2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 #include <isl_ctx_private.h>
13 #include <isl_mat_private.h>
14 #include "isl_map_private.h"
17 #include <isl_config.h>
20 * The implementation of tableaus in this file was inspired by Section 8
21 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
22 * prover for program checking".
25 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
26 unsigned n_row, unsigned n_var, unsigned M)
32 tab = isl_calloc_type(ctx, struct isl_tab);
35 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
38 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
41 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
44 tab->col_var = isl_alloc_array(ctx, int, n_var);
47 tab->row_var = isl_alloc_array(ctx, int, n_row);
50 for (i = 0; i < n_var; ++i) {
51 tab->var[i].index = i;
52 tab->var[i].is_row = 0;
53 tab->var[i].is_nonneg = 0;
54 tab->var[i].is_zero = 0;
55 tab->var[i].is_redundant = 0;
56 tab->var[i].frozen = 0;
57 tab->var[i].negated = 0;
71 tab->strict_redundant = 0;
78 tab->bottom.type = isl_tab_undo_bottom;
79 tab->bottom.next = NULL;
80 tab->top = &tab->bottom;
92 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
101 if (tab->max_con < tab->n_con + n_new) {
102 struct isl_tab_var *con;
104 con = isl_realloc_array(tab->mat->ctx, tab->con,
105 struct isl_tab_var, tab->max_con + n_new);
109 tab->max_con += n_new;
111 if (tab->mat->n_row < tab->n_row + n_new) {
114 tab->mat = isl_mat_extend(tab->mat,
115 tab->n_row + n_new, off + tab->n_col);
118 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
119 int, tab->mat->n_row);
122 tab->row_var = row_var;
124 enum isl_tab_row_sign *s;
125 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
126 enum isl_tab_row_sign, tab->mat->n_row);
135 /* Make room for at least n_new extra variables.
136 * Return -1 if anything went wrong.
138 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
140 struct isl_tab_var *var;
141 unsigned off = 2 + tab->M;
143 if (tab->max_var < tab->n_var + n_new) {
144 var = isl_realloc_array(tab->mat->ctx, tab->var,
145 struct isl_tab_var, tab->n_var + n_new);
149 tab->max_var += n_new;
152 if (tab->mat->n_col < off + tab->n_col + n_new) {
155 tab->mat = isl_mat_extend(tab->mat,
156 tab->mat->n_row, off + tab->n_col + n_new);
159 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
160 int, tab->n_col + n_new);
169 struct isl_tab *isl_tab_extend(struct isl_tab *tab, unsigned n_new)
171 if (isl_tab_extend_cons(tab, n_new) >= 0)
178 static void free_undo_record(struct isl_tab_undo *undo)
180 switch (undo->type) {
181 case isl_tab_undo_saved_basis:
182 free(undo->u.col_var);
189 static void free_undo(struct isl_tab *tab)
191 struct isl_tab_undo *undo, *next;
193 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
195 free_undo_record(undo);
200 void isl_tab_free(struct isl_tab *tab)
205 isl_mat_free(tab->mat);
206 isl_vec_free(tab->dual);
207 isl_basic_map_free(tab->bmap);
213 isl_mat_free(tab->samples);
214 free(tab->sample_index);
215 isl_mat_free(tab->basis);
219 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
229 dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
232 dup->mat = isl_mat_dup(tab->mat);
235 dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
238 for (i = 0; i < tab->n_var; ++i)
239 dup->var[i] = tab->var[i];
240 dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
243 for (i = 0; i < tab->n_con; ++i)
244 dup->con[i] = tab->con[i];
245 dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
248 for (i = 0; i < tab->n_col; ++i)
249 dup->col_var[i] = tab->col_var[i];
250 dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
253 for (i = 0; i < tab->n_row; ++i)
254 dup->row_var[i] = tab->row_var[i];
256 dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
260 for (i = 0; i < tab->n_row; ++i)
261 dup->row_sign[i] = tab->row_sign[i];
264 dup->samples = isl_mat_dup(tab->samples);
267 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
268 tab->samples->n_row);
269 if (!dup->sample_index)
271 dup->n_sample = tab->n_sample;
272 dup->n_outside = tab->n_outside;
274 dup->n_row = tab->n_row;
275 dup->n_con = tab->n_con;
276 dup->n_eq = tab->n_eq;
277 dup->max_con = tab->max_con;
278 dup->n_col = tab->n_col;
279 dup->n_var = tab->n_var;
280 dup->max_var = tab->max_var;
281 dup->n_param = tab->n_param;
282 dup->n_div = tab->n_div;
283 dup->n_dead = tab->n_dead;
284 dup->n_redundant = tab->n_redundant;
285 dup->rational = tab->rational;
286 dup->empty = tab->empty;
287 dup->strict_redundant = 0;
291 tab->cone = tab->cone;
292 dup->bottom.type = isl_tab_undo_bottom;
293 dup->bottom.next = NULL;
294 dup->top = &dup->bottom;
296 dup->n_zero = tab->n_zero;
297 dup->n_unbounded = tab->n_unbounded;
298 dup->basis = isl_mat_dup(tab->basis);
306 /* Construct the coefficient matrix of the product tableau
308 * mat{1,2} is the coefficient matrix of tableau {1,2}
309 * row{1,2} is the number of rows in tableau {1,2}
310 * col{1,2} is the number of columns in tableau {1,2}
311 * off is the offset to the coefficient column (skipping the
312 * denominator, the constant term and the big parameter if any)
313 * r{1,2} is the number of redundant rows in tableau {1,2}
314 * d{1,2} is the number of dead columns in tableau {1,2}
316 * The order of the rows and columns in the result is as explained
317 * in isl_tab_product.
319 static struct isl_mat *tab_mat_product(struct isl_mat *mat1,
320 struct isl_mat *mat2, unsigned row1, unsigned row2,
321 unsigned col1, unsigned col2,
322 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
325 struct isl_mat *prod;
328 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
334 for (i = 0; i < r1; ++i) {
335 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
336 isl_seq_clr(prod->row[n + i] + off + d1, d2);
337 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
338 mat1->row[i] + off + d1, col1 - d1);
339 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
343 for (i = 0; i < r2; ++i) {
344 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
345 isl_seq_clr(prod->row[n + i] + off, d1);
346 isl_seq_cpy(prod->row[n + i] + off + d1,
347 mat2->row[i] + off, d2);
348 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
349 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
350 mat2->row[i] + off + d2, col2 - d2);
354 for (i = 0; i < row1 - r1; ++i) {
355 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
356 isl_seq_clr(prod->row[n + i] + off + d1, d2);
357 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
358 mat1->row[r1 + i] + off + d1, col1 - d1);
359 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
363 for (i = 0; i < row2 - r2; ++i) {
364 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
365 isl_seq_clr(prod->row[n + i] + off, d1);
366 isl_seq_cpy(prod->row[n + i] + off + d1,
367 mat2->row[r2 + i] + off, d2);
368 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
369 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
370 mat2->row[r2 + i] + off + d2, col2 - d2);
376 /* Update the row or column index of a variable that corresponds
377 * to a variable in the first input tableau.
379 static void update_index1(struct isl_tab_var *var,
380 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
382 if (var->index == -1)
384 if (var->is_row && var->index >= r1)
386 if (!var->is_row && var->index >= d1)
390 /* Update the row or column index of a variable that corresponds
391 * to a variable in the second input tableau.
393 static void update_index2(struct isl_tab_var *var,
394 unsigned row1, unsigned col1,
395 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
397 if (var->index == -1)
412 /* Create a tableau that represents the Cartesian product of the sets
413 * represented by tableaus tab1 and tab2.
414 * The order of the rows in the product is
415 * - redundant rows of tab1
416 * - redundant rows of tab2
417 * - non-redundant rows of tab1
418 * - non-redundant rows of tab2
419 * The order of the columns is
422 * - coefficient of big parameter, if any
423 * - dead columns of tab1
424 * - dead columns of tab2
425 * - live columns of tab1
426 * - live columns of tab2
427 * The order of the variables and the constraints is a concatenation
428 * of order in the two input tableaus.
430 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
433 struct isl_tab *prod;
435 unsigned r1, r2, d1, d2;
440 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
441 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
442 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
443 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
444 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
445 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
446 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
447 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
448 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
451 r1 = tab1->n_redundant;
452 r2 = tab2->n_redundant;
455 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
458 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
459 tab1->n_row, tab2->n_row,
460 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
463 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
464 tab1->max_var + tab2->max_var);
467 for (i = 0; i < tab1->n_var; ++i) {
468 prod->var[i] = tab1->var[i];
469 update_index1(&prod->var[i], r1, r2, d1, d2);
471 for (i = 0; i < tab2->n_var; ++i) {
472 prod->var[tab1->n_var + i] = tab2->var[i];
473 update_index2(&prod->var[tab1->n_var + i],
474 tab1->n_row, tab1->n_col,
477 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
478 tab1->max_con + tab2->max_con);
481 for (i = 0; i < tab1->n_con; ++i) {
482 prod->con[i] = tab1->con[i];
483 update_index1(&prod->con[i], r1, r2, d1, d2);
485 for (i = 0; i < tab2->n_con; ++i) {
486 prod->con[tab1->n_con + i] = tab2->con[i];
487 update_index2(&prod->con[tab1->n_con + i],
488 tab1->n_row, tab1->n_col,
491 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
492 tab1->n_col + tab2->n_col);
495 for (i = 0; i < tab1->n_col; ++i) {
496 int pos = i < d1 ? i : i + d2;
497 prod->col_var[pos] = tab1->col_var[i];
499 for (i = 0; i < tab2->n_col; ++i) {
500 int pos = i < d2 ? d1 + i : tab1->n_col + i;
501 int t = tab2->col_var[i];
506 prod->col_var[pos] = t;
508 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
509 tab1->mat->n_row + tab2->mat->n_row);
512 for (i = 0; i < tab1->n_row; ++i) {
513 int pos = i < r1 ? i : i + r2;
514 prod->row_var[pos] = tab1->row_var[i];
516 for (i = 0; i < tab2->n_row; ++i) {
517 int pos = i < r2 ? r1 + i : tab1->n_row + i;
518 int t = tab2->row_var[i];
523 prod->row_var[pos] = t;
525 prod->samples = NULL;
526 prod->sample_index = NULL;
527 prod->n_row = tab1->n_row + tab2->n_row;
528 prod->n_con = tab1->n_con + tab2->n_con;
530 prod->max_con = tab1->max_con + tab2->max_con;
531 prod->n_col = tab1->n_col + tab2->n_col;
532 prod->n_var = tab1->n_var + tab2->n_var;
533 prod->max_var = tab1->max_var + tab2->max_var;
536 prod->n_dead = tab1->n_dead + tab2->n_dead;
537 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
538 prod->rational = tab1->rational;
539 prod->empty = tab1->empty || tab2->empty;
540 prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
544 prod->cone = tab1->cone;
545 prod->bottom.type = isl_tab_undo_bottom;
546 prod->bottom.next = NULL;
547 prod->top = &prod->bottom;
550 prod->n_unbounded = 0;
559 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
564 return &tab->con[~i];
567 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
569 return var_from_index(tab, tab->row_var[i]);
572 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
574 return var_from_index(tab, tab->col_var[i]);
577 /* Check if there are any upper bounds on column variable "var",
578 * i.e., non-negative rows where var appears with a negative coefficient.
579 * Return 1 if there are no such bounds.
581 static int max_is_manifestly_unbounded(struct isl_tab *tab,
582 struct isl_tab_var *var)
585 unsigned off = 2 + tab->M;
589 for (i = tab->n_redundant; i < tab->n_row; ++i) {
590 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
592 if (isl_tab_var_from_row(tab, i)->is_nonneg)
598 /* Check if there are any lower bounds on column variable "var",
599 * i.e., non-negative rows where var appears with a positive coefficient.
600 * Return 1 if there are no such bounds.
602 static int min_is_manifestly_unbounded(struct isl_tab *tab,
603 struct isl_tab_var *var)
606 unsigned off = 2 + tab->M;
610 for (i = tab->n_redundant; i < tab->n_row; ++i) {
611 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
613 if (isl_tab_var_from_row(tab, i)->is_nonneg)
619 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int t)
621 unsigned off = 2 + tab->M;
625 isl_int_mul(t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
626 isl_int_submul(t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
631 isl_int_mul(t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
632 isl_int_submul(t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
633 return isl_int_sgn(t);
636 /* Given the index of a column "c", return the index of a row
637 * that can be used to pivot the column in, with either an increase
638 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
639 * If "var" is not NULL, then the row returned will be different from
640 * the one associated with "var".
642 * Each row in the tableau is of the form
644 * x_r = a_r0 + \sum_i a_ri x_i
646 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
647 * impose any limit on the increase or decrease in the value of x_c
648 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
649 * for the row with the smallest (most stringent) such bound.
650 * Note that the common denominator of each row drops out of the fraction.
651 * To check if row j has a smaller bound than row r, i.e.,
652 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
653 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
654 * where -sign(a_jc) is equal to "sgn".
656 static int pivot_row(struct isl_tab *tab,
657 struct isl_tab_var *var, int sgn, int c)
661 unsigned off = 2 + tab->M;
665 for (j = tab->n_redundant; j < tab->n_row; ++j) {
666 if (var && j == var->index)
668 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
670 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
676 tsgn = sgn * row_cmp(tab, r, j, c, t);
677 if (tsgn < 0 || (tsgn == 0 &&
678 tab->row_var[j] < tab->row_var[r]))
685 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
686 * (sgn < 0) the value of row variable var.
687 * If not NULL, then skip_var is a row variable that should be ignored
688 * while looking for a pivot row. It is usually equal to var.
690 * As the given row in the tableau is of the form
692 * x_r = a_r0 + \sum_i a_ri x_i
694 * we need to find a column such that the sign of a_ri is equal to "sgn"
695 * (such that an increase in x_i will have the desired effect) or a
696 * column with a variable that may attain negative values.
697 * If a_ri is positive, then we need to move x_i in the same direction
698 * to obtain the desired effect. Otherwise, x_i has to move in the
699 * opposite direction.
701 static void find_pivot(struct isl_tab *tab,
702 struct isl_tab_var *var, struct isl_tab_var *skip_var,
703 int sgn, int *row, int *col)
710 isl_assert(tab->mat->ctx, var->is_row, return);
711 tr = tab->mat->row[var->index] + 2 + tab->M;
714 for (j = tab->n_dead; j < tab->n_col; ++j) {
715 if (isl_int_is_zero(tr[j]))
717 if (isl_int_sgn(tr[j]) != sgn &&
718 var_from_col(tab, j)->is_nonneg)
720 if (c < 0 || tab->col_var[j] < tab->col_var[c])
726 sgn *= isl_int_sgn(tr[c]);
727 r = pivot_row(tab, skip_var, sgn, c);
728 *row = r < 0 ? var->index : r;
732 /* Return 1 if row "row" represents an obviously redundant inequality.
734 * - it represents an inequality or a variable
735 * - that is the sum of a non-negative sample value and a positive
736 * combination of zero or more non-negative constraints.
738 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
741 unsigned off = 2 + tab->M;
743 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
746 if (isl_int_is_neg(tab->mat->row[row][1]))
748 if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
750 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
753 for (i = tab->n_dead; i < tab->n_col; ++i) {
754 if (isl_int_is_zero(tab->mat->row[row][off + i]))
756 if (tab->col_var[i] >= 0)
758 if (isl_int_is_neg(tab->mat->row[row][off + i]))
760 if (!var_from_col(tab, i)->is_nonneg)
766 static void swap_rows(struct isl_tab *tab, int row1, int row2)
769 enum isl_tab_row_sign s;
771 t = tab->row_var[row1];
772 tab->row_var[row1] = tab->row_var[row2];
773 tab->row_var[row2] = t;
774 isl_tab_var_from_row(tab, row1)->index = row1;
775 isl_tab_var_from_row(tab, row2)->index = row2;
776 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
780 s = tab->row_sign[row1];
781 tab->row_sign[row1] = tab->row_sign[row2];
782 tab->row_sign[row2] = s;
785 static int push_union(struct isl_tab *tab,
786 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
787 static int push_union(struct isl_tab *tab,
788 enum isl_tab_undo_type type, union isl_tab_undo_val u)
790 struct isl_tab_undo *undo;
797 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
802 undo->next = tab->top;
808 int isl_tab_push_var(struct isl_tab *tab,
809 enum isl_tab_undo_type type, struct isl_tab_var *var)
811 union isl_tab_undo_val u;
813 u.var_index = tab->row_var[var->index];
815 u.var_index = tab->col_var[var->index];
816 return push_union(tab, type, u);
819 int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
821 union isl_tab_undo_val u = { 0 };
822 return push_union(tab, type, u);
825 /* Push a record on the undo stack describing the current basic
826 * variables, so that the this state can be restored during rollback.
828 int isl_tab_push_basis(struct isl_tab *tab)
831 union isl_tab_undo_val u;
833 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
836 for (i = 0; i < tab->n_col; ++i)
837 u.col_var[i] = tab->col_var[i];
838 return push_union(tab, isl_tab_undo_saved_basis, u);
841 int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback)
843 union isl_tab_undo_val u;
844 u.callback = callback;
845 return push_union(tab, isl_tab_undo_callback, u);
848 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
855 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
858 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
859 if (!tab->sample_index)
867 struct isl_tab *isl_tab_add_sample(struct isl_tab *tab,
868 __isl_take isl_vec *sample)
873 if (tab->n_sample + 1 > tab->samples->n_row) {
874 int *t = isl_realloc_array(tab->mat->ctx,
875 tab->sample_index, int, tab->n_sample + 1);
878 tab->sample_index = t;
881 tab->samples = isl_mat_extend(tab->samples,
882 tab->n_sample + 1, tab->samples->n_col);
886 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
887 isl_vec_free(sample);
888 tab->sample_index[tab->n_sample] = tab->n_sample;
893 isl_vec_free(sample);
898 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
900 if (s != tab->n_outside) {
901 int t = tab->sample_index[tab->n_outside];
902 tab->sample_index[tab->n_outside] = tab->sample_index[s];
903 tab->sample_index[s] = t;
904 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
907 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
915 /* Record the current number of samples so that we can remove newer
916 * samples during a rollback.
918 int isl_tab_save_samples(struct isl_tab *tab)
920 union isl_tab_undo_val u;
926 return push_union(tab, isl_tab_undo_saved_samples, u);
929 /* Mark row with index "row" as being redundant.
930 * If we may need to undo the operation or if the row represents
931 * a variable of the original problem, the row is kept,
932 * but no longer considered when looking for a pivot row.
933 * Otherwise, the row is simply removed.
935 * The row may be interchanged with some other row. If it
936 * is interchanged with a later row, return 1. Otherwise return 0.
937 * If the rows are checked in order in the calling function,
938 * then a return value of 1 means that the row with the given
939 * row number may now contain a different row that hasn't been checked yet.
941 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
943 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
944 var->is_redundant = 1;
945 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
946 if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
947 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
949 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
952 if (row != tab->n_redundant)
953 swap_rows(tab, row, tab->n_redundant);
955 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
957 if (row != tab->n_row - 1)
958 swap_rows(tab, row, tab->n_row - 1);
959 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
965 int isl_tab_mark_empty(struct isl_tab *tab)
969 if (!tab->empty && tab->need_undo)
970 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
976 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
978 struct isl_tab_var *var;
983 var = &tab->con[con];
991 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
996 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
997 * the original sign of the pivot element.
998 * We only keep track of row signs during PILP solving and in this case
999 * we only pivot a row with negative sign (meaning the value is always
1000 * non-positive) using a positive pivot element.
1002 * For each row j, the new value of the parametric constant is equal to
1004 * a_j0 - a_jc a_r0/a_rc
1006 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1007 * a_r0 is the parametric constant of the pivot row and a_jc is the
1008 * pivot column entry of the row j.
1009 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1010 * remains the same if a_jc has the same sign as the row j or if
1011 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1013 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
1016 struct isl_mat *mat = tab->mat;
1017 unsigned off = 2 + tab->M;
1022 if (tab->row_sign[row] == 0)
1024 isl_assert(mat->ctx, row_sgn > 0, return);
1025 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1026 tab->row_sign[row] = isl_tab_row_pos;
1027 for (i = 0; i < tab->n_row; ++i) {
1031 s = isl_int_sgn(mat->row[i][off + col]);
1034 if (!tab->row_sign[i])
1036 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1038 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1040 tab->row_sign[i] = isl_tab_row_unknown;
1044 /* Given a row number "row" and a column number "col", pivot the tableau
1045 * such that the associated variables are interchanged.
1046 * The given row in the tableau expresses
1048 * x_r = a_r0 + \sum_i a_ri x_i
1052 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1054 * Substituting this equality into the other rows
1056 * x_j = a_j0 + \sum_i a_ji x_i
1058 * with a_jc \ne 0, we obtain
1060 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1067 * where i is any other column and j is any other row,
1068 * is therefore transformed into
1070 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1071 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1073 * The transformation is performed along the following steps
1075 * d_r/n_rc n_ri/n_rc
1078 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1081 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1082 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1084 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1085 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1087 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1088 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1090 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1091 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1094 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1099 struct isl_mat *mat = tab->mat;
1100 struct isl_tab_var *var;
1101 unsigned off = 2 + tab->M;
1103 if (tab->mat->ctx->abort) {
1104 isl_ctx_set_error(tab->mat->ctx, isl_error_abort);
1108 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1109 sgn = isl_int_sgn(mat->row[row][0]);
1111 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1112 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1114 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1115 if (j == off - 1 + col)
1117 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1119 if (!isl_int_is_one(mat->row[row][0]))
1120 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1121 for (i = 0; i < tab->n_row; ++i) {
1124 if (isl_int_is_zero(mat->row[i][off + col]))
1126 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1127 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1128 if (j == off - 1 + col)
1130 isl_int_mul(mat->row[i][1 + j],
1131 mat->row[i][1 + j], mat->row[row][0]);
1132 isl_int_addmul(mat->row[i][1 + j],
1133 mat->row[i][off + col], mat->row[row][1 + j]);
1135 isl_int_mul(mat->row[i][off + col],
1136 mat->row[i][off + col], mat->row[row][off + col]);
1137 if (!isl_int_is_one(mat->row[i][0]))
1138 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1140 t = tab->row_var[row];
1141 tab->row_var[row] = tab->col_var[col];
1142 tab->col_var[col] = t;
1143 var = isl_tab_var_from_row(tab, row);
1146 var = var_from_col(tab, col);
1149 update_row_sign(tab, row, col, sgn);
1152 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1153 if (isl_int_is_zero(mat->row[i][off + col]))
1155 if (!isl_tab_var_from_row(tab, i)->frozen &&
1156 isl_tab_row_is_redundant(tab, i)) {
1157 int redo = isl_tab_mark_redundant(tab, i);
1167 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1168 * or down (sgn < 0) to a row. The variable is assumed not to be
1169 * unbounded in the specified direction.
1170 * If sgn = 0, then the variable is unbounded in both directions,
1171 * and we pivot with any row we can find.
1173 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
1174 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1177 unsigned off = 2 + tab->M;
1183 for (r = tab->n_redundant; r < tab->n_row; ++r)
1184 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1186 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1188 r = pivot_row(tab, NULL, sign, var->index);
1189 isl_assert(tab->mat->ctx, r >= 0, return -1);
1192 return isl_tab_pivot(tab, r, var->index);
1195 /* Check whether all variables that are marked as non-negative
1196 * also have a non-negative sample value. This function is not
1197 * called from the current code but is useful during debugging.
1199 static void check_table(struct isl_tab *tab) __attribute__ ((unused));
1200 static void check_table(struct isl_tab *tab)
1206 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1207 struct isl_tab_var *var;
1208 var = isl_tab_var_from_row(tab, i);
1209 if (!var->is_nonneg)
1212 isl_assert(tab->mat->ctx,
1213 !isl_int_is_neg(tab->mat->row[i][2]), abort());
1214 if (isl_int_is_pos(tab->mat->row[i][2]))
1217 isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
1222 /* Return the sign of the maximal value of "var".
1223 * If the sign is not negative, then on return from this function,
1224 * the sample value will also be non-negative.
1226 * If "var" is manifestly unbounded wrt positive values, we are done.
1227 * Otherwise, we pivot the variable up to a row if needed
1228 * Then we continue pivoting down until either
1229 * - no more down pivots can be performed
1230 * - the sample value is positive
1231 * - the variable is pivoted into a manifestly unbounded column
1233 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1237 if (max_is_manifestly_unbounded(tab, var))
1239 if (to_row(tab, var, 1) < 0)
1241 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1242 find_pivot(tab, var, var, 1, &row, &col);
1244 return isl_int_sgn(tab->mat->row[var->index][1]);
1245 if (isl_tab_pivot(tab, row, col) < 0)
1247 if (!var->is_row) /* manifestly unbounded */
1253 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1255 struct isl_tab_var *var;
1260 var = &tab->con[con];
1261 isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1262 isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1264 return sign_of_max(tab, var);
1267 static int row_is_neg(struct isl_tab *tab, int row)
1270 return isl_int_is_neg(tab->mat->row[row][1]);
1271 if (isl_int_is_pos(tab->mat->row[row][2]))
1273 if (isl_int_is_neg(tab->mat->row[row][2]))
1275 return isl_int_is_neg(tab->mat->row[row][1]);
1278 static int row_sgn(struct isl_tab *tab, int row)
1281 return isl_int_sgn(tab->mat->row[row][1]);
1282 if (!isl_int_is_zero(tab->mat->row[row][2]))
1283 return isl_int_sgn(tab->mat->row[row][2]);
1285 return isl_int_sgn(tab->mat->row[row][1]);
1288 /* Perform pivots until the row variable "var" has a non-negative
1289 * sample value or until no more upward pivots can be performed.
1290 * Return the sign of the sample value after the pivots have been
1293 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1297 while (row_is_neg(tab, var->index)) {
1298 find_pivot(tab, var, var, 1, &row, &col);
1301 if (isl_tab_pivot(tab, row, col) < 0)
1303 if (!var->is_row) /* manifestly unbounded */
1306 return row_sgn(tab, var->index);
1309 /* Perform pivots until we are sure that the row variable "var"
1310 * can attain non-negative values. After return from this
1311 * function, "var" is still a row variable, but its sample
1312 * value may not be non-negative, even if the function returns 1.
1314 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1318 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1319 find_pivot(tab, var, var, 1, &row, &col);
1322 if (row == var->index) /* manifestly unbounded */
1324 if (isl_tab_pivot(tab, row, col) < 0)
1327 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1330 /* Return a negative value if "var" can attain negative values.
1331 * Return a non-negative value otherwise.
1333 * If "var" is manifestly unbounded wrt negative values, we are done.
1334 * Otherwise, if var is in a column, we can pivot it down to a row.
1335 * Then we continue pivoting down until either
1336 * - the pivot would result in a manifestly unbounded column
1337 * => we don't perform the pivot, but simply return -1
1338 * - no more down pivots can be performed
1339 * - the sample value is negative
1340 * If the sample value becomes negative and the variable is supposed
1341 * to be nonnegative, then we undo the last pivot.
1342 * However, if the last pivot has made the pivoting variable
1343 * obviously redundant, then it may have moved to another row.
1344 * In that case we look for upward pivots until we reach a non-negative
1347 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1350 struct isl_tab_var *pivot_var = NULL;
1352 if (min_is_manifestly_unbounded(tab, var))
1356 row = pivot_row(tab, NULL, -1, col);
1357 pivot_var = var_from_col(tab, col);
1358 if (isl_tab_pivot(tab, row, col) < 0)
1360 if (var->is_redundant)
1362 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1363 if (var->is_nonneg) {
1364 if (!pivot_var->is_redundant &&
1365 pivot_var->index == row) {
1366 if (isl_tab_pivot(tab, row, col) < 0)
1369 if (restore_row(tab, var) < -1)
1375 if (var->is_redundant)
1377 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1378 find_pivot(tab, var, var, -1, &row, &col);
1379 if (row == var->index)
1382 return isl_int_sgn(tab->mat->row[var->index][1]);
1383 pivot_var = var_from_col(tab, col);
1384 if (isl_tab_pivot(tab, row, col) < 0)
1386 if (var->is_redundant)
1389 if (pivot_var && var->is_nonneg) {
1390 /* pivot back to non-negative value */
1391 if (!pivot_var->is_redundant && pivot_var->index == row) {
1392 if (isl_tab_pivot(tab, row, col) < 0)
1395 if (restore_row(tab, var) < -1)
1401 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1404 if (isl_int_is_pos(tab->mat->row[row][2]))
1406 if (isl_int_is_neg(tab->mat->row[row][2]))
1409 return isl_int_is_neg(tab->mat->row[row][1]) &&
1410 isl_int_abs_ge(tab->mat->row[row][1],
1411 tab->mat->row[row][0]);
1414 /* Return 1 if "var" can attain values <= -1.
1415 * Return 0 otherwise.
1417 * The sample value of "var" is assumed to be non-negative when the
1418 * the function is called. If 1 is returned then the constraint
1419 * is not redundant and the sample value is made non-negative again before
1420 * the function returns.
1422 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1425 struct isl_tab_var *pivot_var;
1427 if (min_is_manifestly_unbounded(tab, var))
1431 row = pivot_row(tab, NULL, -1, col);
1432 pivot_var = var_from_col(tab, col);
1433 if (isl_tab_pivot(tab, row, col) < 0)
1435 if (var->is_redundant)
1437 if (row_at_most_neg_one(tab, var->index)) {
1438 if (var->is_nonneg) {
1439 if (!pivot_var->is_redundant &&
1440 pivot_var->index == row) {
1441 if (isl_tab_pivot(tab, row, col) < 0)
1444 if (restore_row(tab, var) < -1)
1450 if (var->is_redundant)
1453 find_pivot(tab, var, var, -1, &row, &col);
1454 if (row == var->index) {
1455 if (restore_row(tab, var) < -1)
1461 pivot_var = var_from_col(tab, col);
1462 if (isl_tab_pivot(tab, row, col) < 0)
1464 if (var->is_redundant)
1466 } while (!row_at_most_neg_one(tab, var->index));
1467 if (var->is_nonneg) {
1468 /* pivot back to non-negative value */
1469 if (!pivot_var->is_redundant && pivot_var->index == row)
1470 if (isl_tab_pivot(tab, row, col) < 0)
1472 if (restore_row(tab, var) < -1)
1478 /* Return 1 if "var" can attain values >= 1.
1479 * Return 0 otherwise.
1481 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1486 if (max_is_manifestly_unbounded(tab, var))
1488 if (to_row(tab, var, 1) < 0)
1490 r = tab->mat->row[var->index];
1491 while (isl_int_lt(r[1], r[0])) {
1492 find_pivot(tab, var, var, 1, &row, &col);
1494 return isl_int_ge(r[1], r[0]);
1495 if (row == var->index) /* manifestly unbounded */
1497 if (isl_tab_pivot(tab, row, col) < 0)
1503 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1506 unsigned off = 2 + tab->M;
1507 t = tab->col_var[col1];
1508 tab->col_var[col1] = tab->col_var[col2];
1509 tab->col_var[col2] = t;
1510 var_from_col(tab, col1)->index = col1;
1511 var_from_col(tab, col2)->index = col2;
1512 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1515 /* Mark column with index "col" as representing a zero variable.
1516 * If we may need to undo the operation the column is kept,
1517 * but no longer considered.
1518 * Otherwise, the column is simply removed.
1520 * The column may be interchanged with some other column. If it
1521 * is interchanged with a later column, return 1. Otherwise return 0.
1522 * If the columns are checked in order in the calling function,
1523 * then a return value of 1 means that the column with the given
1524 * column number may now contain a different column that
1525 * hasn't been checked yet.
1527 int isl_tab_kill_col(struct isl_tab *tab, int col)
1529 var_from_col(tab, col)->is_zero = 1;
1530 if (tab->need_undo) {
1531 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1532 var_from_col(tab, col)) < 0)
1534 if (col != tab->n_dead)
1535 swap_cols(tab, col, tab->n_dead);
1539 if (col != tab->n_col - 1)
1540 swap_cols(tab, col, tab->n_col - 1);
1541 var_from_col(tab, tab->n_col - 1)->index = -1;
1547 static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1549 unsigned off = 2 + tab->M;
1551 if (tab->M && !isl_int_eq(tab->mat->row[row][2],
1552 tab->mat->row[row][0]))
1554 if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1555 tab->n_col - tab->n_dead) != -1)
1558 return !isl_int_is_divisible_by(tab->mat->row[row][1],
1559 tab->mat->row[row][0]);
1562 /* For integer tableaus, check if any of the coordinates are stuck
1563 * at a non-integral value.
1565 static int tab_is_manifestly_empty(struct isl_tab *tab)
1574 for (i = 0; i < tab->n_var; ++i) {
1575 if (!tab->var[i].is_row)
1577 if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1584 /* Row variable "var" is non-negative and cannot attain any values
1585 * larger than zero. This means that the coefficients of the unrestricted
1586 * column variables are zero and that the coefficients of the non-negative
1587 * column variables are zero or negative.
1588 * Each of the non-negative variables with a negative coefficient can
1589 * then also be written as the negative sum of non-negative variables
1590 * and must therefore also be zero.
1592 static int close_row(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1593 static int close_row(struct isl_tab *tab, struct isl_tab_var *var)
1596 struct isl_mat *mat = tab->mat;
1597 unsigned off = 2 + tab->M;
1599 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
1602 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1604 for (j = tab->n_dead; j < tab->n_col; ++j) {
1606 if (isl_int_is_zero(mat->row[var->index][off + j]))
1608 isl_assert(tab->mat->ctx,
1609 isl_int_is_neg(mat->row[var->index][off + j]), return -1);
1610 recheck = isl_tab_kill_col(tab, j);
1616 if (isl_tab_mark_redundant(tab, var->index) < 0)
1618 if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1623 /* Add a constraint to the tableau and allocate a row for it.
1624 * Return the index into the constraint array "con".
1626 int isl_tab_allocate_con(struct isl_tab *tab)
1630 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1631 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1634 tab->con[r].index = tab->n_row;
1635 tab->con[r].is_row = 1;
1636 tab->con[r].is_nonneg = 0;
1637 tab->con[r].is_zero = 0;
1638 tab->con[r].is_redundant = 0;
1639 tab->con[r].frozen = 0;
1640 tab->con[r].negated = 0;
1641 tab->row_var[tab->n_row] = ~r;
1645 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1651 /* Add a variable to the tableau and allocate a column for it.
1652 * Return the index into the variable array "var".
1654 int isl_tab_allocate_var(struct isl_tab *tab)
1658 unsigned off = 2 + tab->M;
1660 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1661 isl_assert(tab->mat->ctx, tab->n_var < tab->max_var, return -1);
1664 tab->var[r].index = tab->n_col;
1665 tab->var[r].is_row = 0;
1666 tab->var[r].is_nonneg = 0;
1667 tab->var[r].is_zero = 0;
1668 tab->var[r].is_redundant = 0;
1669 tab->var[r].frozen = 0;
1670 tab->var[r].negated = 0;
1671 tab->col_var[tab->n_col] = r;
1673 for (i = 0; i < tab->n_row; ++i)
1674 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1678 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1684 /* Add a row to the tableau. The row is given as an affine combination
1685 * of the original variables and needs to be expressed in terms of the
1688 * We add each term in turn.
1689 * If r = n/d_r is the current sum and we need to add k x, then
1690 * if x is a column variable, we increase the numerator of
1691 * this column by k d_r
1692 * if x = f/d_x is a row variable, then the new representation of r is
1694 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1695 * --- + --- = ------------------- = -------------------
1696 * d_r d_r d_r d_x/g m
1698 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1700 * If tab->M is set, then, internally, each variable x is represented
1701 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1703 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1709 unsigned off = 2 + tab->M;
1711 r = isl_tab_allocate_con(tab);
1717 row = tab->mat->row[tab->con[r].index];
1718 isl_int_set_si(row[0], 1);
1719 isl_int_set(row[1], line[0]);
1720 isl_seq_clr(row + 2, tab->M + tab->n_col);
1721 for (i = 0; i < tab->n_var; ++i) {
1722 if (tab->var[i].is_zero)
1724 if (tab->var[i].is_row) {
1726 row[0], tab->mat->row[tab->var[i].index][0]);
1727 isl_int_swap(a, row[0]);
1728 isl_int_divexact(a, row[0], a);
1730 row[0], tab->mat->row[tab->var[i].index][0]);
1731 isl_int_mul(b, b, line[1 + i]);
1732 isl_seq_combine(row + 1, a, row + 1,
1733 b, tab->mat->row[tab->var[i].index] + 1,
1734 1 + tab->M + tab->n_col);
1736 isl_int_addmul(row[off + tab->var[i].index],
1737 line[1 + i], row[0]);
1738 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1739 isl_int_submul(row[2], line[1 + i], row[0]);
1741 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1746 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1751 static int drop_row(struct isl_tab *tab, int row)
1753 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
1754 if (row != tab->n_row - 1)
1755 swap_rows(tab, row, tab->n_row - 1);
1761 static int drop_col(struct isl_tab *tab, int col)
1763 isl_assert(tab->mat->ctx, tab->col_var[col] == tab->n_var - 1, return -1);
1764 if (col != tab->n_col - 1)
1765 swap_cols(tab, col, tab->n_col - 1);
1771 /* Add inequality "ineq" and check if it conflicts with the
1772 * previously added constraints or if it is obviously redundant.
1774 int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1783 struct isl_basic_map *bmap = tab->bmap;
1785 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1);
1786 isl_assert(tab->mat->ctx,
1787 tab->n_con == bmap->n_eq + bmap->n_ineq, return -1);
1788 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1789 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1796 isl_int_swap(ineq[0], cst);
1798 r = isl_tab_add_row(tab, ineq);
1800 isl_int_swap(ineq[0], cst);
1805 tab->con[r].is_nonneg = 1;
1806 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1808 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1809 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1814 sgn = restore_row(tab, &tab->con[r]);
1818 return isl_tab_mark_empty(tab);
1819 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1820 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1825 /* Pivot a non-negative variable down until it reaches the value zero
1826 * and then pivot the variable into a column position.
1828 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
1829 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1833 unsigned off = 2 + tab->M;
1838 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1839 find_pivot(tab, var, NULL, -1, &row, &col);
1840 isl_assert(tab->mat->ctx, row != -1, return -1);
1841 if (isl_tab_pivot(tab, row, col) < 0)
1847 for (i = tab->n_dead; i < tab->n_col; ++i)
1848 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1851 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1852 if (isl_tab_pivot(tab, var->index, i) < 0)
1858 /* We assume Gaussian elimination has been performed on the equalities.
1859 * The equalities can therefore never conflict.
1860 * Adding the equalities is currently only really useful for a later call
1861 * to isl_tab_ineq_type.
1863 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
1870 r = isl_tab_add_row(tab, eq);
1874 r = tab->con[r].index;
1875 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
1876 tab->n_col - tab->n_dead);
1877 isl_assert(tab->mat->ctx, i >= 0, goto error);
1879 if (isl_tab_pivot(tab, r, i) < 0)
1881 if (isl_tab_kill_col(tab, i) < 0)
1891 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
1893 unsigned off = 2 + tab->M;
1895 if (!isl_int_is_zero(tab->mat->row[row][1]))
1897 if (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))
1899 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1900 tab->n_col - tab->n_dead) == -1;
1903 /* Add an equality that is known to be valid for the given tableau.
1905 int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1907 struct isl_tab_var *var;
1912 r = isl_tab_add_row(tab, eq);
1918 if (row_is_manifestly_zero(tab, r)) {
1920 if (isl_tab_mark_redundant(tab, r) < 0)
1925 if (isl_int_is_neg(tab->mat->row[r][1])) {
1926 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1931 if (to_col(tab, var) < 0)
1934 if (isl_tab_kill_col(tab, var->index) < 0)
1940 static int add_zero_row(struct isl_tab *tab)
1945 r = isl_tab_allocate_con(tab);
1949 row = tab->mat->row[tab->con[r].index];
1950 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
1951 isl_int_set_si(row[0], 1);
1956 /* Add equality "eq" and check if it conflicts with the
1957 * previously added constraints or if it is obviously redundant.
1959 int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
1961 struct isl_tab_undo *snap = NULL;
1962 struct isl_tab_var *var;
1970 isl_assert(tab->mat->ctx, !tab->M, return -1);
1973 snap = isl_tab_snap(tab);
1977 isl_int_swap(eq[0], cst);
1979 r = isl_tab_add_row(tab, eq);
1981 isl_int_swap(eq[0], cst);
1989 if (row_is_manifestly_zero(tab, row)) {
1991 if (isl_tab_rollback(tab, snap) < 0)
1999 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2000 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2002 isl_seq_neg(eq, eq, 1 + tab->n_var);
2003 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2004 isl_seq_neg(eq, eq, 1 + tab->n_var);
2005 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2009 if (add_zero_row(tab) < 0)
2013 sgn = isl_int_sgn(tab->mat->row[row][1]);
2016 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
2023 sgn = sign_of_max(tab, var);
2027 if (isl_tab_mark_empty(tab) < 0)
2034 if (to_col(tab, var) < 0)
2037 if (isl_tab_kill_col(tab, var->index) < 0)
2043 /* Construct and return an inequality that expresses an upper bound
2045 * In particular, if the div is given by
2049 * then the inequality expresses
2053 static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div)
2057 struct isl_vec *ineq;
2062 total = isl_basic_map_total_dim(bmap);
2063 div_pos = 1 + total - bmap->n_div + div;
2065 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2069 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2070 isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
2074 /* For a div d = floor(f/m), add the constraints
2077 * -(f-(m-1)) + m d >= 0
2079 * Note that the second constraint is the negation of
2083 * If add_ineq is not NULL, then this function is used
2084 * instead of isl_tab_add_ineq to effectively add the inequalities.
2086 static int add_div_constraints(struct isl_tab *tab, unsigned div,
2087 int (*add_ineq)(void *user, isl_int *), void *user)
2091 struct isl_vec *ineq;
2093 total = isl_basic_map_total_dim(tab->bmap);
2094 div_pos = 1 + total - tab->bmap->n_div + div;
2096 ineq = ineq_for_div(tab->bmap, div);
2101 if (add_ineq(user, ineq->el) < 0)
2104 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2108 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2109 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2110 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2111 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2114 if (add_ineq(user, ineq->el) < 0)
2117 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2129 /* Check whether the div described by "div" is obviously non-negative.
2130 * If we are using a big parameter, then we will encode the div
2131 * as div' = M + div, which is always non-negative.
2132 * Otherwise, we check whether div is a non-negative affine combination
2133 * of non-negative variables.
2135 static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2142 if (isl_int_is_neg(div->el[1]))
2145 for (i = 0; i < tab->n_var; ++i) {
2146 if (isl_int_is_neg(div->el[2 + i]))
2148 if (isl_int_is_zero(div->el[2 + i]))
2150 if (!tab->var[i].is_nonneg)
2157 /* Add an extra div, prescribed by "div" to the tableau and
2158 * the associated bmap (which is assumed to be non-NULL).
2160 * If add_ineq is not NULL, then this function is used instead
2161 * of isl_tab_add_ineq to add the div constraints.
2162 * This complication is needed because the code in isl_tab_pip
2163 * wants to perform some extra processing when an inequality
2164 * is added to the tableau.
2166 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div,
2167 int (*add_ineq)(void *user, isl_int *), void *user)
2176 isl_assert(tab->mat->ctx, tab->bmap, return -1);
2178 nonneg = div_is_nonneg(tab, div);
2180 if (isl_tab_extend_cons(tab, 3) < 0)
2182 if (isl_tab_extend_vars(tab, 1) < 0)
2184 r = isl_tab_allocate_var(tab);
2189 tab->var[r].is_nonneg = 1;
2191 tab->bmap = isl_basic_map_extend_space(tab->bmap,
2192 isl_basic_map_get_space(tab->bmap), 1, 0, 2);
2193 k = isl_basic_map_alloc_div(tab->bmap);
2196 isl_seq_cpy(tab->bmap->div[k], div->el, div->size);
2197 if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0)
2200 if (add_div_constraints(tab, k, add_ineq, user) < 0)
2206 /* If "track" is set, then we want to keep track of all constraints in tab
2207 * in its bmap field. This field is initialized from a copy of "bmap",
2208 * so we need to make sure that all constraints in "bmap" also appear
2209 * in the constructed tab.
2211 __isl_give struct isl_tab *isl_tab_from_basic_map(
2212 __isl_keep isl_basic_map *bmap, int track)
2215 struct isl_tab *tab;
2219 tab = isl_tab_alloc(bmap->ctx,
2220 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
2221 isl_basic_map_total_dim(bmap), 0);
2224 tab->preserve = track;
2225 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2226 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2227 if (isl_tab_mark_empty(tab) < 0)
2231 for (i = 0; i < bmap->n_eq; ++i) {
2232 tab = add_eq(tab, bmap->eq[i]);
2236 for (i = 0; i < bmap->n_ineq; ++i) {
2237 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2243 if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
2251 __isl_give struct isl_tab *isl_tab_from_basic_set(
2252 __isl_keep isl_basic_set *bset, int track)
2254 return isl_tab_from_basic_map(bset, track);
2257 /* Construct a tableau corresponding to the recession cone of "bset".
2259 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2264 struct isl_tab *tab;
2265 unsigned offset = 0;
2270 offset = isl_basic_set_dim(bset, isl_dim_param);
2271 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2272 isl_basic_set_total_dim(bset) - offset, 0);
2275 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2279 for (i = 0; i < bset->n_eq; ++i) {
2280 isl_int_swap(bset->eq[i][offset], cst);
2282 if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2285 tab = add_eq(tab, bset->eq[i]);
2286 isl_int_swap(bset->eq[i][offset], cst);
2290 for (i = 0; i < bset->n_ineq; ++i) {
2292 isl_int_swap(bset->ineq[i][offset], cst);
2293 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2294 isl_int_swap(bset->ineq[i][offset], cst);
2297 tab->con[r].is_nonneg = 1;
2298 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2310 /* Assuming "tab" is the tableau of a cone, check if the cone is
2311 * bounded, i.e., if it is empty or only contains the origin.
2313 int isl_tab_cone_is_bounded(struct isl_tab *tab)
2321 if (tab->n_dead == tab->n_col)
2325 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2326 struct isl_tab_var *var;
2328 var = isl_tab_var_from_row(tab, i);
2329 if (!var->is_nonneg)
2331 sgn = sign_of_max(tab, var);
2336 if (close_row(tab, var) < 0)
2340 if (tab->n_dead == tab->n_col)
2342 if (i == tab->n_row)
2347 int isl_tab_sample_is_integer(struct isl_tab *tab)
2354 for (i = 0; i < tab->n_var; ++i) {
2356 if (!tab->var[i].is_row)
2358 row = tab->var[i].index;
2359 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2360 tab->mat->row[row][0]))
2366 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2369 struct isl_vec *vec;
2371 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2375 isl_int_set_si(vec->block.data[0], 1);
2376 for (i = 0; i < tab->n_var; ++i) {
2377 if (!tab->var[i].is_row)
2378 isl_int_set_si(vec->block.data[1 + i], 0);
2380 int row = tab->var[i].index;
2381 isl_int_divexact(vec->block.data[1 + i],
2382 tab->mat->row[row][1], tab->mat->row[row][0]);
2389 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2392 struct isl_vec *vec;
2398 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2404 isl_int_set_si(vec->block.data[0], 1);
2405 for (i = 0; i < tab->n_var; ++i) {
2407 if (!tab->var[i].is_row) {
2408 isl_int_set_si(vec->block.data[1 + i], 0);
2411 row = tab->var[i].index;
2412 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2413 isl_int_divexact(m, tab->mat->row[row][0], m);
2414 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2415 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2416 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2418 vec = isl_vec_normalize(vec);
2424 /* Update "bmap" based on the results of the tableau "tab".
2425 * In particular, implicit equalities are made explicit, redundant constraints
2426 * are removed and if the sample value happens to be integer, it is stored
2427 * in "bmap" (unless "bmap" already had an integer sample).
2429 * The tableau is assumed to have been created from "bmap" using
2430 * isl_tab_from_basic_map.
2432 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
2433 struct isl_tab *tab)
2445 bmap = isl_basic_map_set_to_empty(bmap);
2447 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2448 if (isl_tab_is_equality(tab, n_eq + i))
2449 isl_basic_map_inequality_to_equality(bmap, i);
2450 else if (isl_tab_is_redundant(tab, n_eq + i))
2451 isl_basic_map_drop_inequality(bmap, i);
2453 if (bmap->n_eq != n_eq)
2454 isl_basic_map_gauss(bmap, NULL);
2455 if (!tab->rational &&
2456 !bmap->sample && isl_tab_sample_is_integer(tab))
2457 bmap->sample = extract_integer_sample(tab);
2461 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
2462 struct isl_tab *tab)
2464 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
2465 (struct isl_basic_map *)bset, tab);
2468 /* Given a non-negative variable "var", add a new non-negative variable
2469 * that is the opposite of "var", ensuring that var can only attain the
2471 * If var = n/d is a row variable, then the new variable = -n/d.
2472 * If var is a column variables, then the new variable = -var.
2473 * If the new variable cannot attain non-negative values, then
2474 * the resulting tableau is empty.
2475 * Otherwise, we know the value will be zero and we close the row.
2477 static int cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2482 unsigned off = 2 + tab->M;
2486 isl_assert(tab->mat->ctx, !var->is_redundant, return -1);
2487 isl_assert(tab->mat->ctx, var->is_nonneg, return -1);
2489 if (isl_tab_extend_cons(tab, 1) < 0)
2493 tab->con[r].index = tab->n_row;
2494 tab->con[r].is_row = 1;
2495 tab->con[r].is_nonneg = 0;
2496 tab->con[r].is_zero = 0;
2497 tab->con[r].is_redundant = 0;
2498 tab->con[r].frozen = 0;
2499 tab->con[r].negated = 0;
2500 tab->row_var[tab->n_row] = ~r;
2501 row = tab->mat->row[tab->n_row];
2504 isl_int_set(row[0], tab->mat->row[var->index][0]);
2505 isl_seq_neg(row + 1,
2506 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2508 isl_int_set_si(row[0], 1);
2509 isl_seq_clr(row + 1, 1 + tab->n_col);
2510 isl_int_set_si(row[off + var->index], -1);
2515 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
2518 sgn = sign_of_max(tab, &tab->con[r]);
2522 if (isl_tab_mark_empty(tab) < 0)
2526 tab->con[r].is_nonneg = 1;
2527 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2530 if (close_row(tab, &tab->con[r]) < 0)
2536 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2537 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2538 * by r' = r + 1 >= 0.
2539 * If r is a row variable, we simply increase the constant term by one
2540 * (taking into account the denominator).
2541 * If r is a column variable, then we need to modify each row that
2542 * refers to r = r' - 1 by substituting this equality, effectively
2543 * subtracting the coefficient of the column from the constant.
2544 * We should only do this if the minimum is manifestly unbounded,
2545 * however. Otherwise, we may end up with negative sample values
2546 * for non-negative variables.
2547 * So, if r is a column variable with a minimum that is not
2548 * manifestly unbounded, then we need to move it to a row.
2549 * However, the sample value of this row may be negative,
2550 * even after the relaxation, so we need to restore it.
2551 * We therefore prefer to pivot a column up to a row, if possible.
2553 struct isl_tab *isl_tab_relax(struct isl_tab *tab, int con)
2555 struct isl_tab_var *var;
2556 unsigned off = 2 + tab->M;
2561 var = &tab->con[con];
2563 if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
2564 isl_die(tab->mat->ctx, isl_error_invalid,
2565 "cannot relax redundant constraint", goto error);
2566 if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
2567 isl_die(tab->mat->ctx, isl_error_invalid,
2568 "cannot relax dead constraint", goto error);
2570 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2571 if (to_row(tab, var, 1) < 0)
2573 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2574 if (to_row(tab, var, -1) < 0)
2578 isl_int_add(tab->mat->row[var->index][1],
2579 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2580 if (restore_row(tab, var) < 0)
2585 for (i = 0; i < tab->n_row; ++i) {
2586 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2588 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2589 tab->mat->row[i][off + var->index]);
2594 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2603 int isl_tab_select_facet(struct isl_tab *tab, int con)
2608 return cut_to_hyperplane(tab, &tab->con[con]);
2611 static int may_be_equality(struct isl_tab *tab, int row)
2613 return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2614 : isl_int_lt(tab->mat->row[row][1],
2615 tab->mat->row[row][0]);
2618 /* Check for (near) equalities among the constraints.
2619 * A constraint is an equality if it is non-negative and if
2620 * its maximal value is either
2621 * - zero (in case of rational tableaus), or
2622 * - strictly less than 1 (in case of integer tableaus)
2624 * We first mark all non-redundant and non-dead variables that
2625 * are not frozen and not obviously not an equality.
2626 * Then we iterate over all marked variables if they can attain
2627 * any values larger than zero or at least one.
2628 * If the maximal value is zero, we mark any column variables
2629 * that appear in the row as being zero and mark the row as being redundant.
2630 * Otherwise, if the maximal value is strictly less than one (and the
2631 * tableau is integer), then we restrict the value to being zero
2632 * by adding an opposite non-negative variable.
2634 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2643 if (tab->n_dead == tab->n_col)
2647 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2648 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2649 var->marked = !var->frozen && var->is_nonneg &&
2650 may_be_equality(tab, i);
2654 for (i = tab->n_dead; i < tab->n_col; ++i) {
2655 struct isl_tab_var *var = var_from_col(tab, i);
2656 var->marked = !var->frozen && var->is_nonneg;
2661 struct isl_tab_var *var;
2663 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2664 var = isl_tab_var_from_row(tab, i);
2668 if (i == tab->n_row) {
2669 for (i = tab->n_dead; i < tab->n_col; ++i) {
2670 var = var_from_col(tab, i);
2674 if (i == tab->n_col)
2679 sgn = sign_of_max(tab, var);
2683 if (close_row(tab, var) < 0)
2685 } else if (!tab->rational && !at_least_one(tab, var)) {
2686 if (cut_to_hyperplane(tab, var) < 0)
2688 return isl_tab_detect_implicit_equalities(tab);
2690 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2691 var = isl_tab_var_from_row(tab, i);
2694 if (may_be_equality(tab, i))
2704 /* Update the element of row_var or col_var that corresponds to
2705 * constraint tab->con[i] to a move from position "old" to position "i".
2707 static int update_con_after_move(struct isl_tab *tab, int i, int old)
2712 index = tab->con[i].index;
2715 p = tab->con[i].is_row ? tab->row_var : tab->col_var;
2716 if (p[index] != ~old)
2717 isl_die(tab->mat->ctx, isl_error_internal,
2718 "broken internal state", return -1);
2724 /* Rotate the "n" constraints starting at "first" to the right,
2725 * putting the last constraint in the position of the first constraint.
2727 static int rotate_constraints(struct isl_tab *tab, int first, int n)
2730 struct isl_tab_var var;
2735 last = first + n - 1;
2736 var = tab->con[last];
2737 for (i = last; i > first; --i) {
2738 tab->con[i] = tab->con[i - 1];
2739 if (update_con_after_move(tab, i, i - 1) < 0)
2742 tab->con[first] = var;
2743 if (update_con_after_move(tab, first, last) < 0)
2749 /* Make the equalities that are implicit in "bmap" but that have been
2750 * detected in the corresponding "tab" explicit in "bmap" and update
2751 * "tab" to reflect the new order of the constraints.
2753 * In particular, if inequality i is an implicit equality then
2754 * isl_basic_map_inequality_to_equality will move the inequality
2755 * in front of the other equality and it will move the last inequality
2756 * in the position of inequality i.
2757 * In the tableau, the inequalities of "bmap" are stored after the equalities
2758 * and so the original order
2760 * E E E E E A A A I B B B B L
2764 * I E E E E E A A A L B B B B
2766 * where I is the implicit equality, the E are equalities,
2767 * the A inequalities before I, the B inequalities after I and
2768 * L the last inequality.
2769 * We therefore need to rotate to the right two sets of constraints,
2770 * those up to and including I and those after I.
2772 * If "tab" contains any constraints that are not in "bmap" then they
2773 * appear after those in "bmap" and they should be left untouched.
2775 * Note that this function leaves "bmap" in a temporary state
2776 * as it does not call isl_basic_map_gauss. Calling this function
2777 * is the responsibility of the caller.
2779 __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
2780 __isl_take isl_basic_map *bmap)
2785 return isl_basic_map_free(bmap);
2789 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2790 if (!isl_tab_is_equality(tab, bmap->n_eq + i))
2792 isl_basic_map_inequality_to_equality(bmap, i);
2793 if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
2794 return isl_basic_map_free(bmap);
2795 if (rotate_constraints(tab, tab->n_eq + i + 1,
2796 bmap->n_ineq - i) < 0)
2797 return isl_basic_map_free(bmap);
2804 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
2808 if (tab->rational) {
2809 int sgn = sign_of_min(tab, var);
2814 int irred = isl_tab_min_at_most_neg_one(tab, var);
2821 /* Check for (near) redundant constraints.
2822 * A constraint is redundant if it is non-negative and if
2823 * its minimal value (temporarily ignoring the non-negativity) is either
2824 * - zero (in case of rational tableaus), or
2825 * - strictly larger than -1 (in case of integer tableaus)
2827 * We first mark all non-redundant and non-dead variables that
2828 * are not frozen and not obviously negatively unbounded.
2829 * Then we iterate over all marked variables if they can attain
2830 * any values smaller than zero or at most negative one.
2831 * If not, we mark the row as being redundant (assuming it hasn't
2832 * been detected as being obviously redundant in the mean time).
2834 int isl_tab_detect_redundant(struct isl_tab *tab)
2843 if (tab->n_redundant == tab->n_row)
2847 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2848 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2849 var->marked = !var->frozen && var->is_nonneg;
2853 for (i = tab->n_dead; i < tab->n_col; ++i) {
2854 struct isl_tab_var *var = var_from_col(tab, i);
2855 var->marked = !var->frozen && var->is_nonneg &&
2856 !min_is_manifestly_unbounded(tab, var);
2861 struct isl_tab_var *var;
2863 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2864 var = isl_tab_var_from_row(tab, i);
2868 if (i == tab->n_row) {
2869 for (i = tab->n_dead; i < tab->n_col; ++i) {
2870 var = var_from_col(tab, i);
2874 if (i == tab->n_col)
2879 red = con_is_redundant(tab, var);
2882 if (red && !var->is_redundant)
2883 if (isl_tab_mark_redundant(tab, var->index) < 0)
2885 for (i = tab->n_dead; i < tab->n_col; ++i) {
2886 var = var_from_col(tab, i);
2889 if (!min_is_manifestly_unbounded(tab, var))
2899 int isl_tab_is_equality(struct isl_tab *tab, int con)
2906 if (tab->con[con].is_zero)
2908 if (tab->con[con].is_redundant)
2910 if (!tab->con[con].is_row)
2911 return tab->con[con].index < tab->n_dead;
2913 row = tab->con[con].index;
2916 return isl_int_is_zero(tab->mat->row[row][1]) &&
2917 (!tab->M || isl_int_is_zero(tab->mat->row[row][2])) &&
2918 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2919 tab->n_col - tab->n_dead) == -1;
2922 /* Return the minimal value of the affine expression "f" with denominator
2923 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
2924 * the expression cannot attain arbitrarily small values.
2925 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
2926 * The return value reflects the nature of the result (empty, unbounded,
2927 * minimal value returned in *opt).
2929 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
2930 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
2934 enum isl_lp_result res = isl_lp_ok;
2935 struct isl_tab_var *var;
2936 struct isl_tab_undo *snap;
2939 return isl_lp_error;
2942 return isl_lp_empty;
2944 snap = isl_tab_snap(tab);
2945 r = isl_tab_add_row(tab, f);
2947 return isl_lp_error;
2951 find_pivot(tab, var, var, -1, &row, &col);
2952 if (row == var->index) {
2953 res = isl_lp_unbounded;
2958 if (isl_tab_pivot(tab, row, col) < 0)
2959 return isl_lp_error;
2961 isl_int_mul(tab->mat->row[var->index][0],
2962 tab->mat->row[var->index][0], denom);
2963 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
2966 isl_vec_free(tab->dual);
2967 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
2969 return isl_lp_error;
2970 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
2971 for (i = 0; i < tab->n_con; ++i) {
2973 if (tab->con[i].is_row) {
2974 isl_int_set_si(tab->dual->el[1 + i], 0);
2977 pos = 2 + tab->M + tab->con[i].index;
2978 if (tab->con[i].negated)
2979 isl_int_neg(tab->dual->el[1 + i],
2980 tab->mat->row[var->index][pos]);
2982 isl_int_set(tab->dual->el[1 + i],
2983 tab->mat->row[var->index][pos]);
2986 if (opt && res == isl_lp_ok) {
2988 isl_int_set(*opt, tab->mat->row[var->index][1]);
2989 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
2991 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
2992 tab->mat->row[var->index][0]);
2994 if (isl_tab_rollback(tab, snap) < 0)
2995 return isl_lp_error;
2999 int isl_tab_is_redundant(struct isl_tab *tab, int con)
3003 if (tab->con[con].is_zero)
3005 if (tab->con[con].is_redundant)
3007 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
3010 /* Take a snapshot of the tableau that can be restored by s call to
3013 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
3021 /* Undo the operation performed by isl_tab_relax.
3023 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
3024 static int unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3026 unsigned off = 2 + tab->M;
3028 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
3029 if (to_row(tab, var, 1) < 0)
3033 isl_int_sub(tab->mat->row[var->index][1],
3034 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
3035 if (var->is_nonneg) {
3036 int sgn = restore_row(tab, var);
3037 isl_assert(tab->mat->ctx, sgn >= 0, return -1);
3042 for (i = 0; i < tab->n_row; ++i) {
3043 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
3045 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
3046 tab->mat->row[i][off + var->index]);
3054 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3055 static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3057 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
3058 switch (undo->type) {
3059 case isl_tab_undo_nonneg:
3062 case isl_tab_undo_redundant:
3063 var->is_redundant = 0;
3065 restore_row(tab, isl_tab_var_from_row(tab, tab->n_redundant));
3067 case isl_tab_undo_freeze:
3070 case isl_tab_undo_zero:
3075 case isl_tab_undo_allocate:
3076 if (undo->u.var_index >= 0) {
3077 isl_assert(tab->mat->ctx, !var->is_row, return -1);
3078 drop_col(tab, var->index);
3082 if (!max_is_manifestly_unbounded(tab, var)) {
3083 if (to_row(tab, var, 1) < 0)
3085 } else if (!min_is_manifestly_unbounded(tab, var)) {
3086 if (to_row(tab, var, -1) < 0)
3089 if (to_row(tab, var, 0) < 0)
3092 drop_row(tab, var->index);
3094 case isl_tab_undo_relax:
3095 return unrelax(tab, var);
3097 isl_die(tab->mat->ctx, isl_error_internal,
3098 "perform_undo_var called on invalid undo record",
3105 /* Restore the tableau to the state where the basic variables
3106 * are those in "col_var".
3107 * We first construct a list of variables that are currently in
3108 * the basis, but shouldn't. Then we iterate over all variables
3109 * that should be in the basis and for each one that is currently
3110 * not in the basis, we exchange it with one of the elements of the
3111 * list constructed before.
3112 * We can always find an appropriate variable to pivot with because
3113 * the current basis is mapped to the old basis by a non-singular
3114 * matrix and so we can never end up with a zero row.
3116 static int restore_basis(struct isl_tab *tab, int *col_var)
3120 int *extra = NULL; /* current columns that contain bad stuff */
3121 unsigned off = 2 + tab->M;
3123 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
3126 for (i = 0; i < tab->n_col; ++i) {
3127 for (j = 0; j < tab->n_col; ++j)
3128 if (tab->col_var[i] == col_var[j])
3132 extra[n_extra++] = i;
3134 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
3135 struct isl_tab_var *var;
3138 for (j = 0; j < tab->n_col; ++j)
3139 if (col_var[i] == tab->col_var[j])
3143 var = var_from_index(tab, col_var[i]);
3145 for (j = 0; j < n_extra; ++j)
3146 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
3148 isl_assert(tab->mat->ctx, j < n_extra, goto error);
3149 if (isl_tab_pivot(tab, row, extra[j]) < 0)
3151 extra[j] = extra[--n_extra];
3161 /* Remove all samples with index n or greater, i.e., those samples
3162 * that were added since we saved this number of samples in
3163 * isl_tab_save_samples.
3165 static void drop_samples_since(struct isl_tab *tab, int n)
3169 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3170 if (tab->sample_index[i] < n)
3173 if (i != tab->n_sample - 1) {
3174 int t = tab->sample_index[tab->n_sample-1];
3175 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3176 tab->sample_index[i] = t;
3177 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3183 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED;
3184 static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3186 switch (undo->type) {
3187 case isl_tab_undo_empty:
3190 case isl_tab_undo_nonneg:
3191 case isl_tab_undo_redundant:
3192 case isl_tab_undo_freeze:
3193 case isl_tab_undo_zero:
3194 case isl_tab_undo_allocate:
3195 case isl_tab_undo_relax:
3196 return perform_undo_var(tab, undo);
3197 case isl_tab_undo_bmap_eq:
3198 return isl_basic_map_free_equality(tab->bmap, 1);
3199 case isl_tab_undo_bmap_ineq:
3200 return isl_basic_map_free_inequality(tab->bmap, 1);
3201 case isl_tab_undo_bmap_div:
3202 if (isl_basic_map_free_div(tab->bmap, 1) < 0)
3205 tab->samples->n_col--;
3207 case isl_tab_undo_saved_basis:
3208 if (restore_basis(tab, undo->u.col_var) < 0)
3211 case isl_tab_undo_drop_sample:
3214 case isl_tab_undo_saved_samples:
3215 drop_samples_since(tab, undo->u.n);
3217 case isl_tab_undo_callback:
3218 return undo->u.callback->run(undo->u.callback);
3220 isl_assert(tab->mat->ctx, 0, return -1);
3225 /* Return the tableau to the state it was in when the snapshot "snap"
3228 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
3230 struct isl_tab_undo *undo, *next;
3236 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
3240 if (perform_undo(tab, undo) < 0) {
3246 free_undo_record(undo);
3255 /* The given row "row" represents an inequality violated by all
3256 * points in the tableau. Check for some special cases of such
3257 * separating constraints.
3258 * In particular, if the row has been reduced to the constant -1,
3259 * then we know the inequality is adjacent (but opposite) to
3260 * an equality in the tableau.
3261 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
3262 * of the tableau and c a positive constant, then the inequality
3263 * is adjacent (but opposite) to the inequality r'.
3265 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
3268 unsigned off = 2 + tab->M;
3271 return isl_ineq_separate;
3273 if (!isl_int_is_one(tab->mat->row[row][0]))
3274 return isl_ineq_separate;
3276 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3277 tab->n_col - tab->n_dead);
3279 if (isl_int_is_negone(tab->mat->row[row][1]))
3280 return isl_ineq_adj_eq;
3282 return isl_ineq_separate;
3285 if (!isl_int_eq(tab->mat->row[row][1],
3286 tab->mat->row[row][off + tab->n_dead + pos]))
3287 return isl_ineq_separate;
3289 pos = isl_seq_first_non_zero(
3290 tab->mat->row[row] + off + tab->n_dead + pos + 1,
3291 tab->n_col - tab->n_dead - pos - 1);
3293 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
3296 /* Check the effect of inequality "ineq" on the tableau "tab".
3298 * isl_ineq_redundant: satisfied by all points in the tableau
3299 * isl_ineq_separate: satisfied by no point in the tableau
3300 * isl_ineq_cut: satisfied by some by not all points
3301 * isl_ineq_adj_eq: adjacent to an equality
3302 * isl_ineq_adj_ineq: adjacent to an inequality.
3304 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
3306 enum isl_ineq_type type = isl_ineq_error;
3307 struct isl_tab_undo *snap = NULL;
3312 return isl_ineq_error;
3314 if (isl_tab_extend_cons(tab, 1) < 0)
3315 return isl_ineq_error;
3317 snap = isl_tab_snap(tab);
3319 con = isl_tab_add_row(tab, ineq);
3323 row = tab->con[con].index;
3324 if (isl_tab_row_is_redundant(tab, row))
3325 type = isl_ineq_redundant;
3326 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
3328 isl_int_abs_ge(tab->mat->row[row][1],
3329 tab->mat->row[row][0]))) {
3330 int nonneg = at_least_zero(tab, &tab->con[con]);
3334 type = isl_ineq_cut;
3336 type = separation_type(tab, row);
3338 int red = con_is_redundant(tab, &tab->con[con]);
3342 type = isl_ineq_cut;
3344 type = isl_ineq_redundant;
3347 if (isl_tab_rollback(tab, snap))
3348 return isl_ineq_error;
3351 return isl_ineq_error;
3354 int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
3356 bmap = isl_basic_map_cow(bmap);
3361 bmap = isl_basic_map_set_to_empty(bmap);
3368 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
3369 isl_assert(tab->mat->ctx,
3370 tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);
3376 isl_basic_map_free(bmap);
3380 int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
3382 return isl_tab_track_bmap(tab, (isl_basic_map *)bset);
3385 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
3390 return (isl_basic_set *)tab->bmap;
3393 static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
3394 FILE *out, int indent)
3400 fprintf(out, "%*snull tab\n", indent, "");
3403 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
3404 tab->n_redundant, tab->n_dead);
3406 fprintf(out, ", rational");
3408 fprintf(out, ", empty");
3410 fprintf(out, "%*s[", indent, "");
3411 for (i = 0; i < tab->n_var; ++i) {
3413 fprintf(out, (i == tab->n_param ||
3414 i == tab->n_var - tab->n_div) ? "; "
3416 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
3418 tab->var[i].is_zero ? " [=0]" :
3419 tab->var[i].is_redundant ? " [R]" : "");
3421 fprintf(out, "]\n");
3422 fprintf(out, "%*s[", indent, "");
3423 for (i = 0; i < tab->n_con; ++i) {
3426 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
3428 tab->con[i].is_zero ? " [=0]" :
3429 tab->con[i].is_redundant ? " [R]" : "");
3431 fprintf(out, "]\n");
3432 fprintf(out, "%*s[", indent, "");
3433 for (i = 0; i < tab->n_row; ++i) {
3434 const char *sign = "";
3437 if (tab->row_sign) {
3438 if (tab->row_sign[i] == isl_tab_row_unknown)
3440 else if (tab->row_sign[i] == isl_tab_row_neg)
3442 else if (tab->row_sign[i] == isl_tab_row_pos)
3447 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
3448 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
3450 fprintf(out, "]\n");
3451 fprintf(out, "%*s[", indent, "");
3452 for (i = 0; i < tab->n_col; ++i) {
3455 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
3456 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
3458 fprintf(out, "]\n");
3459 r = tab->mat->n_row;
3460 tab->mat->n_row = tab->n_row;
3461 c = tab->mat->n_col;
3462 tab->mat->n_col = 2 + tab->M + tab->n_col;
3463 isl_mat_print_internal(tab->mat, out, indent);
3464 tab->mat->n_row = r;
3465 tab->mat->n_col = c;
3467 isl_basic_map_print_internal(tab->bmap, out, indent);
3470 void isl_tab_dump(__isl_keep struct isl_tab *tab)
3472 isl_tab_print_internal(tab, stderr, 0);