1,
860 tab->mat->ctx->one, tab->mat->row[drow] + 1,
861 1 + tab->M + tab->n_col);
863 int dcol = tab->var[tab->n_var - tab->n_div + div].index;
865 isl_int_add_ui(tab->mat->row[row][2 + tab->M + dcol],
866 tab->mat->row[row][2 + tab->M + dcol], 1);
875 /* Check if the (parametric) constant of the given row is obviously
876 * negative, meaning that we don't need to consult the context tableau.
877 * If there is a big parameter and its coefficient is non-zero,
878 * then this coefficient determines the outcome.
879 * Otherwise, we check whether the constant is negative and
880 * all non-zero coefficients of parameters are negative and
881 * belong to non-negative parameters.
883 static int is_obviously_neg(struct isl_tab *tab, int row)
887 unsigned off = 2 + tab->M;
890 if (isl_int_is_pos(tab->mat->row[row][2]))
892 if (isl_int_is_neg(tab->mat->row[row][2]))
896 if (isl_int_is_nonneg(tab->mat->row[row][1]))
898 for (i = 0; i < tab->n_param; ++i) {
899 /* Eliminated parameter */
900 if (tab->var[i].is_row)
902 col = tab->var[i].index;
903 if (isl_int_is_zero(tab->mat->row[row][off + col]))
905 if (!tab->var[i].is_nonneg)
907 if (isl_int_is_pos(tab->mat->row[row][off + col]))
910 for (i = 0; i < tab->n_div; ++i) {
911 if (tab->var[tab->n_var - tab->n_div + i].is_row)
913 col = tab->var[tab->n_var - tab->n_div + i].index;
914 if (isl_int_is_zero(tab->mat->row[row][off + col]))
916 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
918 if (isl_int_is_pos(tab->mat->row[row][off + col]))
924 /* Check if the (parametric) constant of the given row is obviously
925 * non-negative, meaning that we don't need to consult the context tableau.
926 * If there is a big parameter and its coefficient is non-zero,
927 * then this coefficient determines the outcome.
928 * Otherwise, we check whether the constant is non-negative and
929 * all non-zero coefficients of parameters are positive and
930 * belong to non-negative parameters.
932 static int is_obviously_nonneg(struct isl_tab *tab, int row)
936 unsigned off = 2 + tab->M;
939 if (isl_int_is_pos(tab->mat->row[row][2]))
941 if (isl_int_is_neg(tab->mat->row[row][2]))
945 if (isl_int_is_neg(tab->mat->row[row][1]))
947 for (i = 0; i < tab->n_param; ++i) {
948 /* Eliminated parameter */
949 if (tab->var[i].is_row)
951 col = tab->var[i].index;
952 if (isl_int_is_zero(tab->mat->row[row][off + col]))
954 if (!tab->var[i].is_nonneg)
956 if (isl_int_is_neg(tab->mat->row[row][off + col]))
959 for (i = 0; i < tab->n_div; ++i) {
960 if (tab->var[tab->n_var - tab->n_div + i].is_row)
962 col = tab->var[tab->n_var - tab->n_div + i].index;
963 if (isl_int_is_zero(tab->mat->row[row][off + col]))
965 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
967 if (isl_int_is_neg(tab->mat->row[row][off + col]))
973 /* Given a row r and two columns, return the column that would
974 * lead to the lexicographically smallest increment in the sample
975 * solution when leaving the basis in favor of the row.
976 * Pivoting with column c will increment the sample value by a non-negative
977 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
978 * corresponding to the non-parametric variables.
979 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
980 * with all other entries in this virtual row equal to zero.
981 * If variable v appears in a row, then a_{v,c} is the element in column c
984 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
985 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
986 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
987 * increment. Otherwise, it's c2.
989 static int lexmin_col_pair(struct isl_tab *tab,
990 int row, int col1, int col2, isl_int tmp)
995 tr = tab->mat->row[row] + 2 + tab->M;
997 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1001 if (!tab->var[i].is_row) {
1002 if (tab->var[i].index == col1)
1004 if (tab->var[i].index == col2)
1009 if (tab->var[i].index == row)
1012 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
1013 s1 = isl_int_sgn(r[col1]);
1014 s2 = isl_int_sgn(r[col2]);
1015 if (s1 == 0 && s2 == 0)
1022 isl_int_mul(tmp, r[col2], tr[col1]);
1023 isl_int_submul(tmp, r[col1], tr[col2]);
1024 if (isl_int_is_pos(tmp))
1026 if (isl_int_is_neg(tmp))
1032 /* Given a row in the tableau, find and return the column that would
1033 * result in the lexicographically smallest, but positive, increment
1034 * in the sample point.
1035 * If there is no such column, then return tab->n_col.
1036 * If anything goes wrong, return -1.
1038 static int lexmin_pivot_col(struct isl_tab *tab, int row)
1041 int col = tab->n_col;
1045 tr = tab->mat->row[row] + 2 + tab->M;
1049 for (j = tab->n_dead; j < tab->n_col; ++j) {
1050 if (tab->col_var[j] >= 0 &&
1051 (tab->col_var[j] < tab->n_param ||
1052 tab->col_var[j] >= tab->n_var - tab->n_div))
1055 if (!isl_int_is_pos(tr[j]))
1058 if (col == tab->n_col)
1061 col = lexmin_col_pair(tab, row, col, j, tmp);
1062 isl_assert(tab->mat->ctx, col >= 0, goto error);
1072 /* Return the first known violated constraint, i.e., a non-negative
1073 * constraint that currently has an either obviously negative value
1074 * or a previously determined to be negative value.
1076 * If any constraint has a negative coefficient for the big parameter,
1077 * if any, then we return one of these first.
1079 static int first_neg(struct isl_tab *tab)
1084 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1085 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1087 if (!isl_int_is_neg(tab->mat->row[row][2]))
1090 tab->row_sign[row] = isl_tab_row_neg;
1093 for (row = tab->n_redundant; row < tab->n_row; ++row) {
1094 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
1096 if (tab->row_sign) {
1097 if (tab->row_sign[row] == 0 &&
1098 is_obviously_neg(tab, row))
1099 tab->row_sign[row] = isl_tab_row_neg;
1100 if (tab->row_sign[row] != isl_tab_row_neg)
1102 } else if (!is_obviously_neg(tab, row))
1109 /* Check whether the invariant that all columns are lexico-positive
1110 * is satisfied. This function is not called from the current code
1111 * but is useful during debugging.
1113 static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused));
1114 static void check_lexpos(struct isl_tab *tab)
1116 unsigned off = 2 + tab->M;
1121 for (col = tab->n_dead; col < tab->n_col; ++col) {
1122 if (tab->col_var[col] >= 0 &&
1123 (tab->col_var[col] < tab->n_param ||
1124 tab->col_var[col] >= tab->n_var - tab->n_div))
1126 for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) {
1127 if (!tab->var[var].is_row) {
1128 if (tab->var[var].index == col)
1133 row = tab->var[var].index;
1134 if (isl_int_is_zero(tab->mat->row[row][off + col]))
1136 if (isl_int_is_pos(tab->mat->row[row][off + col]))
1138 fprintf(stderr, "lexneg column %d (row %d)\n",
1141 if (var >= tab->n_var - tab->n_div)
1142 fprintf(stderr, "zero column %d\n", col);
1146 /* Report to the caller that the given constraint is part of an encountered
1149 static int report_conflicting_constraint(struct isl_tab *tab, int con)
1151 return tab->conflict(con, tab->conflict_user);
1154 /* Given a conflicting row in the tableau, report all constraints
1155 * involved in the row to the caller. That is, the row itself
1156 * (if represents a constraint) and all constraint columns with
1157 * non-zero (and therefore negative) coefficient.
1159 static int report_conflict(struct isl_tab *tab, int row)
1167 if (tab->row_var[row] < 0 &&
1168 report_conflicting_constraint(tab, ~tab->row_var[row]) < 0)
1171 tr = tab->mat->row[row] + 2 + tab->M;
1173 for (j = tab->n_dead; j < tab->n_col; ++j) {
1174 if (tab->col_var[j] >= 0 &&
1175 (tab->col_var[j] < tab->n_param ||
1176 tab->col_var[j] >= tab->n_var - tab->n_div))
1179 if (!isl_int_is_neg(tr[j]))
1182 if (tab->col_var[j] < 0 &&
1183 report_conflicting_constraint(tab, ~tab->col_var[j]) < 0)
1190 /* Resolve all known or obviously violated constraints through pivoting.
1191 * In particular, as long as we can find any violated constraint, we
1192 * look for a pivoting column that would result in the lexicographically
1193 * smallest increment in the sample point. If there is no such column
1194 * then the tableau is infeasible.
1196 static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED;
1197 static int restore_lexmin(struct isl_tab *tab)
1205 while ((row = first_neg(tab)) != -1) {
1206 col = lexmin_pivot_col(tab, row);
1207 if (col >= tab->n_col) {
1208 if (report_conflict(tab, row) < 0)
1210 if (isl_tab_mark_empty(tab) < 0)
1216 if (isl_tab_pivot(tab, row, col) < 0)
1222 /* Given a row that represents an equality, look for an appropriate
1224 * In particular, if there are any non-zero coefficients among
1225 * the non-parameter variables, then we take the last of these
1226 * variables. Eliminating this variable in terms of the other
1227 * variables and/or parameters does not influence the property
1228 * that all column in the initial tableau are lexicographically
1229 * positive. The row corresponding to the eliminated variable
1230 * will only have non-zero entries below the diagonal of the
1231 * initial tableau. That is, we transform
1237 * If there is no such non-parameter variable, then we are dealing with
1238 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1239 * for elimination. This will ensure that the eliminated parameter
1240 * always has an integer value whenever all the other parameters are integral.
1241 * If there is no such parameter then we return -1.
1243 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
1245 unsigned off = 2 + tab->M;
1248 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
1250 if (tab->var[i].is_row)
1252 col = tab->var[i].index;
1253 if (col <= tab->n_dead)
1255 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
1258 for (i = tab->n_dead; i < tab->n_col; ++i) {
1259 if (isl_int_is_one(tab->mat->row[row][off + i]))
1261 if (isl_int_is_negone(tab->mat->row[row][off + i]))
1267 /* Add an equality that is known to be valid to the tableau.
1268 * We first check if we can eliminate a variable or a parameter.
1269 * If not, we add the equality as two inequalities.
1270 * In this case, the equality was a pure parameter equality and there
1271 * is no need to resolve any constraint violations.
1273 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
1280 r = isl_tab_add_row(tab, eq);
1284 r = tab->con[r].index;
1285 i = last_var_col_or_int_par_col(tab, r);
1287 tab->con[r].is_nonneg = 1;
1288 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1290 isl_seq_neg(eq, eq, 1 + tab->n_var);
1291 r = isl_tab_add_row(tab, eq);
1294 tab->con[r].is_nonneg = 1;
1295 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1298 if (isl_tab_pivot(tab, r, i) < 0)
1300 if (isl_tab_kill_col(tab, i) < 0)
1311 /* Check if the given row is a pure constant.
1313 static int is_constant(struct isl_tab *tab, int row)
1315 unsigned off = 2 + tab->M;
1317 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1318 tab->n_col - tab->n_dead) == -1;
1321 /* Add an equality that may or may not be valid to the tableau.
1322 * If the resulting row is a pure constant, then it must be zero.
1323 * Otherwise, the resulting tableau is empty.
1325 * If the row is not a pure constant, then we add two inequalities,
1326 * each time checking that they can be satisfied.
1327 * In the end we try to use one of the two constraints to eliminate
1330 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED;
1331 static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
1335 struct isl_tab_undo *snap;
1339 snap = isl_tab_snap(tab);
1340 r1 = isl_tab_add_row(tab, eq);
1343 tab->con[r1].is_nonneg = 1;
1344 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0)
1347 row = tab->con[r1].index;
1348 if (is_constant(tab, row)) {
1349 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
1350 (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) {
1351 if (isl_tab_mark_empty(tab) < 0)
1355 if (isl_tab_rollback(tab, snap) < 0)
1360 if (restore_lexmin(tab) < 0)
1365 isl_seq_neg(eq, eq, 1 + tab->n_var);
1367 r2 = isl_tab_add_row(tab, eq);
1370 tab->con[r2].is_nonneg = 1;
1371 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0)
1374 if (restore_lexmin(tab) < 0)
1379 if (!tab->con[r1].is_row) {
1380 if (isl_tab_kill_col(tab, tab->con[r1].index) < 0)
1382 } else if (!tab->con[r2].is_row) {
1383 if (isl_tab_kill_col(tab, tab->con[r2].index) < 0)
1388 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1389 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1391 isl_seq_neg(eq, eq, 1 + tab->n_var);
1392 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
1393 isl_seq_neg(eq, eq, 1 + tab->n_var);
1394 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1403 /* Add an inequality to the tableau, resolving violations using
1406 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
1413 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1414 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1419 r = isl_tab_add_row(tab, ineq);
1422 tab->con[r].is_nonneg = 1;
1423 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1425 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1426 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1431 if (restore_lexmin(tab) < 0)
1433 if (!tab->empty && tab->con[r].is_row &&
1434 isl_tab_row_is_redundant(tab, tab->con[r].index))
1435 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1443 /* Check if the coefficients of the parameters are all integral.
1445 static int integer_parameter(struct isl_tab *tab, int row)
1449 unsigned off = 2 + tab->M;
1451 for (i = 0; i < tab->n_param; ++i) {
1452 /* Eliminated parameter */
1453 if (tab->var[i].is_row)
1455 col = tab->var[i].index;
1456 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1457 tab->mat->row[row][0]))
1460 for (i = 0; i < tab->n_div; ++i) {
1461 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1463 col = tab->var[tab->n_var - tab->n_div + i].index;
1464 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1465 tab->mat->row[row][0]))
1471 /* Check if the coefficients of the non-parameter variables are all integral.
1473 static int integer_variable(struct isl_tab *tab, int row)
1476 unsigned off = 2 + tab->M;
1478 for (i = tab->n_dead; i < tab->n_col; ++i) {
1479 if (tab->col_var[i] >= 0 &&
1480 (tab->col_var[i] < tab->n_param ||
1481 tab->col_var[i] >= tab->n_var - tab->n_div))
1483 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1484 tab->mat->row[row][0]))
1490 /* Check if the constant term is integral.
1492 static int integer_constant(struct isl_tab *tab, int row)
1494 return isl_int_is_divisible_by(tab->mat->row[row][1],
1495 tab->mat->row[row][0]);
1498 #define I_CST 1 << 0
1499 #define I_PAR 1 << 1
1500 #define I_VAR 1 << 2
1502 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1503 * that is non-integer and therefore requires a cut and return
1504 * the index of the variable.
1505 * For parametric tableaus, there are three parts in a row,
1506 * the constant, the coefficients of the parameters and the rest.
1507 * For each part, we check whether the coefficients in that part
1508 * are all integral and if so, set the corresponding flag in *f.
1509 * If the constant and the parameter part are integral, then the
1510 * current sample value is integral and no cut is required
1511 * (irrespective of whether the variable part is integral).
1513 static int next_non_integer_var(struct isl_tab *tab, int var, int *f)
1515 var = var < 0 ? tab->n_param : var + 1;
1517 for (; var < tab->n_var - tab->n_div; ++var) {
1520 if (!tab->var[var].is_row)
1522 row = tab->var[var].index;
1523 if (integer_constant(tab, row))
1524 ISL_FL_SET(flags, I_CST);
1525 if (integer_parameter(tab, row))
1526 ISL_FL_SET(flags, I_PAR);
1527 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1529 if (integer_variable(tab, row))
1530 ISL_FL_SET(flags, I_VAR);
1537 /* Check for first (non-parameter) variable that is non-integer and
1538 * therefore requires a cut and return the corresponding row.
1539 * For parametric tableaus, there are three parts in a row,
1540 * the constant, the coefficients of the parameters and the rest.
1541 * For each part, we check whether the coefficients in that part
1542 * are all integral and if so, set the corresponding flag in *f.
1543 * If the constant and the parameter part are integral, then the
1544 * current sample value is integral and no cut is required
1545 * (irrespective of whether the variable part is integral).
1547 static int first_non_integer_row(struct isl_tab *tab, int *f)
1549 int var = next_non_integer_var(tab, -1, f);
1551 return var < 0 ? -1 : tab->var[var].index;
1554 /* Add a (non-parametric) cut to cut away the non-integral sample
1555 * value of the given row.
1557 * If the row is given by
1559 * m r = f + \sum_i a_i y_i
1563 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1565 * The big parameter, if any, is ignored, since it is assumed to be big
1566 * enough to be divisible by any integer.
1567 * If the tableau is actually a parametric tableau, then this function
1568 * is only called when all coefficients of the parameters are integral.
1569 * The cut therefore has zero coefficients for the parameters.
1571 * The current value is known to be negative, so row_sign, if it
1572 * exists, is set accordingly.
1574 * Return the row of the cut or -1.
1576 static int add_cut(struct isl_tab *tab, int row)
1581 unsigned off = 2 + tab->M;
1583 if (isl_tab_extend_cons(tab, 1) < 0)
1585 r = isl_tab_allocate_con(tab);
1589 r_row = tab->mat->row[tab->con[r].index];
1590 isl_int_set(r_row[0], tab->mat->row[row][0]);
1591 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1592 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1593 isl_int_neg(r_row[1], r_row[1]);
1595 isl_int_set_si(r_row[2], 0);
1596 for (i = 0; i < tab->n_col; ++i)
1597 isl_int_fdiv_r(r_row[off + i],
1598 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1600 tab->con[r].is_nonneg = 1;
1601 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1604 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1606 return tab->con[r].index;
1609 /* Given a non-parametric tableau, add cuts until an integer
1610 * sample point is obtained or until the tableau is determined
1611 * to be integer infeasible.
1612 * As long as there is any non-integer value in the sample point,
1613 * we add appropriate cuts, if possible, for each of these
1614 * non-integer values and then resolve the violated
1615 * cut constraints using restore_lexmin.
1616 * If one of the corresponding rows is equal to an integral
1617 * combination of variables/constraints plus a non-integral constant,
1618 * then there is no way to obtain an integer point and we return
1619 * a tableau that is marked empty.
1621 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1632 while ((var = next_non_integer_var(tab, -1, &flags)) != -1) {
1634 if (ISL_FL_ISSET(flags, I_VAR)) {
1635 if (isl_tab_mark_empty(tab) < 0)
1639 row = tab->var[var].index;
1640 row = add_cut(tab, row);
1643 } while ((var = next_non_integer_var(tab, var, &flags)) != -1);
1644 if (restore_lexmin(tab) < 0)
1655 /* Check whether all the currently active samples also satisfy the inequality
1656 * "ineq" (treated as an equality if eq is set).
1657 * Remove those samples that do not.
1659 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1667 isl_assert(tab->mat->ctx, tab->bmap, goto error);
1668 isl_assert(tab->mat->ctx, tab->samples, goto error);
1669 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1672 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1674 isl_seq_inner_product(ineq, tab->samples->row[i],
1675 1 + tab->n_var, &v);
1676 sgn = isl_int_sgn(v);
1677 if (eq ? (sgn == 0) : (sgn >= 0))
1679 tab = isl_tab_drop_sample(tab, i);
1691 /* Check whether the sample value of the tableau is finite,
1692 * i.e., either the tableau does not use a big parameter, or
1693 * all values of the variables are equal to the big parameter plus
1694 * some constant. This constant is the actual sample value.
1696 static int sample_is_finite(struct isl_tab *tab)
1703 for (i = 0; i < tab->n_var; ++i) {
1705 if (!tab->var[i].is_row)
1707 row = tab->var[i].index;
1708 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1714 /* Check if the context tableau of sol has any integer points.
1715 * Leave tab in empty state if no integer point can be found.
1716 * If an integer point can be found and if moreover it is finite,
1717 * then it is added to the list of sample values.
1719 * This function is only called when none of the currently active sample
1720 * values satisfies the most recently added constraint.
1722 static struct isl_tab *check_integer_feasible(struct isl_tab *tab)
1724 struct isl_tab_undo *snap;
1729 snap = isl_tab_snap(tab);
1730 if (isl_tab_push_basis(tab) < 0)
1733 tab = cut_to_integer_lexmin(tab);
1737 if (!tab->empty && sample_is_finite(tab)) {
1738 struct isl_vec *sample;
1740 sample = isl_tab_get_sample_value(tab);
1742 tab = isl_tab_add_sample(tab, sample);
1745 if (!tab->empty && isl_tab_rollback(tab, snap) < 0)
1754 /* Check if any of the currently active sample values satisfies
1755 * the inequality "ineq" (an equality if eq is set).
1757 static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq)
1765 isl_assert(tab->mat->ctx, tab->bmap, return -1);
1766 isl_assert(tab->mat->ctx, tab->samples, return -1);
1767 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1770 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1772 isl_seq_inner_product(ineq, tab->samples->row[i],
1773 1 + tab->n_var, &v);
1774 sgn = isl_int_sgn(v);
1775 if (eq ? (sgn == 0) : (sgn >= 0))
1780 return i < tab->n_sample;
1783 /* Add a div specified by "div" to the tableau "tab" and return
1784 * 1 if the div is obviously non-negative.
1786 static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div,
1787 int (*add_ineq)(void *user, isl_int *), void *user)
1791 struct isl_mat *samples;
1794 r = isl_tab_add_div(tab, div, add_ineq, user);
1797 nonneg = tab->var[r].is_nonneg;
1798 tab->var[r].frozen = 1;
1800 samples = isl_mat_extend(tab->samples,
1801 tab->n_sample, 1 + tab->n_var);
1802 tab->samples = samples;
1805 for (i = tab->n_outside; i < samples->n_row; ++i) {
1806 isl_seq_inner_product(div->el + 1, samples->row[i],
1807 div->size - 1, &samples->row[i][samples->n_col - 1]);
1808 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1809 samples->row[i][samples->n_col - 1], div->el[0]);
1815 /* Add a div specified by "div" to both the main tableau and
1816 * the context tableau. In case of the main tableau, we only
1817 * need to add an extra div. In the context tableau, we also
1818 * need to express the meaning of the div.
1819 * Return the index of the div or -1 if anything went wrong.
1821 static int add_div(struct isl_tab *tab, struct isl_context *context,
1822 struct isl_vec *div)
1827 if ((nonneg = context->op->add_div(context, div)) < 0)
1830 if (!context->op->is_ok(context))
1833 if (isl_tab_extend_vars(tab, 1) < 0)
1835 r = isl_tab_allocate_var(tab);
1839 tab->var[r].is_nonneg = 1;
1840 tab->var[r].frozen = 1;
1843 return tab->n_div - 1;
1845 context->op->invalidate(context);
1849 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1852 unsigned total = isl_basic_map_total_dim(tab->bmap);
1854 for (i = 0; i < tab->bmap->n_div; ++i) {
1855 if (isl_int_ne(tab->bmap->div[i][0], denom))
1857 if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total))
1864 /* Return the index of a div that corresponds to "div".
1865 * We first check if we already have such a div and if not, we create one.
1867 static int get_div(struct isl_tab *tab, struct isl_context *context,
1868 struct isl_vec *div)
1871 struct isl_tab *context_tab = context->op->peek_tab(context);
1876 d = find_div(context_tab, div->el + 1, div->el[0]);
1880 return add_div(tab, context, div);
1883 /* Add a parametric cut to cut away the non-integral sample value
1885 * Let a_i be the coefficients of the constant term and the parameters
1886 * and let b_i be the coefficients of the variables or constraints
1887 * in basis of the tableau.
1888 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1890 * The cut is expressed as
1892 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1894 * If q did not already exist in the context tableau, then it is added first.
1895 * If q is in a column of the main tableau then the "+ q" can be accomplished
1896 * by setting the corresponding entry to the denominator of the constraint.
1897 * If q happens to be in a row of the main tableau, then the corresponding
1898 * row needs to be added instead (taking care of the denominators).
1899 * Note that this is very unlikely, but perhaps not entirely impossible.
1901 * The current value of the cut is known to be negative (or at least
1902 * non-positive), so row_sign is set accordingly.
1904 * Return the row of the cut or -1.
1906 static int add_parametric_cut(struct isl_tab *tab, int row,
1907 struct isl_context *context)
1909 struct isl_vec *div;
1916 unsigned off = 2 + tab->M;
1921 div = get_row_parameter_div(tab, row);
1926 d = context->op->get_div(context, tab, div);
1930 if (isl_tab_extend_cons(tab, 1) < 0)
1932 r = isl_tab_allocate_con(tab);
1936 r_row = tab->mat->row[tab->con[r].index];
1937 isl_int_set(r_row[0], tab->mat->row[row][0]);
1938 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1939 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1940 isl_int_neg(r_row[1], r_row[1]);
1942 isl_int_set_si(r_row[2], 0);
1943 for (i = 0; i < tab->n_param; ++i) {
1944 if (tab->var[i].is_row)
1946 col = tab->var[i].index;
1947 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1948 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1949 tab->mat->row[row][0]);
1950 isl_int_neg(r_row[off + col], r_row[off + col]);
1952 for (i = 0; i < tab->n_div; ++i) {
1953 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1955 col = tab->var[tab->n_var - tab->n_div + i].index;
1956 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1957 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1958 tab->mat->row[row][0]);
1959 isl_int_neg(r_row[off + col], r_row[off + col]);
1961 for (i = 0; i < tab->n_col; ++i) {
1962 if (tab->col_var[i] >= 0 &&
1963 (tab->col_var[i] < tab->n_param ||
1964 tab->col_var[i] >= tab->n_var - tab->n_div))
1966 isl_int_fdiv_r(r_row[off + i],
1967 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1969 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1971 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1973 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1974 isl_int_divexact(r_row[0], r_row[0], gcd);
1975 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1976 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1977 r_row[0], tab->mat->row[d_row] + 1,
1978 off - 1 + tab->n_col);
1979 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1982 col = tab->var[tab->n_var - tab->n_div + d].index;
1983 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1986 tab->con[r].is_nonneg = 1;
1987 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1990 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1994 row = tab->con[r].index;
1996 if (d >= n && context->op->detect_equalities(context, tab) < 0)
2002 /* Construct a tableau for bmap that can be used for computing
2003 * the lexicographic minimum (or maximum) of bmap.
2004 * If not NULL, then dom is the domain where the minimum
2005 * should be computed. In this case, we set up a parametric
2006 * tableau with row signs (initialized to "unknown").
2007 * If M is set, then the tableau will use a big parameter.
2008 * If max is set, then a maximum should be computed instead of a minimum.
2009 * This means that for each variable x, the tableau will contain the variable
2010 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2011 * of the variables in all constraints are negated prior to adding them
2014 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
2015 struct isl_basic_set *dom, unsigned M, int max)
2018 struct isl_tab *tab;
2020 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
2021 isl_basic_map_total_dim(bmap), M);
2025 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2027 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
2028 tab->n_div = dom->n_div;
2029 tab->row_sign = isl_calloc_array(bmap->ctx,
2030 enum isl_tab_row_sign, tab->mat->n_row);
2034 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2035 if (isl_tab_mark_empty(tab) < 0)
2040 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
2041 tab->var[i].is_nonneg = 1;
2042 tab->var[i].frozen = 1;
2044 for (i = 0; i < bmap->n_eq; ++i) {
2046 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2047 bmap->eq[i] + 1 + tab->n_param,
2048 tab->n_var - tab->n_param - tab->n_div);
2049 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
2051 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
2052 bmap->eq[i] + 1 + tab->n_param,
2053 tab->n_var - tab->n_param - tab->n_div);
2054 if (!tab || tab->empty)
2057 if (bmap->n_eq && restore_lexmin(tab) < 0)
2059 for (i = 0; i < bmap->n_ineq; ++i) {
2061 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2062 bmap->ineq[i] + 1 + tab->n_param,
2063 tab->n_var - tab->n_param - tab->n_div);
2064 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
2066 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
2067 bmap->ineq[i] + 1 + tab->n_param,
2068 tab->n_var - tab->n_param - tab->n_div);
2069 if (!tab || tab->empty)
2078 /* Given a main tableau where more than one row requires a split,
2079 * determine and return the "best" row to split on.
2081 * Given two rows in the main tableau, if the inequality corresponding
2082 * to the first row is redundant with respect to that of the second row
2083 * in the current tableau, then it is better to split on the second row,
2084 * since in the positive part, both row will be positive.
2085 * (In the negative part a pivot will have to be performed and just about
2086 * anything can happen to the sign of the other row.)
2088 * As a simple heuristic, we therefore select the row that makes the most
2089 * of the other rows redundant.
2091 * Perhaps it would also be useful to look at the number of constraints
2092 * that conflict with any given constraint.
2094 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2096 struct isl_tab_undo *snap;
2102 if (isl_tab_extend_cons(context_tab, 2) < 0)
2105 snap = isl_tab_snap(context_tab);
2107 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2108 struct isl_tab_undo *snap2;
2109 struct isl_vec *ineq = NULL;
2113 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2115 if (tab->row_sign[split] != isl_tab_row_any)
2118 ineq = get_row_parameter_ineq(tab, split);
2121 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2126 snap2 = isl_tab_snap(context_tab);
2128 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2129 struct isl_tab_var *var;
2133 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2135 if (tab->row_sign[row] != isl_tab_row_any)
2138 ineq = get_row_parameter_ineq(tab, row);
2141 ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0;
2145 var = &context_tab->con[context_tab->n_con - 1];
2146 if (!context_tab->empty &&
2147 !isl_tab_min_at_most_neg_one(context_tab, var))
2149 if (isl_tab_rollback(context_tab, snap2) < 0)
2152 if (best == -1 || r > best_r) {
2156 if (isl_tab_rollback(context_tab, snap) < 0)
2163 static struct isl_basic_set *context_lex_peek_basic_set(
2164 struct isl_context *context)
2166 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2169 return isl_tab_peek_bset(clex->tab);
2172 static struct isl_tab *context_lex_peek_tab(struct isl_context *context)
2174 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2178 static void context_lex_add_eq(struct isl_context *context, isl_int *eq,
2179 int check, int update)
2181 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2182 if (isl_tab_extend_cons(clex->tab, 2) < 0)
2184 if (add_lexmin_eq(clex->tab, eq) < 0)
2187 int v = tab_has_valid_sample(clex->tab, eq, 1);
2191 clex->tab = check_integer_feasible(clex->tab);
2194 clex->tab = check_samples(clex->tab, eq, 1);
2197 isl_tab_free(clex->tab);
2201 static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq,
2202 int check, int update)
2204 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2205 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2207 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2209 int v = tab_has_valid_sample(clex->tab, ineq, 0);
2213 clex->tab = check_integer_feasible(clex->tab);
2216 clex->tab = check_samples(clex->tab, ineq, 0);
2219 isl_tab_free(clex->tab);
2223 static int context_lex_add_ineq_wrap(void *user, isl_int *ineq)
2225 struct isl_context *context = (struct isl_context *)user;
2226 context_lex_add_ineq(context, ineq, 0, 0);
2227 return context->op->is_ok(context) ? 0 : -1;
2230 /* Check which signs can be obtained by "ineq" on all the currently
2231 * active sample values. See row_sign for more information.
2233 static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq,
2239 enum isl_tab_row_sign res = isl_tab_row_unknown;
2241 isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown);
2242 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var,
2243 return isl_tab_row_unknown);
2246 for (i = tab->n_outside; i < tab->n_sample; ++i) {
2247 isl_seq_inner_product(tab->samples->row[i], ineq,
2248 1 + tab->n_var, &tmp);
2249 sgn = isl_int_sgn(tmp);
2250 if (sgn > 0 || (sgn == 0 && strict)) {
2251 if (res == isl_tab_row_unknown)
2252 res = isl_tab_row_pos;
2253 if (res == isl_tab_row_neg)
2254 res = isl_tab_row_any;
2257 if (res == isl_tab_row_unknown)
2258 res = isl_tab_row_neg;
2259 if (res == isl_tab_row_pos)
2260 res = isl_tab_row_any;
2262 if (res == isl_tab_row_any)
2270 static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context,
2271 isl_int *ineq, int strict)
2273 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2274 return tab_ineq_sign(clex->tab, ineq, strict);
2277 /* Check whether "ineq" can be added to the tableau without rendering
2280 static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq)
2282 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2283 struct isl_tab_undo *snap;
2289 if (isl_tab_extend_cons(clex->tab, 1) < 0)
2292 snap = isl_tab_snap(clex->tab);
2293 if (isl_tab_push_basis(clex->tab) < 0)
2295 clex->tab = add_lexmin_ineq(clex->tab, ineq);
2296 clex->tab = check_integer_feasible(clex->tab);
2299 feasible = !clex->tab->empty;
2300 if (isl_tab_rollback(clex->tab, snap) < 0)
2306 static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab,
2307 struct isl_vec *div)
2309 return get_div(tab, context, div);
2312 /* Add a div specified by "div" to the context tableau and return
2313 * 1 if the div is obviously non-negative.
2314 * context_tab_add_div will always return 1, because all variables
2315 * in a isl_context_lex tableau are non-negative.
2316 * However, if we are using a big parameter in the context, then this only
2317 * reflects the non-negativity of the variable used to _encode_ the
2318 * div, i.e., div' = M + div, so we can't draw any conclusions.
2320 static int context_lex_add_div(struct isl_context *context, struct isl_vec *div)
2322 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2324 nonneg = context_tab_add_div(clex->tab, div,
2325 context_lex_add_ineq_wrap, context);
2333 static int context_lex_detect_equalities(struct isl_context *context,
2334 struct isl_tab *tab)
2339 static int context_lex_best_split(struct isl_context *context,
2340 struct isl_tab *tab)
2342 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2343 struct isl_tab_undo *snap;
2346 snap = isl_tab_snap(clex->tab);
2347 if (isl_tab_push_basis(clex->tab) < 0)
2349 r = best_split(tab, clex->tab);
2351 if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0)
2357 static int context_lex_is_empty(struct isl_context *context)
2359 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2362 return clex->tab->empty;
2365 static void *context_lex_save(struct isl_context *context)
2367 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2368 struct isl_tab_undo *snap;
2370 snap = isl_tab_snap(clex->tab);
2371 if (isl_tab_push_basis(clex->tab) < 0)
2373 if (isl_tab_save_samples(clex->tab) < 0)
2379 static void context_lex_restore(struct isl_context *context, void *save)
2381 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2382 if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) {
2383 isl_tab_free(clex->tab);
2388 static int context_lex_is_ok(struct isl_context *context)
2390 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2394 /* For each variable in the context tableau, check if the variable can
2395 * only attain non-negative values. If so, mark the parameter as non-negative
2396 * in the main tableau. This allows for a more direct identification of some
2397 * cases of violated constraints.
2399 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
2400 struct isl_tab *context_tab)
2403 struct isl_tab_undo *snap;
2404 struct isl_vec *ineq = NULL;
2405 struct isl_tab_var *var;
2408 if (context_tab->n_var == 0)
2411 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
2415 if (isl_tab_extend_cons(context_tab, 1) < 0)
2418 snap = isl_tab_snap(context_tab);
2421 isl_seq_clr(ineq->el, ineq->size);
2422 for (i = 0; i < context_tab->n_var; ++i) {
2423 isl_int_set_si(ineq->el[1 + i], 1);
2424 if (isl_tab_add_ineq(context_tab, ineq->el) < 0)
2426 var = &context_tab->con[context_tab->n_con - 1];
2427 if (!context_tab->empty &&
2428 !isl_tab_min_at_most_neg_one(context_tab, var)) {
2430 if (i >= tab->n_param)
2431 j = i - tab->n_param + tab->n_var - tab->n_div;
2432 tab->var[j].is_nonneg = 1;
2435 isl_int_set_si(ineq->el[1 + i], 0);
2436 if (isl_tab_rollback(context_tab, snap) < 0)
2440 if (context_tab->M && n == context_tab->n_var) {
2441 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
2453 static struct isl_tab *context_lex_detect_nonnegative_parameters(
2454 struct isl_context *context, struct isl_tab *tab)
2456 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2457 struct isl_tab_undo *snap;
2462 snap = isl_tab_snap(clex->tab);
2463 if (isl_tab_push_basis(clex->tab) < 0)
2466 tab = tab_detect_nonnegative_parameters(tab, clex->tab);
2468 if (isl_tab_rollback(clex->tab, snap) < 0)
2477 static void context_lex_invalidate(struct isl_context *context)
2479 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2480 isl_tab_free(clex->tab);
2484 static void context_lex_free(struct isl_context *context)
2486 struct isl_context_lex *clex = (struct isl_context_lex *)context;
2487 isl_tab_free(clex->tab);
2491 struct isl_context_op isl_context_lex_op = {
2492 context_lex_detect_nonnegative_parameters,
2493 context_lex_peek_basic_set,
2494 context_lex_peek_tab,
2496 context_lex_add_ineq,
2497 context_lex_ineq_sign,
2498 context_lex_test_ineq,
2499 context_lex_get_div,
2500 context_lex_add_div,
2501 context_lex_detect_equalities,
2502 context_lex_best_split,
2503 context_lex_is_empty,
2506 context_lex_restore,
2507 context_lex_invalidate,
2511 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
2513 struct isl_tab *tab;
2517 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
2520 if (isl_tab_track_bset(tab, bset) < 0)
2522 tab = isl_tab_init_samples(tab);
2525 isl_basic_set_free(bset);
2529 static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom)
2531 struct isl_context_lex *clex;
2536 clex = isl_alloc_type(dom->ctx, struct isl_context_lex);
2540 clex->context.op = &isl_context_lex_op;
2542 clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
2543 if (restore_lexmin(clex->tab) < 0)
2545 clex->tab = check_integer_feasible(clex->tab);
2549 return &clex->context;
2551 clex->context.op->free(&clex->context);
2555 struct isl_context_gbr {
2556 struct isl_context context;
2557 struct isl_tab *tab;
2558 struct isl_tab *shifted;
2559 struct isl_tab *cone;
2562 static struct isl_tab *context_gbr_detect_nonnegative_parameters(
2563 struct isl_context *context, struct isl_tab *tab)
2565 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2568 return tab_detect_nonnegative_parameters(tab, cgbr->tab);
2571 static struct isl_basic_set *context_gbr_peek_basic_set(
2572 struct isl_context *context)
2574 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2577 return isl_tab_peek_bset(cgbr->tab);
2580 static struct isl_tab *context_gbr_peek_tab(struct isl_context *context)
2582 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2586 /* Initialize the "shifted" tableau of the context, which
2587 * contains the constraints of the original tableau shifted
2588 * by the sum of all negative coefficients. This ensures
2589 * that any rational point in the shifted tableau can
2590 * be rounded up to yield an integer point in the original tableau.
2592 static void gbr_init_shifted(struct isl_context_gbr *cgbr)
2595 struct isl_vec *cst;
2596 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
2597 unsigned dim = isl_basic_set_total_dim(bset);
2599 cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq);
2603 for (i = 0; i < bset->n_ineq; ++i) {
2604 isl_int_set(cst->el[i], bset->ineq[i][0]);
2605 for (j = 0; j < dim; ++j) {
2606 if (!isl_int_is_neg(bset->ineq[i][1 + j]))
2608 isl_int_add(bset->ineq[i][0], bset->ineq[i][0],
2609 bset->ineq[i][1 + j]);
2613 cgbr->shifted = isl_tab_from_basic_set(bset, 0);
2615 for (i = 0; i < bset->n_ineq; ++i)
2616 isl_int_set(bset->ineq[i][0], cst->el[i]);
2621 /* Check if the shifted tableau is non-empty, and if so
2622 * use the sample point to construct an integer point
2623 * of the context tableau.
2625 static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr)
2627 struct isl_vec *sample;
2630 gbr_init_shifted(cgbr);
2633 if (cgbr->shifted->empty)
2634 return isl_vec_alloc(cgbr->tab->mat->ctx, 0);
2636 sample = isl_tab_get_sample_value(cgbr->shifted);
2637 sample = isl_vec_ceil(sample);
2642 static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset)
2649 for (i = 0; i < bset->n_eq; ++i)
2650 isl_int_set_si(bset->eq[i][0], 0);
2652 for (i = 0; i < bset->n_ineq; ++i)
2653 isl_int_set_si(bset->ineq[i][0], 0);
2658 static int use_shifted(struct isl_context_gbr *cgbr)
2660 return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0;
2663 static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr)
2665 struct isl_basic_set *bset;
2666 struct isl_basic_set *cone;
2668 if (isl_tab_sample_is_integer(cgbr->tab))
2669 return isl_tab_get_sample_value(cgbr->tab);
2671 if (use_shifted(cgbr)) {
2672 struct isl_vec *sample;
2674 sample = gbr_get_shifted_sample(cgbr);
2675 if (!sample || sample->size > 0)
2678 isl_vec_free(sample);
2682 bset = isl_tab_peek_bset(cgbr->tab);
2683 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
2686 if (isl_tab_track_bset(cgbr->cone,
2687 isl_basic_set_copy(bset)) < 0)
2690 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
2693 if (cgbr->cone->n_dead == cgbr->cone->n_col) {
2694 struct isl_vec *sample;
2695 struct isl_tab_undo *snap;
2697 if (cgbr->tab->basis) {
2698 if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) {
2699 isl_mat_free(cgbr->tab->basis);
2700 cgbr->tab->basis = NULL;
2702 cgbr->tab->n_zero = 0;
2703 cgbr->tab->n_unbounded = 0;
2706 snap = isl_tab_snap(cgbr->tab);
2708 sample = isl_tab_sample(cgbr->tab);
2710 if (isl_tab_rollback(cgbr->tab, snap) < 0) {
2711 isl_vec_free(sample);
2718 cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone));
2719 cone = drop_constant_terms(cone);
2720 cone = isl_basic_set_update_from_tab(cone, cgbr->cone);
2721 cone = isl_basic_set_underlying_set(cone);
2722 cone = isl_basic_set_gauss(cone, NULL);
2724 bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab));
2725 bset = isl_basic_set_update_from_tab(bset, cgbr->tab);
2726 bset = isl_basic_set_underlying_set(bset);
2727 bset = isl_basic_set_gauss(bset, NULL);
2729 return isl_basic_set_sample_with_cone(bset, cone);
2732 static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr)
2734 struct isl_vec *sample;
2739 if (cgbr->tab->empty)
2742 sample = gbr_get_sample(cgbr);
2746 if (sample->size == 0) {
2747 isl_vec_free(sample);
2748 if (isl_tab_mark_empty(cgbr->tab) < 0)
2753 cgbr->tab = isl_tab_add_sample(cgbr->tab, sample);
2757 isl_tab_free(cgbr->tab);
2761 static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq)
2766 if (isl_tab_extend_cons(tab, 2) < 0)
2769 if (isl_tab_add_eq(tab, eq) < 0)
2778 static void context_gbr_add_eq(struct isl_context *context, isl_int *eq,
2779 int check, int update)
2781 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2783 cgbr->tab = add_gbr_eq(cgbr->tab, eq);
2785 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2786 if (isl_tab_extend_cons(cgbr->cone, 2) < 0)
2788 if (isl_tab_add_eq(cgbr->cone, eq) < 0)
2793 int v = tab_has_valid_sample(cgbr->tab, eq, 1);
2797 check_gbr_integer_feasible(cgbr);
2800 cgbr->tab = check_samples(cgbr->tab, eq, 1);
2803 isl_tab_free(cgbr->tab);
2807 static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq)
2812 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2815 if (isl_tab_add_ineq(cgbr->tab, ineq) < 0)
2818 if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) {
2821 dim = isl_basic_map_total_dim(cgbr->tab->bmap);
2823 if (isl_tab_extend_cons(cgbr->shifted, 1) < 0)
2826 for (i = 0; i < dim; ++i) {
2827 if (!isl_int_is_neg(ineq[1 + i]))
2829 isl_int_add(ineq[0], ineq[0], ineq[1 + i]);
2832 if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0)
2835 for (i = 0; i < dim; ++i) {
2836 if (!isl_int_is_neg(ineq[1 + i]))
2838 isl_int_sub(ineq[0], ineq[0], ineq[1 + i]);
2842 if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) {
2843 if (isl_tab_extend_cons(cgbr->cone, 1) < 0)
2845 if (isl_tab_add_ineq(cgbr->cone, ineq) < 0)
2851 isl_tab_free(cgbr->tab);
2855 static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq,
2856 int check, int update)
2858 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2860 add_gbr_ineq(cgbr, ineq);
2865 int v = tab_has_valid_sample(cgbr->tab, ineq, 0);
2869 check_gbr_integer_feasible(cgbr);
2872 cgbr->tab = check_samples(cgbr->tab, ineq, 0);
2875 isl_tab_free(cgbr->tab);
2879 static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq)
2881 struct isl_context *context = (struct isl_context *)user;
2882 context_gbr_add_ineq(context, ineq, 0, 0);
2883 return context->op->is_ok(context) ? 0 : -1;
2886 static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context,
2887 isl_int *ineq, int strict)
2889 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2890 return tab_ineq_sign(cgbr->tab, ineq, strict);
2893 /* Check whether "ineq" can be added to the tableau without rendering
2896 static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq)
2898 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
2899 struct isl_tab_undo *snap;
2900 struct isl_tab_undo *shifted_snap = NULL;
2901 struct isl_tab_undo *cone_snap = NULL;
2907 if (isl_tab_extend_cons(cgbr->tab, 1) < 0)
2910 snap = isl_tab_snap(cgbr->tab);
2912 shifted_snap = isl_tab_snap(cgbr->shifted);
2914 cone_snap = isl_tab_snap(cgbr->cone);
2915 add_gbr_ineq(cgbr, ineq);
2916 check_gbr_integer_feasible(cgbr);
2919 feasible = !cgbr->tab->empty;
2920 if (isl_tab_rollback(cgbr->tab, snap) < 0)
2923 if (isl_tab_rollback(cgbr->shifted, shifted_snap))
2925 } else if (cgbr->shifted) {
2926 isl_tab_free(cgbr->shifted);
2927 cgbr->shifted = NULL;
2930 if (isl_tab_rollback(cgbr->cone, cone_snap))
2932 } else if (cgbr->cone) {
2933 isl_tab_free(cgbr->cone);
2940 /* Return the column of the last of the variables associated to
2941 * a column that has a non-zero coefficient.
2942 * This function is called in a context where only coefficients
2943 * of parameters or divs can be non-zero.
2945 static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p)
2950 if (tab->n_var == 0)
2953 for (i = tab->n_var - 1; i >= 0; --i) {
2954 if (i >= tab->n_param && i < tab->n_var - tab->n_div)
2956 if (tab->var[i].is_row)
2958 col = tab->var[i].index;
2959 if (!isl_int_is_zero(p[col]))
2966 /* Look through all the recently added equalities in the context
2967 * to see if we can propagate any of them to the main tableau.
2969 * The newly added equalities in the context are encoded as pairs
2970 * of inequalities starting at inequality "first".
2972 * We tentatively add each of these equalities to the main tableau
2973 * and if this happens to result in a row with a final coefficient
2974 * that is one or negative one, we use it to kill a column
2975 * in the main tableau. Otherwise, we discard the tentatively
2978 static void propagate_equalities(struct isl_context_gbr *cgbr,
2979 struct isl_tab *tab, unsigned first)
2982 struct isl_vec *eq = NULL;
2984 eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2988 if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0)
2991 isl_seq_clr(eq->el + 1 + tab->n_param,
2992 tab->n_var - tab->n_param - tab->n_div);
2993 for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) {
2996 struct isl_tab_undo *snap;
2997 snap = isl_tab_snap(tab);
2999 isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param);
3000 isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div,
3001 cgbr->tab->bmap->ineq[i] + 1 + tab->n_param,
3004 r = isl_tab_add_row(tab, eq->el);
3007 r = tab->con[r].index;
3008 j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M);
3009 if (j < 0 || j < tab->n_dead ||
3010 !isl_int_is_one(tab->mat->row[r][0]) ||
3011 (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) &&
3012 !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) {
3013 if (isl_tab_rollback(tab, snap) < 0)
3017 if (isl_tab_pivot(tab, r, j) < 0)
3019 if (isl_tab_kill_col(tab, j) < 0)
3022 if (restore_lexmin(tab) < 0)
3031 isl_tab_free(cgbr->tab);
3035 static int context_gbr_detect_equalities(struct isl_context *context,
3036 struct isl_tab *tab)
3038 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3039 struct isl_ctx *ctx;
3042 ctx = cgbr->tab->mat->ctx;
3045 struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab);
3046 cgbr->cone = isl_tab_from_recession_cone(bset, 0);
3049 if (isl_tab_track_bset(cgbr->cone,
3050 isl_basic_set_copy(bset)) < 0)
3053 if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0)
3056 n_ineq = cgbr->tab->bmap->n_ineq;
3057 cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone);
3058 if (cgbr->tab && cgbr->tab->bmap->n_ineq > n_ineq)
3059 propagate_equalities(cgbr, tab, n_ineq);
3063 isl_tab_free(cgbr->tab);
3068 static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab,
3069 struct isl_vec *div)
3071 return get_div(tab, context, div);
3074 static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div)
3076 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3080 if (isl_tab_extend_cons(cgbr->cone, 3) < 0)
3082 if (isl_tab_extend_vars(cgbr->cone, 1) < 0)
3084 if (isl_tab_allocate_var(cgbr->cone) <0)
3087 cgbr->cone->bmap = isl_basic_map_extend_space(cgbr->cone->bmap,
3088 isl_basic_map_get_space(cgbr->cone->bmap), 1, 0, 2);
3089 k = isl_basic_map_alloc_div(cgbr->cone->bmap);
3092 isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size);
3093 if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0)
3096 return context_tab_add_div(cgbr->tab, div,
3097 context_gbr_add_ineq_wrap, context);
3100 static int context_gbr_best_split(struct isl_context *context,
3101 struct isl_tab *tab)
3103 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3104 struct isl_tab_undo *snap;
3107 snap = isl_tab_snap(cgbr->tab);
3108 r = best_split(tab, cgbr->tab);
3110 if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0)
3116 static int context_gbr_is_empty(struct isl_context *context)
3118 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3121 return cgbr->tab->empty;
3124 struct isl_gbr_tab_undo {
3125 struct isl_tab_undo *tab_snap;
3126 struct isl_tab_undo *shifted_snap;
3127 struct isl_tab_undo *cone_snap;
3130 static void *context_gbr_save(struct isl_context *context)
3132 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3133 struct isl_gbr_tab_undo *snap;
3135 snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo);
3139 snap->tab_snap = isl_tab_snap(cgbr->tab);
3140 if (isl_tab_save_samples(cgbr->tab) < 0)
3144 snap->shifted_snap = isl_tab_snap(cgbr->shifted);
3146 snap->shifted_snap = NULL;
3149 snap->cone_snap = isl_tab_snap(cgbr->cone);
3151 snap->cone_snap = NULL;
3159 static void context_gbr_restore(struct isl_context *context, void *save)
3161 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3162 struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save;
3165 if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) {
3166 isl_tab_free(cgbr->tab);
3170 if (snap->shifted_snap) {
3171 if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0)
3173 } else if (cgbr->shifted) {
3174 isl_tab_free(cgbr->shifted);
3175 cgbr->shifted = NULL;
3178 if (snap->cone_snap) {
3179 if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0)
3181 } else if (cgbr->cone) {
3182 isl_tab_free(cgbr->cone);
3191 isl_tab_free(cgbr->tab);
3195 static int context_gbr_is_ok(struct isl_context *context)
3197 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3201 static void context_gbr_invalidate(struct isl_context *context)
3203 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3204 isl_tab_free(cgbr->tab);
3208 static void context_gbr_free(struct isl_context *context)
3210 struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context;
3211 isl_tab_free(cgbr->tab);
3212 isl_tab_free(cgbr->shifted);
3213 isl_tab_free(cgbr->cone);
3217 struct isl_context_op isl_context_gbr_op = {
3218 context_gbr_detect_nonnegative_parameters,
3219 context_gbr_peek_basic_set,
3220 context_gbr_peek_tab,
3222 context_gbr_add_ineq,
3223 context_gbr_ineq_sign,
3224 context_gbr_test_ineq,
3225 context_gbr_get_div,
3226 context_gbr_add_div,
3227 context_gbr_detect_equalities,
3228 context_gbr_best_split,
3229 context_gbr_is_empty,
3232 context_gbr_restore,
3233 context_gbr_invalidate,
3237 static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom)
3239 struct isl_context_gbr *cgbr;
3244 cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr);
3248 cgbr->context.op = &isl_context_gbr_op;
3250 cgbr->shifted = NULL;
3252 cgbr->tab = isl_tab_from_basic_set(dom, 1);
3253 cgbr->tab = isl_tab_init_samples(cgbr->tab);
3256 check_gbr_integer_feasible(cgbr);
3258 return &cgbr->context;
3260 cgbr->context.op->free(&cgbr->context);
3264 static struct isl_context *isl_context_alloc(struct isl_basic_set *dom)
3269 if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN)
3270 return isl_context_lex_alloc(dom);
3272 return isl_context_gbr_alloc(dom);
3275 /* Construct an isl_sol_map structure for accumulating the solution.
3276 * If track_empty is set, then we also keep track of the parts
3277 * of the context where there is no solution.
3278 * If max is set, then we are solving a maximization, rather than
3279 * a minimization problem, which means that the variables in the
3280 * tableau have value "M - x" rather than "M + x".
3282 static struct isl_sol *sol_map_init(struct isl_basic_map *bmap,
3283 struct isl_basic_set *dom, int track_empty, int max)
3285 struct isl_sol_map *sol_map = NULL;
3290 sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map);
3294 sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
3295 sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap;
3296 sol_map->sol.dec_level.sol = &sol_map->sol;
3297 sol_map->sol.max = max;
3298 sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
3299 sol_map->sol.add = &sol_map_add_wrap;
3300 sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL;
3301 sol_map->sol.free = &sol_map_free_wrap;
3302 sol_map->map = isl_map_alloc_space(isl_basic_map_get_space(bmap), 1,
3307 sol_map->sol.context = isl_context_alloc(dom);
3308 if (!sol_map->sol.context)
3312 sol_map->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
3313 1, ISL_SET_DISJOINT);
3314 if (!sol_map->empty)
3318 isl_basic_set_free(dom);
3319 return &sol_map->sol;
3321 isl_basic_set_free(dom);
3322 sol_map_free(sol_map);
3326 /* Check whether all coefficients of (non-parameter) variables
3327 * are non-positive, meaning that no pivots can be performed on the row.
3329 static int is_critical(struct isl_tab *tab, int row)
3332 unsigned off = 2 + tab->M;
3334 for (j = tab->n_dead; j < tab->n_col; ++j) {
3335 if (tab->col_var[j] >= 0 &&
3336 (tab->col_var[j] < tab->n_param ||
3337 tab->col_var[j] >= tab->n_var - tab->n_div))
3340 if (isl_int_is_pos(tab->mat->row[row][off + j]))
3347 /* Check whether the inequality represented by vec is strict over the integers,
3348 * i.e., there are no integer values satisfying the constraint with
3349 * equality. This happens if the gcd of the coefficients is not a divisor
3350 * of the constant term. If so, scale the constraint down by the gcd
3351 * of the coefficients.
3353 static int is_strict(struct isl_vec *vec)
3359 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
3360 if (!isl_int_is_one(gcd)) {
3361 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
3362 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
3363 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
3370 /* Determine the sign of the given row of the main tableau.
3371 * The result is one of
3372 * isl_tab_row_pos: always non-negative; no pivot needed
3373 * isl_tab_row_neg: always non-positive; pivot
3374 * isl_tab_row_any: can be both positive and negative; split
3376 * We first handle some simple cases
3377 * - the row sign may be known already
3378 * - the row may be obviously non-negative
3379 * - the parametric constant may be equal to that of another row
3380 * for which we know the sign. This sign will be either "pos" or
3381 * "any". If it had been "neg" then we would have pivoted before.
3383 * If none of these cases hold, we check the value of the row for each
3384 * of the currently active samples. Based on the signs of these values
3385 * we make an initial determination of the sign of the row.
3387 * all zero -> unk(nown)
3388 * all non-negative -> pos
3389 * all non-positive -> neg
3390 * both negative and positive -> all
3392 * If we end up with "all", we are done.
3393 * Otherwise, we perform a check for positive and/or negative
3394 * values as follows.
3396 * samples neg unk pos
3402 * There is no special sign for "zero", because we can usually treat zero
3403 * as either non-negative or non-positive, whatever works out best.
3404 * However, if the row is "critical", meaning that pivoting is impossible
3405 * then we don't want to limp zero with the non-positive case, because
3406 * then we we would lose the solution for those values of the parameters
3407 * where the value of the row is zero. Instead, we treat 0 as non-negative
3408 * ensuring a split if the row can attain both zero and negative values.
3409 * The same happens when the original constraint was one that could not
3410 * be satisfied with equality by any integer values of the parameters.
3411 * In this case, we normalize the constraint, but then a value of zero
3412 * for the normalized constraint is actually a positive value for the
3413 * original constraint, so again we need to treat zero as non-negative.
3414 * In both these cases, we have the following decision tree instead:
3416 * all non-negative -> pos
3417 * all negative -> neg
3418 * both negative and non-negative -> all
3426 static enum isl_tab_row_sign row_sign(struct isl_tab *tab,
3427 struct isl_sol *sol, int row)
3429 struct isl_vec *ineq = NULL;
3430 enum isl_tab_row_sign res = isl_tab_row_unknown;
3435 if (tab->row_sign[row] != isl_tab_row_unknown)
3436 return tab->row_sign[row];
3437 if (is_obviously_nonneg(tab, row))
3438 return isl_tab_row_pos;
3439 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
3440 if (tab->row_sign[row2] == isl_tab_row_unknown)
3442 if (identical_parameter_line(tab, row, row2))
3443 return tab->row_sign[row2];
3446 critical = is_critical(tab, row);
3448 ineq = get_row_parameter_ineq(tab, row);
3452 strict = is_strict(ineq);
3454 res = sol->context->op->ineq_sign(sol->context, ineq->el,
3455 critical || strict);
3457 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
3458 /* test for negative values */
3460 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3461 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3463 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3467 res = isl_tab_row_pos;
3469 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
3471 if (res == isl_tab_row_neg) {
3472 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3473 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3477 if (res == isl_tab_row_neg) {
3478 /* test for positive values */
3480 if (!critical && !strict)
3481 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3483 feasible = sol->context->op->test_ineq(sol->context, ineq->el);
3487 res = isl_tab_row_any;
3494 return isl_tab_row_unknown;
3497 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab);
3499 /* Find solutions for values of the parameters that satisfy the given
3502 * We currently take a snapshot of the context tableau that is reset
3503 * when we return from this function, while we make a copy of the main
3504 * tableau, leaving the original main tableau untouched.
3505 * These are fairly arbitrary choices. Making a copy also of the context
3506 * tableau would obviate the need to undo any changes made to it later,
3507 * while taking a snapshot of the main tableau could reduce memory usage.
3508 * If we were to switch to taking a snapshot of the main tableau,
3509 * we would have to keep in mind that we need to save the row signs
3510 * and that we need to do this before saving the current basis
3511 * such that the basis has been restore before we restore the row signs.
3513 static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq)
3519 saved = sol->context->op->save(sol->context);
3521 tab = isl_tab_dup(tab);
3525 sol->context->op->add_ineq(sol->context, ineq, 0, 1);
3527 find_solutions(sol, tab);
3530 sol->context->op->restore(sol->context, saved);
3536 /* Record the absence of solutions for those values of the parameters
3537 * that do not satisfy the given inequality with equality.
3539 static void no_sol_in_strict(struct isl_sol *sol,
3540 struct isl_tab *tab, struct isl_vec *ineq)
3545 if (!sol->context || sol->error)
3547 saved = sol->context->op->save(sol->context);
3549 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3551 sol->context->op->add_ineq(sol->context, ineq->el, 1, 0);
3560 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
3562 sol->context->op->restore(sol->context, saved);
3568 /* Compute the lexicographic minimum of the set represented by the main
3569 * tableau "tab" within the context "sol->context_tab".
3570 * On entry the sample value of the main tableau is lexicographically
3571 * less than or equal to this lexicographic minimum.
3572 * Pivots are performed until a feasible point is found, which is then
3573 * necessarily equal to the minimum, or until the tableau is found to
3574 * be infeasible. Some pivots may need to be performed for only some
3575 * feasible values of the context tableau. If so, the context tableau
3576 * is split into a part where the pivot is needed and a part where it is not.
3578 * Whenever we enter the main loop, the main tableau is such that no
3579 * "obvious" pivots need to be performed on it, where "obvious" means
3580 * that the given row can be seen to be negative without looking at
3581 * the context tableau. In particular, for non-parametric problems,
3582 * no pivots need to be performed on the main tableau.
3583 * The caller of find_solutions is responsible for making this property
3584 * hold prior to the first iteration of the loop, while restore_lexmin
3585 * is called before every other iteration.
3587 * Inside the main loop, we first examine the signs of the rows of
3588 * the main tableau within the context of the context tableau.
3589 * If we find a row that is always non-positive for all values of
3590 * the parameters satisfying the context tableau and negative for at
3591 * least one value of the parameters, we perform the appropriate pivot
3592 * and start over. An exception is the case where no pivot can be
3593 * performed on the row. In this case, we require that the sign of
3594 * the row is negative for all values of the parameters (rather than just
3595 * non-positive). This special case is handled inside row_sign, which
3596 * will say that the row can have any sign if it determines that it can
3597 * attain both negative and zero values.
3599 * If we can't find a row that always requires a pivot, but we can find
3600 * one or more rows that require a pivot for some values of the parameters
3601 * (i.e., the row can attain both positive and negative signs), then we split
3602 * the context tableau into two parts, one where we force the sign to be
3603 * non-negative and one where we force is to be negative.
3604 * The non-negative part is handled by a recursive call (through find_in_pos).
3605 * Upon returning from this call, we continue with the negative part and
3606 * perform the required pivot.
3608 * If no such rows can be found, all rows are non-negative and we have
3609 * found a (rational) feasible point. If we only wanted a rational point
3611 * Otherwise, we check if all values of the sample point of the tableau
3612 * are integral for the variables. If so, we have found the minimal
3613 * integral point and we are done.
3614 * If the sample point is not integral, then we need to make a distinction
3615 * based on whether the constant term is non-integral or the coefficients
3616 * of the parameters. Furthermore, in order to decide how to handle
3617 * the non-integrality, we also need to know whether the coefficients
3618 * of the other columns in the tableau are integral. This leads
3619 * to the following table. The first two rows do not correspond
3620 * to a non-integral sample point and are only mentioned for completeness.
3622 * constant parameters other
3625 * int int rat | -> no problem
3627 * rat int int -> fail
3629 * rat int rat -> cut
3632 * rat rat rat | -> parametric cut
3635 * rat rat int | -> split context
3637 * If the parametric constant is completely integral, then there is nothing
3638 * to be done. If the constant term is non-integral, but all the other
3639 * coefficient are integral, then there is nothing that can be done
3640 * and the tableau has no integral solution.
3641 * If, on the other hand, one or more of the other columns have rational
3642 * coefficients, but the parameter coefficients are all integral, then
3643 * we can perform a regular (non-parametric) cut.
3644 * Finally, if there is any parameter coefficient that is non-integral,
3645 * then we need to involve the context tableau. There are two cases here.
3646 * If at least one other column has a rational coefficient, then we
3647 * can perform a parametric cut in the main tableau by adding a new
3648 * integer division in the context tableau.
3649 * If all other columns have integral coefficients, then we need to
3650 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3651 * is always integral. We do this by introducing an integer division
3652 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3653 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3654 * Since q is expressed in the tableau as
3655 * c + \sum a_i y_i - m q >= 0
3656 * -c - \sum a_i y_i + m q + m - 1 >= 0
3657 * it is sufficient to add the inequality
3658 * -c - \sum a_i y_i + m q >= 0
3659 * In the part of the context where this inequality does not hold, the
3660 * main tableau is marked as being empty.
3662 static void find_solutions(struct isl_sol *sol, struct isl_tab *tab)
3664 struct isl_context *context;
3667 if (!tab || sol->error)
3670 context = sol->context;
3674 if (context->op->is_empty(context))
3677 for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) {
3680 enum isl_tab_row_sign sgn;
3684 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3685 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3687 sgn = row_sign(tab, sol, row);
3690 tab->row_sign[row] = sgn;
3691 if (sgn == isl_tab_row_any)
3693 if (sgn == isl_tab_row_any && split == -1)
3695 if (sgn == isl_tab_row_neg)
3698 if (row < tab->n_row)
3701 struct isl_vec *ineq;
3703 split = context->op->best_split(context, tab);
3706 ineq = get_row_parameter_ineq(tab, split);
3710 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3711 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
3713 if (tab->row_sign[row] == isl_tab_row_any)
3714 tab->row_sign[row] = isl_tab_row_unknown;
3716 tab->row_sign[split] = isl_tab_row_pos;
3718 find_in_pos(sol, tab, ineq->el);
3719 tab->row_sign[split] = isl_tab_row_neg;
3721 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3722 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
3724 context->op->add_ineq(context, ineq->el, 0, 1);
3732 row = first_non_integer_row(tab, &flags);
3735 if (ISL_FL_ISSET(flags, I_PAR)) {
3736 if (ISL_FL_ISSET(flags, I_VAR)) {
3737 if (isl_tab_mark_empty(tab) < 0)
3741 row = add_cut(tab, row);
3742 } else if (ISL_FL_ISSET(flags, I_VAR)) {
3743 struct isl_vec *div;
3744 struct isl_vec *ineq;
3746 div = get_row_split_div(tab, row);
3749 d = context->op->get_div(context, tab, div);
3753 ineq = ineq_for_div(context->op->peek_basic_set(context), d);
3757 no_sol_in_strict(sol, tab, ineq);
3758 isl_seq_neg(ineq->el, ineq->el, ineq->size);
3759 context->op->add_ineq(context, ineq->el, 1, 1);
3761 if (sol->error || !context->op->is_ok(context))
3763 tab = set_row_cst_to_div(tab, row, d);
3764 if (context->op->is_empty(context))
3767 row = add_parametric_cut(tab, row, context);
3782 /* Compute the lexicographic minimum of the set represented by the main
3783 * tableau "tab" within the context "sol->context_tab".
3785 * As a preprocessing step, we first transfer all the purely parametric
3786 * equalities from the main tableau to the context tableau, i.e.,
3787 * parameters that have been pivoted to a row.
3788 * These equalities are ignored by the main algorithm, because the
3789 * corresponding rows may not be marked as being non-negative.
3790 * In parts of the context where the added equality does not hold,
3791 * the main tableau is marked as being empty.
3793 static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab)
3802 for (row = tab->n_redundant; row < tab->n_row; ++row) {
3806 if (tab->row_var[row] < 0)
3808 if (tab->row_var[row] >= tab->n_param &&
3809 tab->row_var[row] < tab->n_var - tab->n_div)
3811 if (tab->row_var[row] < tab->n_param)
3812 p = tab->row_var[row];
3814 p = tab->row_var[row]
3815 + tab->n_param - (tab->n_var - tab->n_div);
3817 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
3820 get_row_parameter_line(tab, row, eq->el);
3821 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
3822 eq = isl_vec_normalize(eq);
3825 no_sol_in_strict(sol, tab, eq);
3827 isl_seq_neg(eq->el, eq->el, eq->size);
3829 no_sol_in_strict(sol, tab, eq);
3830 isl_seq_neg(eq->el, eq->el, eq->size);
3832 sol->context->op->add_eq(sol->context, eq->el, 1, 1);
3836 if (isl_tab_mark_redundant(tab, row) < 0)
3839 if (sol->context->op->is_empty(sol->context))
3842 row = tab->n_redundant - 1;
3845 find_solutions(sol, tab);
3856 /* Check if integer division "div" of "dom" also occurs in "bmap".
3857 * If so, return its position within the divs.
3858 * If not, return -1.
3860 static int find_context_div(struct isl_basic_map *bmap,
3861 struct isl_basic_set *dom, unsigned div)
3864 unsigned b_dim = isl_space_dim(bmap->dim, isl_dim_all);
3865 unsigned d_dim = isl_space_dim(dom->dim, isl_dim_all);
3867 if (isl_int_is_zero(dom->div[div][0]))
3869 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
3872 for (i = 0; i < bmap->n_div; ++i) {
3873 if (isl_int_is_zero(bmap->div[i][0]))
3875 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
3876 (b_dim - d_dim) + bmap->n_div) != -1)
3878 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
3884 /* The correspondence between the variables in the main tableau,
3885 * the context tableau, and the input map and domain is as follows.
3886 * The first n_param and the last n_div variables of the main tableau
3887 * form the variables of the context tableau.
3888 * In the basic map, these n_param variables correspond to the
3889 * parameters and the input dimensions. In the domain, they correspond
3890 * to the parameters and the set dimensions.
3891 * The n_div variables correspond to the integer divisions in the domain.
3892 * To ensure that everything lines up, we may need to copy some of the
3893 * integer divisions of the domain to the map. These have to be placed
3894 * in the same order as those in the context and they have to be placed
3895 * after any other integer divisions that the map may have.
3896 * This function performs the required reordering.
3898 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
3899 struct isl_basic_set *dom)
3905 for (i = 0; i < dom->n_div; ++i)
3906 if (find_context_div(bmap, dom, i) != -1)
3908 other = bmap->n_div - common;
3909 if (dom->n_div - common > 0) {
3910 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
3911 dom->n_div - common, 0, 0);
3915 for (i = 0; i < dom->n_div; ++i) {
3916 int pos = find_context_div(bmap, dom, i);
3918 pos = isl_basic_map_alloc_div(bmap);
3921 isl_int_set_si(bmap->div[pos][0], 0);
3923 if (pos != other + i)
3924 isl_basic_map_swap_div(bmap, pos, other + i);
3928 isl_basic_map_free(bmap);
3932 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3933 * some obvious symmetries.
3935 * We make sure the divs in the domain are properly ordered,
3936 * because they will be added one by one in the given order
3937 * during the construction of the solution map.
3939 static struct isl_sol *basic_map_partial_lexopt_base(
3940 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3941 __isl_give isl_set **empty, int max,
3942 struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap,
3943 __isl_take isl_basic_set *dom, int track_empty, int max))
3945 struct isl_tab *tab;
3946 struct isl_sol *sol = NULL;
3947 struct isl_context *context;
3950 dom = isl_basic_set_order_divs(dom);
3951 bmap = align_context_divs(bmap, dom);
3953 sol = init(bmap, dom, !!empty, max);
3957 context = sol->context;
3958 if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context)))
3960 else if (isl_basic_map_plain_is_empty(bmap)) {
3963 isl_basic_set_copy(context->op->peek_basic_set(context)));
3965 tab = tab_for_lexmin(bmap,
3966 context->op->peek_basic_set(context), 1, max);
3967 tab = context->op->detect_nonnegative_parameters(context, tab);
3968 find_solutions_main(sol, tab);
3973 isl_basic_map_free(bmap);
3977 isl_basic_map_free(bmap);
3981 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
3982 * some obvious symmetries.
3984 * We call basic_map_partial_lexopt_base and extract the results.
3986 static __isl_give isl_map *basic_map_partial_lexopt_base_map(
3987 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
3988 __isl_give isl_set **empty, int max)
3990 isl_map *result = NULL;
3991 struct isl_sol *sol;
3992 struct isl_sol_map *sol_map;
3994 sol = basic_map_partial_lexopt_base(bmap, dom, empty, max,
3998 sol_map = (struct isl_sol_map *) sol;
4000 result = isl_map_copy(sol_map->map);
4002 *empty = isl_set_copy(sol_map->empty);
4003 sol_free(&sol_map->sol);
4007 /* Structure used during detection of parallel constraints.
4008 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4009 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4010 * val: the coefficients of the output variables
4012 struct isl_constraint_equal_info {
4013 isl_basic_map *bmap;
4019 /* Check whether the coefficients of the output variables
4020 * of the constraint in "entry" are equal to info->val.
4022 static int constraint_equal(const void *entry, const void *val)
4024 isl_int **row = (isl_int **)entry;
4025 const struct isl_constraint_equal_info *info = val;
4027 return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out);
4030 /* Check whether "bmap" has a pair of constraints that have
4031 * the same coefficients for the output variables.
4032 * Note that the coefficients of the existentially quantified
4033 * variables need to be zero since the existentially quantified
4034 * of the result are usually not the same as those of the input.
4035 * the isl_dim_out and isl_dim_div dimensions.
4036 * If so, return 1 and return the row indices of the two constraints
4037 * in *first and *second.
4039 static int parallel_constraints(__isl_keep isl_basic_map *bmap,
4040 int *first, int *second)
4043 isl_ctx *ctx = isl_basic_map_get_ctx(bmap);
4044 struct isl_hash_table *table = NULL;
4045 struct isl_hash_table_entry *entry;
4046 struct isl_constraint_equal_info info;
4050 ctx = isl_basic_map_get_ctx(bmap);
4051 table = isl_hash_table_alloc(ctx, bmap->n_ineq);
4055 info.n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4056 isl_basic_map_dim(bmap, isl_dim_in);
4058 n_out = isl_basic_map_dim(bmap, isl_dim_out);
4059 n_div = isl_basic_map_dim(bmap, isl_dim_div);
4060 info.n_out = n_out + n_div;
4061 for (i = 0; i < bmap->n_ineq; ++i) {
4064 info.val = bmap->ineq[i] + 1 + info.n_in;
4065 if (isl_seq_first_non_zero(info.val, n_out) < 0)
4067 if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0)
4069 hash = isl_seq_get_hash(info.val, info.n_out);
4070 entry = isl_hash_table_find(ctx, table, hash,
4071 constraint_equal, &info, 1);
4076 entry->data = &bmap->ineq[i];
4079 if (i < bmap->n_ineq) {
4080 *first = ((isl_int **)entry->data) - bmap->ineq;
4084 isl_hash_table_free(ctx, table);
4086 return i < bmap->n_ineq;
4088 isl_hash_table_free(ctx, table);
4092 /* Given a set of upper bounds in "var", add constraints to "bset"
4093 * that make the i-th bound smallest.
4095 * In particular, if there are n bounds b_i, then add the constraints
4097 * b_i <= b_j for j > i
4098 * b_i < b_j for j < i
4100 static __isl_give isl_basic_set *select_minimum(__isl_take isl_basic_set *bset,
4101 __isl_keep isl_mat *var, int i)
4106 ctx = isl_mat_get_ctx(var);
4108 for (j = 0; j < var->n_row; ++j) {
4111 k = isl_basic_set_alloc_inequality(bset);
4114 isl_seq_combine(bset->ineq[k], ctx->one, var->row[j],
4115 ctx->negone, var->row[i], var->n_col);
4116 isl_int_set_si(bset->ineq[k][var->n_col], 0);
4118 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4121 bset = isl_basic_set_finalize(bset);
4125 isl_basic_set_free(bset);
4129 /* Given a set of upper bounds on the last "input" variable m,
4130 * construct a set that assigns the minimal upper bound to m, i.e.,
4131 * construct a set that divides the space into cells where one
4132 * of the upper bounds is smaller than all the others and assign
4133 * this upper bound to m.
4135 * In particular, if there are n bounds b_i, then the result
4136 * consists of n basic sets, each one of the form
4139 * b_i <= b_j for j > i
4140 * b_i < b_j for j < i
4142 static __isl_give isl_set *set_minimum(__isl_take isl_space *dim,
4143 __isl_take isl_mat *var)
4146 isl_basic_set *bset = NULL;
4148 isl_set *set = NULL;
4153 ctx = isl_space_get_ctx(dim);
4154 set = isl_set_alloc_space(isl_space_copy(dim),
4155 var->n_row, ISL_SET_DISJOINT);
4157 for (i = 0; i < var->n_row; ++i) {
4158 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0,
4160 k = isl_basic_set_alloc_equality(bset);
4163 isl_seq_cpy(bset->eq[k], var->row[i], var->n_col);
4164 isl_int_set_si(bset->eq[k][var->n_col], -1);
4165 bset = select_minimum(bset, var, i);
4166 set = isl_set_add_basic_set(set, bset);
4169 isl_space_free(dim);
4173 isl_basic_set_free(bset);
4175 isl_space_free(dim);
4180 /* Given that the last input variable of "bmap" represents the minimum
4181 * of the bounds in "cst", check whether we need to split the domain
4182 * based on which bound attains the minimum.
4184 * A split is needed when the minimum appears in an integer division
4185 * or in an equality. Otherwise, it is only needed if it appears in
4186 * an upper bound that is different from the upper bounds on which it
4189 static int need_split_basic_map(__isl_keep isl_basic_map *bmap,
4190 __isl_keep isl_mat *cst)
4196 pos = cst->n_col - 1;
4197 total = isl_basic_map_dim(bmap, isl_dim_all);
4199 for (i = 0; i < bmap->n_div; ++i)
4200 if (!isl_int_is_zero(bmap->div[i][2 + pos]))
4203 for (i = 0; i < bmap->n_eq; ++i)
4204 if (!isl_int_is_zero(bmap->eq[i][1 + pos]))
4207 for (i = 0; i < bmap->n_ineq; ++i) {
4208 if (isl_int_is_nonneg(bmap->ineq[i][1 + pos]))
4210 if (!isl_int_is_negone(bmap->ineq[i][1 + pos]))
4212 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1,
4213 total - pos - 1) >= 0)
4216 for (j = 0; j < cst->n_row; ++j)
4217 if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col))
4219 if (j >= cst->n_row)
4226 /* Given that the last set variable of "bset" represents the minimum
4227 * of the bounds in "cst", check whether we need to split the domain
4228 * based on which bound attains the minimum.
4230 * We simply call need_split_basic_map here. This is safe because
4231 * the position of the minimum is computed from "cst" and not
4234 static int need_split_basic_set(__isl_keep isl_basic_set *bset,
4235 __isl_keep isl_mat *cst)
4237 return need_split_basic_map((isl_basic_map *)bset, cst);
4240 /* Given that the last set variable of "set" represents the minimum
4241 * of the bounds in "cst", check whether we need to split the domain
4242 * based on which bound attains the minimum.
4244 static int need_split_set(__isl_keep isl_set *set, __isl_keep isl_mat *cst)
4248 for (i = 0; i < set->n; ++i)
4249 if (need_split_basic_set(set->p[i], cst))
4255 /* Given a set of which the last set variable is the minimum
4256 * of the bounds in "cst", split each basic set in the set
4257 * in pieces where one of the bounds is (strictly) smaller than the others.
4258 * This subdivision is given in "min_expr".
4259 * The variable is subsequently projected out.
4261 * We only do the split when it is needed.
4262 * For example if the last input variable m = min(a,b) and the only
4263 * constraints in the given basic set are lower bounds on m,
4264 * i.e., l <= m = min(a,b), then we can simply project out m
4265 * to obtain l <= a and l <= b, without having to split on whether
4266 * m is equal to a or b.
4268 static __isl_give isl_set *split(__isl_take isl_set *empty,
4269 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4276 if (!empty || !min_expr || !cst)
4279 n_in = isl_set_dim(empty, isl_dim_set);
4280 dim = isl_set_get_space(empty);
4281 dim = isl_space_drop_dims(dim, isl_dim_set, n_in - 1, 1);
4282 res = isl_set_empty(dim);
4284 for (i = 0; i < empty->n; ++i) {
4287 set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i]));
4288 if (need_split_basic_set(empty->p[i], cst))
4289 set = isl_set_intersect(set, isl_set_copy(min_expr));
4290 set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1);
4292 res = isl_set_union_disjoint(res, set);
4295 isl_set_free(empty);
4296 isl_set_free(min_expr);
4300 isl_set_free(empty);
4301 isl_set_free(min_expr);
4306 /* Given a map of which the last input variable is the minimum
4307 * of the bounds in "cst", split each basic set in the set
4308 * in pieces where one of the bounds is (strictly) smaller than the others.
4309 * This subdivision is given in "min_expr".
4310 * The variable is subsequently projected out.
4312 * The implementation is essentially the same as that of "split".
4314 static __isl_give isl_map *split_domain(__isl_take isl_map *opt,
4315 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
4322 if (!opt || !min_expr || !cst)
4325 n_in = isl_map_dim(opt, isl_dim_in);
4326 dim = isl_map_get_space(opt);
4327 dim = isl_space_drop_dims(dim, isl_dim_in, n_in - 1, 1);
4328 res = isl_map_empty(dim);
4330 for (i = 0; i < opt->n; ++i) {
4333 map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i]));
4334 if (need_split_basic_map(opt->p[i], cst))
4335 map = isl_map_intersect_domain(map,
4336 isl_set_copy(min_expr));
4337 map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1);
4339 res = isl_map_union_disjoint(res, map);
4343 isl_set_free(min_expr);
4348 isl_set_free(min_expr);
4353 static __isl_give isl_map *basic_map_partial_lexopt(
4354 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4355 __isl_give isl_set **empty, int max);
4360 isl_pw_multi_aff *pma;
4363 /* This function is called from basic_map_partial_lexopt_symm.
4364 * The last variable of "bmap" and "dom" corresponds to the minimum
4365 * of the bounds in "cst". "map_space" is the space of the original
4366 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4367 * is the space of the original domain.
4369 * We recursively call basic_map_partial_lexopt and then plug in
4370 * the definition of the minimum in the result.
4372 static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_map_core(
4373 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4374 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
4375 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
4379 union isl_lex_res res;
4381 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
4383 opt = basic_map_partial_lexopt(bmap, dom, empty, max);
4386 *empty = split(*empty,
4387 isl_set_copy(min_expr), isl_mat_copy(cst));
4388 *empty = isl_set_reset_space(*empty, set_space);
4391 opt = split_domain(opt, min_expr, cst);
4392 opt = isl_map_reset_space(opt, map_space);
4398 /* Given a basic map with at least two parallel constraints (as found
4399 * by the function parallel_constraints), first look for more constraints
4400 * parallel to the two constraint and replace the found list of parallel
4401 * constraints by a single constraint with as "input" part the minimum
4402 * of the input parts of the list of constraints. Then, recursively call
4403 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4404 * and plug in the definition of the minimum in the result.
4406 * More specifically, given a set of constraints
4410 * Replace this set by a single constraint
4414 * with u a new parameter with constraints
4418 * Any solution to the new system is also a solution for the original system
4421 * a x >= -u >= -b_i(p)
4423 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4424 * therefore be plugged into the solution.
4426 static union isl_lex_res basic_map_partial_lexopt_symm(
4427 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4428 __isl_give isl_set **empty, int max, int first, int second,
4429 __isl_give union isl_lex_res (*core)(__isl_take isl_basic_map *bmap,
4430 __isl_take isl_basic_set *dom,
4431 __isl_give isl_set **empty,
4432 int max, __isl_take isl_mat *cst,
4433 __isl_take isl_space *map_space,
4434 __isl_take isl_space *set_space))
4438 unsigned n_in, n_out, n_div;
4440 isl_vec *var = NULL;
4441 isl_mat *cst = NULL;
4442 isl_space *map_space, *set_space;
4443 union isl_lex_res res;
4445 map_space = isl_basic_map_get_space(bmap);
4446 set_space = empty ? isl_basic_set_get_space(dom) : NULL;
4448 n_in = isl_basic_map_dim(bmap, isl_dim_param) +
4449 isl_basic_map_dim(bmap, isl_dim_in);
4450 n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in;
4452 ctx = isl_basic_map_get_ctx(bmap);
4453 list = isl_alloc_array(ctx, int, bmap->n_ineq);
4454 var = isl_vec_alloc(ctx, n_out);
4460 isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out);
4461 for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) {
4462 if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out))
4466 cst = isl_mat_alloc(ctx, n, 1 + n_in);
4470 for (i = 0; i < n; ++i)
4471 isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in);
4473 bmap = isl_basic_map_cow(bmap);
4476 for (i = n - 1; i >= 0; --i)
4477 if (isl_basic_map_drop_inequality(bmap, list[i]) < 0)
4480 bmap = isl_basic_map_add(bmap, isl_dim_in, 1);
4481 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
4482 k = isl_basic_map_alloc_inequality(bmap);
4485 isl_seq_clr(bmap->ineq[k], 1 + n_in);
4486 isl_int_set_si(bmap->ineq[k][1 + n_in], 1);
4487 isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out);
4488 bmap = isl_basic_map_finalize(bmap);
4490 n_div = isl_basic_set_dim(dom, isl_dim_div);
4491 dom = isl_basic_set_add(dom, isl_dim_set, 1);
4492 dom = isl_basic_set_extend_constraints(dom, 0, n);
4493 for (i = 0; i < n; ++i) {
4494 k = isl_basic_set_alloc_inequality(dom);
4497 isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in);
4498 isl_int_set_si(dom->ineq[k][1 + n_in], -1);
4499 isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div);
4505 return core(bmap, dom, empty, max, cst, map_space, set_space);
4507 isl_space_free(map_space);
4508 isl_space_free(set_space);
4512 isl_basic_set_free(dom);
4513 isl_basic_map_free(bmap);
4518 static __isl_give isl_map *basic_map_partial_lexopt_symm_map(
4519 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4520 __isl_give isl_set **empty, int max, int first, int second)
4522 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
4523 first, second, &basic_map_partial_lexopt_symm_map_core).map;
4526 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4527 * equalities and removing redundant constraints.
4529 * We first check if there are any parallel constraints (left).
4530 * If not, we are in the base case.
4531 * If there are parallel constraints, we replace them by a single
4532 * constraint in basic_map_partial_lexopt_symm and then call
4533 * this function recursively to look for more parallel constraints.
4535 static __isl_give isl_map *basic_map_partial_lexopt(
4536 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
4537 __isl_give isl_set **empty, int max)
4545 if (bmap->ctx->opt->pip_symmetry)
4546 par = parallel_constraints(bmap, &first, &second);
4550 return basic_map_partial_lexopt_base_map(bmap, dom, empty, max);
4552 return basic_map_partial_lexopt_symm_map(bmap, dom, empty, max,
4555 isl_basic_set_free(dom);
4556 isl_basic_map_free(bmap);
4560 /* Compute the lexicographic minimum (or maximum if "max" is set)
4561 * of "bmap" over the domain "dom" and return the result as a map.
4562 * If "empty" is not NULL, then *empty is assigned a set that
4563 * contains those parts of the domain where there is no solution.
4564 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4565 * then we compute the rational optimum. Otherwise, we compute
4566 * the integral optimum.
4568 * We perform some preprocessing. As the PILP solver does not
4569 * handle implicit equalities very well, we first make sure all
4570 * the equalities are explicitly available.
4572 * We also add context constraints to the basic map and remove
4573 * redundant constraints. This is only needed because of the
4574 * way we handle simple symmetries. In particular, we currently look
4575 * for symmetries on the constraints, before we set up the main tableau.
4576 * It is then no good to look for symmetries on possibly redundant constraints.
4578 struct isl_map *isl_tab_basic_map_partial_lexopt(
4579 struct isl_basic_map *bmap, struct isl_basic_set *dom,
4580 struct isl_set **empty, int max)
4587 isl_assert(bmap->ctx,
4588 isl_basic_map_compatible_domain(bmap, dom), goto error);
4590 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
4591 return basic_map_partial_lexopt(bmap, dom, empty, max);
4593 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
4594 bmap = isl_basic_map_detect_equalities(bmap);
4595 bmap = isl_basic_map_remove_redundancies(bmap);
4597 return basic_map_partial_lexopt(bmap, dom, empty, max);
4599 isl_basic_set_free(dom);
4600 isl_basic_map_free(bmap);
4604 struct isl_sol_for {
4606 int (*fn)(__isl_take isl_basic_set *dom,
4607 __isl_take isl_aff_list *list, void *user);
4611 static void sol_for_free(struct isl_sol_for *sol_for)
4613 if (sol_for->sol.context)
4614 sol_for->sol.context->op->free(sol_for->sol.context);
4618 static void sol_for_free_wrap(struct isl_sol *sol)
4620 sol_for_free((struct isl_sol_for *)sol);
4623 /* Add the solution identified by the tableau and the context tableau.
4625 * See documentation of sol_add for more details.
4627 * Instead of constructing a basic map, this function calls a user
4628 * defined function with the current context as a basic set and
4629 * a list of affine expressions representing the relation between
4630 * the input and output. The space over which the affine expressions
4631 * are defined is the same as that of the domain. The number of
4632 * affine expressions in the list is equal to the number of output variables.
4634 static void sol_for_add(struct isl_sol_for *sol,
4635 struct isl_basic_set *dom, struct isl_mat *M)
4639 isl_local_space *ls;
4643 if (sol->sol.error || !dom || !M)
4646 ctx = isl_basic_set_get_ctx(dom);
4647 ls = isl_basic_set_get_local_space(dom);
4648 list = isl_aff_list_alloc(ctx, M->n_row - 1);
4649 for (i = 1; i < M->n_row; ++i) {
4650 aff = isl_aff_alloc(isl_local_space_copy(ls));
4652 isl_int_set(aff->v->el[0], M->row[0][0]);
4653 isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col);
4655 aff = isl_aff_normalize(aff);
4656 list = isl_aff_list_add(list, aff);
4658 isl_local_space_free(ls);
4660 dom = isl_basic_set_finalize(dom);
4662 if (sol->fn(isl_basic_set_copy(dom), list, sol->user) < 0)
4665 isl_basic_set_free(dom);
4669 isl_basic_set_free(dom);
4674 static void sol_for_add_wrap(struct isl_sol *sol,
4675 struct isl_basic_set *dom, struct isl_mat *M)
4677 sol_for_add((struct isl_sol_for *)sol, dom, M);
4680 static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max,
4681 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4685 struct isl_sol_for *sol_for = NULL;
4687 struct isl_basic_set *dom = NULL;
4689 sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for);
4693 dom_dim = isl_space_domain(isl_space_copy(bmap->dim));
4694 dom = isl_basic_set_universe(dom_dim);
4696 sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
4697 sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap;
4698 sol_for->sol.dec_level.sol = &sol_for->sol;
4700 sol_for->user = user;
4701 sol_for->sol.max = max;
4702 sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
4703 sol_for->sol.add = &sol_for_add_wrap;
4704 sol_for->sol.add_empty = NULL;
4705 sol_for->sol.free = &sol_for_free_wrap;
4707 sol_for->sol.context = isl_context_alloc(dom);
4708 if (!sol_for->sol.context)
4711 isl_basic_set_free(dom);
4714 isl_basic_set_free(dom);
4715 sol_for_free(sol_for);
4719 static void sol_for_find_solutions(struct isl_sol_for *sol_for,
4720 struct isl_tab *tab)
4722 find_solutions_main(&sol_for->sol, tab);
4725 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max,
4726 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4730 struct isl_sol_for *sol_for = NULL;
4732 bmap = isl_basic_map_copy(bmap);
4736 bmap = isl_basic_map_detect_equalities(bmap);
4737 sol_for = sol_for_init(bmap, max, fn, user);
4739 if (isl_basic_map_plain_is_empty(bmap))
4742 struct isl_tab *tab;
4743 struct isl_context *context = sol_for->sol.context;
4744 tab = tab_for_lexmin(bmap,
4745 context->op->peek_basic_set(context), 1, max);
4746 tab = context->op->detect_nonnegative_parameters(context, tab);
4747 sol_for_find_solutions(sol_for, tab);
4748 if (sol_for->sol.error)
4752 sol_free(&sol_for->sol);
4753 isl_basic_map_free(bmap);
4756 sol_free(&sol_for->sol);
4757 isl_basic_map_free(bmap);
4761 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set *bset, int max,
4762 int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list,
4766 return isl_basic_map_foreach_lexopt(bset, max, fn, user);
4769 /* Check if the given sequence of len variables starting at pos
4770 * represents a trivial (i.e., zero) solution.
4771 * The variables are assumed to be non-negative and to come in pairs,
4772 * with each pair representing a variable of unrestricted sign.
4773 * The solution is trivial if each such pair in the sequence consists
4774 * of two identical values, meaning that the variable being represented
4777 static int region_is_trivial(struct isl_tab *tab, int pos, int len)
4784 for (i = 0; i < len; i += 2) {
4788 neg_row = tab->var[pos + i].is_row ?
4789 tab->var[pos + i].index : -1;
4790 pos_row = tab->var[pos + i + 1].is_row ?
4791 tab->var[pos + i + 1].index : -1;
4794 isl_int_is_zero(tab->mat->row[neg_row][1])) &&
4796 isl_int_is_zero(tab->mat->row[pos_row][1])))
4799 if (neg_row < 0 || pos_row < 0)
4801 if (isl_int_ne(tab->mat->row[neg_row][1],
4802 tab->mat->row[pos_row][1]))
4809 /* Return the index of the first trivial region or -1 if all regions
4812 static int first_trivial_region(struct isl_tab *tab,
4813 int n_region, struct isl_region *region)
4817 for (i = 0; i < n_region; ++i) {
4818 if (region_is_trivial(tab, region[i].pos, region[i].len))
4825 /* Check if the solution is optimal, i.e., whether the first
4826 * n_op entries are zero.
4828 static int is_optimal(__isl_keep isl_vec *sol, int n_op)
4832 for (i = 0; i < n_op; ++i)
4833 if (!isl_int_is_zero(sol->el[1 + i]))
4838 /* Add constraints to "tab" that ensure that any solution is significantly
4839 * better that that represented by "sol". That is, find the first
4840 * relevant (within first n_op) non-zero coefficient and force it (along
4841 * with all previous coefficients) to be zero.
4842 * If the solution is already optimal (all relevant coefficients are zero),
4843 * then just mark the table as empty.
4845 static int force_better_solution(struct isl_tab *tab,
4846 __isl_keep isl_vec *sol, int n_op)
4855 for (i = 0; i < n_op; ++i)
4856 if (!isl_int_is_zero(sol->el[1 + i]))
4860 if (isl_tab_mark_empty(tab) < 0)
4865 ctx = isl_vec_get_ctx(sol);
4866 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4870 for (; i >= 0; --i) {
4872 isl_int_set_si(v->el[1 + i], -1);
4873 if (add_lexmin_eq(tab, v->el) < 0)
4884 struct isl_trivial {
4888 struct isl_tab_undo *snap;
4891 /* Return the lexicographically smallest non-trivial solution of the
4892 * given ILP problem.
4894 * All variables are assumed to be non-negative.
4896 * n_op is the number of initial coordinates to optimize.
4897 * That is, once a solution has been found, we will only continue looking
4898 * for solution that result in significantly better values for those
4899 * initial coordinates. That is, we only continue looking for solutions
4900 * that increase the number of initial zeros in this sequence.
4902 * A solution is non-trivial, if it is non-trivial on each of the
4903 * specified regions. Each region represents a sequence of pairs
4904 * of variables. A solution is non-trivial on such a region if
4905 * at least one of these pairs consists of different values, i.e.,
4906 * such that the non-negative variable represented by the pair is non-zero.
4908 * Whenever a conflict is encountered, all constraints involved are
4909 * reported to the caller through a call to "conflict".
4911 * We perform a simple branch-and-bound backtracking search.
4912 * Each level in the search represents initially trivial region that is forced
4913 * to be non-trivial.
4914 * At each level we consider n cases, where n is the length of the region.
4915 * In terms of the n/2 variables of unrestricted signs being encoded by
4916 * the region, we consider the cases
4919 * x_0 = 0 and x_1 >= 1
4920 * x_0 = 0 and x_1 <= -1
4921 * x_0 = 0 and x_1 = 0 and x_2 >= 1
4922 * x_0 = 0 and x_1 = 0 and x_2 <= -1
4924 * The cases are considered in this order, assuming that each pair
4925 * x_i_a x_i_b represents the value x_i_b - x_i_a.
4926 * That is, x_0 >= 1 is enforced by adding the constraint
4927 * x_0_b - x_0_a >= 1
4929 __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin(
4930 __isl_take isl_basic_set *bset, int n_op, int n_region,
4931 struct isl_region *region,
4932 int (*conflict)(int con, void *user), void *user)
4936 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
4938 isl_vec *sol = isl_vec_alloc(ctx, 0);
4939 struct isl_tab *tab;
4940 struct isl_trivial *triv = NULL;
4943 tab = tab_for_lexmin(bset, NULL, 0, 0);
4946 tab->conflict = conflict;
4947 tab->conflict_user = user;
4949 v = isl_vec_alloc(ctx, 1 + tab->n_var);
4950 triv = isl_calloc_array(ctx, struct isl_trivial, n_region);
4957 while (level >= 0) {
4961 tab = cut_to_integer_lexmin(tab);
4966 r = first_trivial_region(tab, n_region, region);
4968 for (i = 0; i < level; ++i)
4971 sol = isl_tab_get_sample_value(tab);
4974 if (is_optimal(sol, n_op))
4978 if (level >= n_region)
4979 isl_die(ctx, isl_error_internal,
4980 "nesting level too deep", goto error);
4981 if (isl_tab_extend_cons(tab,
4982 2 * region[r].len + 2 * n_op) < 0)
4984 triv[level].region = r;
4985 triv[level].side = 0;
4988 r = triv[level].region;
4989 side = triv[level].side;
4990 base = 2 * (side/2);
4992 if (side >= region[r].len) {
4997 if (isl_tab_rollback(tab, triv[level].snap) < 0)
5002 if (triv[level].update) {
5003 if (force_better_solution(tab, sol, n_op) < 0)
5005 triv[level].update = 0;
5008 if (side == base && base >= 2) {
5009 for (j = base - 2; j < base; ++j) {
5011 isl_int_set_si(v->el[1 + region[r].pos + j], 1);
5012 if (add_lexmin_eq(tab, v->el) < 0)
5017 triv[level].snap = isl_tab_snap(tab);
5018 if (isl_tab_push_basis(tab) < 0)
5022 isl_int_set_si(v->el[0], -1);
5023 isl_int_set_si(v->el[1 + region[r].pos + side], -1);
5024 isl_int_set_si(v->el[1 + region[r].pos + (side ^ 1)], 1);
5025 tab = add_lexmin_ineq(tab, v->el);
5035 isl_basic_set_free(bset);
5042 isl_basic_set_free(bset);
5047 /* Return the lexicographically smallest rational point in "bset",
5048 * assuming that all variables are non-negative.
5049 * If "bset" is empty, then return a zero-length vector.
5051 __isl_give isl_vec *isl_tab_basic_set_non_neg_lexmin(
5052 __isl_take isl_basic_set *bset)
5054 struct isl_tab *tab;
5055 isl_ctx *ctx = isl_basic_set_get_ctx(bset);
5058 tab = tab_for_lexmin(bset, NULL, 0, 0);
5062 sol = isl_vec_alloc(ctx, 0);
5064 sol = isl_tab_get_sample_value(tab);
5066 isl_basic_set_free(bset);
5070 isl_basic_set_free(bset);
5074 struct isl_sol_pma {
5076 isl_pw_multi_aff *pma;
5080 static void sol_pma_free(struct isl_sol_pma *sol_pma)
5084 if (sol_pma->sol.context)
5085 sol_pma->sol.context->op->free(sol_pma->sol.context);
5086 isl_pw_multi_aff_free(sol_pma->pma);
5087 isl_set_free(sol_pma->empty);
5091 /* This function is called for parts of the context where there is
5092 * no solution, with "bset" corresponding to the context tableau.
5093 * Simply add the basic set to the set "empty".
5095 static void sol_pma_add_empty(struct isl_sol_pma *sol,
5096 __isl_take isl_basic_set *bset)
5100 isl_assert(bset->ctx, sol->empty, goto error);
5102 sol->empty = isl_set_grow(sol->empty, 1);
5103 bset = isl_basic_set_simplify(bset);
5104 bset = isl_basic_set_finalize(bset);
5105 sol->empty = isl_set_add_basic_set(sol->empty, bset);
5110 isl_basic_set_free(bset);
5114 /* Given a basic map "dom" that represents the context and an affine
5115 * matrix "M" that maps the dimensions of the context to the
5116 * output variables, construct an isl_pw_multi_aff with a single
5117 * cell corresponding to "dom" and affine expressions copied from "M".
5119 static void sol_pma_add(struct isl_sol_pma *sol,
5120 __isl_take isl_basic_set *dom, __isl_take isl_mat *M)
5123 isl_local_space *ls;
5125 isl_multi_aff *maff;
5126 isl_pw_multi_aff *pma;
5128 maff = isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol->pma));
5129 ls = isl_basic_set_get_local_space(dom);
5130 for (i = 1; i < M->n_row; ++i) {
5131 aff = isl_aff_alloc(isl_local_space_copy(ls));
5133 isl_int_set(aff->v->el[0], M->row[0][0]);
5134 isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col);
5136 aff = isl_aff_normalize(aff);
5137 maff = isl_multi_aff_set_aff(maff, i - 1, aff);
5139 isl_local_space_free(ls);
5141 dom = isl_basic_set_simplify(dom);
5142 dom = isl_basic_set_finalize(dom);
5143 pma = isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom), maff);
5144 sol->pma = isl_pw_multi_aff_add_disjoint(sol->pma, pma);
5149 static void sol_pma_free_wrap(struct isl_sol *sol)
5151 sol_pma_free((struct isl_sol_pma *)sol);
5154 static void sol_pma_add_empty_wrap(struct isl_sol *sol,
5155 __isl_take isl_basic_set *bset)
5157 sol_pma_add_empty((struct isl_sol_pma *)sol, bset);
5160 static void sol_pma_add_wrap(struct isl_sol *sol,
5161 __isl_take isl_basic_set *dom, __isl_take isl_mat *M)
5163 sol_pma_add((struct isl_sol_pma *)sol, dom, M);
5166 /* Construct an isl_sol_pma structure for accumulating the solution.
5167 * If track_empty is set, then we also keep track of the parts
5168 * of the context where there is no solution.
5169 * If max is set, then we are solving a maximization, rather than
5170 * a minimization problem, which means that the variables in the
5171 * tableau have value "M - x" rather than "M + x".
5173 static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap,
5174 __isl_take isl_basic_set *dom, int track_empty, int max)
5176 struct isl_sol_pma *sol_pma = NULL;
5181 sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma);
5185 sol_pma->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
5186 sol_pma->sol.dec_level.callback.run = &sol_dec_level_wrap;
5187 sol_pma->sol.dec_level.sol = &sol_pma->sol;
5188 sol_pma->sol.max = max;
5189 sol_pma->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out);
5190 sol_pma->sol.add = &sol_pma_add_wrap;
5191 sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL;
5192 sol_pma->sol.free = &sol_pma_free_wrap;
5193 sol_pma->pma = isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap));
5197 sol_pma->sol.context = isl_context_alloc(dom);
5198 if (!sol_pma->sol.context)
5202 sol_pma->empty = isl_set_alloc_space(isl_basic_set_get_space(dom),
5203 1, ISL_SET_DISJOINT);
5204 if (!sol_pma->empty)
5208 isl_basic_set_free(dom);
5209 return &sol_pma->sol;
5211 isl_basic_set_free(dom);
5212 sol_pma_free(sol_pma);
5216 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5217 * some obvious symmetries.
5219 * We call basic_map_partial_lexopt_base and extract the results.
5221 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pma(
5222 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5223 __isl_give isl_set **empty, int max)
5225 isl_pw_multi_aff *result = NULL;
5226 struct isl_sol *sol;
5227 struct isl_sol_pma *sol_pma;
5229 sol = basic_map_partial_lexopt_base(bmap, dom, empty, max,
5233 sol_pma = (struct isl_sol_pma *) sol;
5235 result = isl_pw_multi_aff_copy(sol_pma->pma);
5237 *empty = isl_set_copy(sol_pma->empty);
5238 sol_free(&sol_pma->sol);
5242 /* Given that the last input variable of "maff" represents the minimum
5243 * of some bounds, check whether we need to plug in the expression
5246 * In particular, check if the last input variable appears in any
5247 * of the expressions in "maff".
5249 static int need_substitution(__isl_keep isl_multi_aff *maff)
5254 pos = isl_multi_aff_dim(maff, isl_dim_in) - 1;
5256 for (i = 0; i < maff->n; ++i)
5257 if (isl_aff_involves_dims(maff->p[i], isl_dim_in, pos, 1))
5263 /* Given a set of upper bounds on the last "input" variable m,
5264 * construct a piecewise affine expression that selects
5265 * the minimal upper bound to m, i.e.,
5266 * divide the space into cells where one
5267 * of the upper bounds is smaller than all the others and select
5268 * this upper bound on that cell.
5270 * In particular, if there are n bounds b_i, then the result
5271 * consists of n cell, each one of the form
5273 * b_i <= b_j for j > i
5274 * b_i < b_j for j < i
5276 * The affine expression on this cell is
5280 static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space,
5281 __isl_take isl_mat *var)
5284 isl_aff *aff = NULL;
5285 isl_basic_set *bset = NULL;
5287 isl_pw_aff *paff = NULL;
5288 isl_space *pw_space;
5289 isl_local_space *ls = NULL;
5294 ctx = isl_space_get_ctx(space);
5295 ls = isl_local_space_from_space(isl_space_copy(space));
5296 pw_space = isl_space_copy(space);
5297 pw_space = isl_space_from_domain(pw_space);
5298 pw_space = isl_space_add_dims(pw_space, isl_dim_out, 1);
5299 paff = isl_pw_aff_alloc_size(pw_space, var->n_row);
5301 for (i = 0; i < var->n_row; ++i) {
5304 aff = isl_aff_alloc(isl_local_space_copy(ls));
5305 bset = isl_basic_set_alloc_space(isl_space_copy(space), 0,
5309 isl_int_set_si(aff->v->el[0], 1);
5310 isl_seq_cpy(aff->v->el + 1, var->row[i], var->n_col);
5311 isl_int_set_si(aff->v->el[1 + var->n_col], 0);
5312 bset = select_minimum(bset, var, i);
5313 paff_i = isl_pw_aff_alloc(isl_set_from_basic_set(bset), aff);
5314 paff = isl_pw_aff_add_disjoint(paff, paff_i);
5317 isl_local_space_free(ls);
5318 isl_space_free(space);
5323 isl_basic_set_free(bset);
5324 isl_pw_aff_free(paff);
5325 isl_local_space_free(ls);
5326 isl_space_free(space);
5331 /* Given a piecewise multi-affine expression of which the last input variable
5332 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5333 * This minimum expression is given in "min_expr_pa".
5334 * The set "min_expr" contains the same information, but in the form of a set.
5335 * The variable is subsequently projected out.
5337 * The implementation is similar to those of "split" and "split_domain".
5338 * If the variable appears in a given expression, then minimum expression
5339 * is plugged in. Otherwise, if the variable appears in the constraints
5340 * and a split is required, then the domain is split. Otherwise, no split
5343 static __isl_give isl_pw_multi_aff *split_domain_pma(
5344 __isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa,
5345 __isl_take isl_set *min_expr, __isl_take isl_mat *cst)
5350 isl_pw_multi_aff *res;
5352 if (!opt || !min_expr || !cst)
5355 n_in = isl_pw_multi_aff_dim(opt, isl_dim_in);
5356 space = isl_pw_multi_aff_get_space(opt);
5357 space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1);
5358 res = isl_pw_multi_aff_empty(space);
5360 for (i = 0; i < opt->n; ++i) {
5361 isl_pw_multi_aff *pma;
5363 pma = isl_pw_multi_aff_alloc(isl_set_copy(opt->p[i].set),
5364 isl_multi_aff_copy(opt->p[i].maff));
5365 if (need_substitution(opt->p[i].maff))
5366 pma = isl_pw_multi_aff_substitute(pma,
5367 isl_dim_in, n_in - 1, min_expr_pa);
5368 else if (need_split_set(opt->p[i].set, cst))
5369 pma = isl_pw_multi_aff_intersect_domain(pma,
5370 isl_set_copy(min_expr));
5371 pma = isl_pw_multi_aff_project_out(pma,
5372 isl_dim_in, n_in - 1, 1);
5374 res = isl_pw_multi_aff_add_disjoint(res, pma);
5377 isl_pw_multi_aff_free(opt);
5378 isl_pw_aff_free(min_expr_pa);
5379 isl_set_free(min_expr);
5383 isl_pw_multi_aff_free(opt);
5384 isl_pw_aff_free(min_expr_pa);
5385 isl_set_free(min_expr);
5390 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma(
5391 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5392 __isl_give isl_set **empty, int max);
5394 /* This function is called from basic_map_partial_lexopt_symm.
5395 * The last variable of "bmap" and "dom" corresponds to the minimum
5396 * of the bounds in "cst". "map_space" is the space of the original
5397 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5398 * is the space of the original domain.
5400 * We recursively call basic_map_partial_lexopt and then plug in
5401 * the definition of the minimum in the result.
5403 static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_pma_core(
5404 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5405 __isl_give isl_set **empty, int max, __isl_take isl_mat *cst,
5406 __isl_take isl_space *map_space, __isl_take isl_space *set_space)
5408 isl_pw_multi_aff *opt;
5409 isl_pw_aff *min_expr_pa;
5411 union isl_lex_res res;
5413 min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst));
5414 min_expr_pa = set_minimum_pa(isl_basic_set_get_space(dom),
5417 opt = basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5420 *empty = split(*empty,
5421 isl_set_copy(min_expr), isl_mat_copy(cst));
5422 *empty = isl_set_reset_space(*empty, set_space);
5425 opt = split_domain_pma(opt, min_expr_pa, min_expr, cst);
5426 opt = isl_pw_multi_aff_reset_space(opt, map_space);
5432 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_symm_pma(
5433 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5434 __isl_give isl_set **empty, int max, int first, int second)
5436 return basic_map_partial_lexopt_symm(bmap, dom, empty, max,
5437 first, second, &basic_map_partial_lexopt_symm_pma_core).pma;
5440 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5441 * equalities and removing redundant constraints.
5443 * We first check if there are any parallel constraints (left).
5444 * If not, we are in the base case.
5445 * If there are parallel constraints, we replace them by a single
5446 * constraint in basic_map_partial_lexopt_symm_pma and then call
5447 * this function recursively to look for more parallel constraints.
5449 static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma(
5450 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5451 __isl_give isl_set **empty, int max)
5459 if (bmap->ctx->opt->pip_symmetry)
5460 par = parallel_constraints(bmap, &first, &second);
5464 return basic_map_partial_lexopt_base_pma(bmap, dom, empty, max);
5466 return basic_map_partial_lexopt_symm_pma(bmap, dom, empty, max,
5469 isl_basic_set_free(dom);
5470 isl_basic_map_free(bmap);
5474 /* Compute the lexicographic minimum (or maximum if "max" is set)
5475 * of "bmap" over the domain "dom" and return the result as a piecewise
5476 * multi-affine expression.
5477 * If "empty" is not NULL, then *empty is assigned a set that
5478 * contains those parts of the domain where there is no solution.
5479 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5480 * then we compute the rational optimum. Otherwise, we compute
5481 * the integral optimum.
5483 * We perform some preprocessing. As the PILP solver does not
5484 * handle implicit equalities very well, we first make sure all
5485 * the equalities are explicitly available.
5487 * We also add context constraints to the basic map and remove
5488 * redundant constraints. This is only needed because of the
5489 * way we handle simple symmetries. In particular, we currently look
5490 * for symmetries on the constraints, before we set up the main tableau.
5491 * It is then no good to look for symmetries on possibly redundant constraints.
5493 __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexopt_pw_multi_aff(
5494 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom,
5495 __isl_give isl_set **empty, int max)
5502 isl_assert(bmap->ctx,
5503 isl_basic_map_compatible_domain(bmap, dom), goto error);
5505 if (isl_basic_set_dim(dom, isl_dim_all) == 0)
5506 return basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5508 bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom));
5509 bmap = isl_basic_map_detect_equalities(bmap);
5510 bmap = isl_basic_map_remove_redundancies(bmap);
5512 return basic_map_partial_lexopt_pma(bmap, dom, empty, max);
5514 isl_basic_set_free(dom);
5515 isl_basic_map_free(bmap);