1 #include "isl_map_private.h"
5 * The implementation of tableaus in this file was inspired by Section 8
6 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
7 * prover for program checking".
10 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
11 unsigned n_row, unsigned n_var)
16 tab = isl_calloc_type(ctx, struct isl_tab);
19 tab->mat = isl_mat_alloc(ctx, n_row, 2 + n_var);
22 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
25 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
28 tab->col_var = isl_alloc_array(ctx, int, n_var);
31 tab->row_var = isl_alloc_array(ctx, int, n_row);
34 for (i = 0; i < n_var; ++i) {
35 tab->var[i].index = i;
36 tab->var[i].is_row = 0;
37 tab->var[i].is_nonneg = 0;
38 tab->var[i].is_zero = 0;
39 tab->var[i].is_redundant = 0;
40 tab->var[i].frozen = 0;
55 tab->bottom.type = isl_tab_undo_bottom;
56 tab->bottom.next = NULL;
57 tab->top = &tab->bottom;
60 isl_tab_free(ctx, tab);
64 static int extend_cons(struct isl_ctx *ctx, struct isl_tab *tab, unsigned n_new)
66 if (tab->max_con < tab->n_con + n_new) {
67 struct isl_tab_var *con;
69 con = isl_realloc_array(ctx, tab->con,
70 struct isl_tab_var, tab->max_con + n_new);
74 tab->max_con += n_new;
76 if (tab->mat->n_row < tab->n_row + n_new) {
79 tab->mat = isl_mat_extend(tab->mat,
80 tab->n_row + n_new, tab->n_col);
83 row_var = isl_realloc_array(ctx, tab->row_var,
84 int, tab->mat->n_row);
87 tab->row_var = row_var;
92 struct isl_tab *isl_tab_extend(struct isl_ctx *ctx, struct isl_tab *tab,
95 if (extend_cons(ctx, tab, n_new) >= 0)
98 isl_tab_free(ctx, tab);
102 static void free_undo(struct isl_ctx *ctx, struct isl_tab *tab)
104 struct isl_tab_undo *undo, *next;
106 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
113 void isl_tab_free(struct isl_ctx *ctx, struct isl_tab *tab)
118 isl_mat_free(tab->mat);
119 isl_vec_free(tab->dual);
127 static struct isl_tab_var *var_from_index(struct isl_ctx *ctx,
128 struct isl_tab *tab, int i)
133 return &tab->con[~i];
136 static struct isl_tab_var *var_from_row(struct isl_ctx *ctx,
137 struct isl_tab *tab, int i)
139 return var_from_index(ctx, tab, tab->row_var[i]);
142 static struct isl_tab_var *var_from_col(struct isl_ctx *ctx,
143 struct isl_tab *tab, int i)
145 return var_from_index(ctx, tab, tab->col_var[i]);
148 /* Check if there are any upper bounds on column variable "var",
149 * i.e., non-negative rows where var appears with a negative coefficient.
150 * Return 1 if there are no such bounds.
152 static int max_is_manifestly_unbounded(struct isl_ctx *ctx,
153 struct isl_tab *tab, struct isl_tab_var *var)
159 for (i = tab->n_redundant; i < tab->n_row; ++i) {
160 if (!isl_int_is_neg(tab->mat->row[i][2 + var->index]))
162 if (var_from_row(ctx, tab, i)->is_nonneg)
168 /* Check if there are any lower bounds on column variable "var",
169 * i.e., non-negative rows where var appears with a positive coefficient.
170 * Return 1 if there are no such bounds.
172 static int min_is_manifestly_unbounded(struct isl_ctx *ctx,
173 struct isl_tab *tab, struct isl_tab_var *var)
179 for (i = tab->n_redundant; i < tab->n_row; ++i) {
180 if (!isl_int_is_pos(tab->mat->row[i][2 + var->index]))
182 if (var_from_row(ctx, tab, i)->is_nonneg)
188 /* Given the index of a column "c", return the index of a row
189 * that can be used to pivot the column in, with either an increase
190 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
191 * If "var" is not NULL, then the row returned will be different from
192 * the one associated with "var".
194 * Each row in the tableau is of the form
196 * x_r = a_r0 + \sum_i a_ri x_i
198 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
199 * impose any limit on the increase or decrease in the value of x_c
200 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
201 * for the row with the smallest (most stringent) such bound.
202 * Note that the common denominator of each row drops out of the fraction.
203 * To check if row j has a smaller bound than row r, i.e.,
204 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
205 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
206 * where -sign(a_jc) is equal to "sgn".
208 static int pivot_row(struct isl_ctx *ctx, struct isl_tab *tab,
209 struct isl_tab_var *var, int sgn, int c)
216 for (j = tab->n_redundant; j < tab->n_row; ++j) {
217 if (var && j == var->index)
219 if (!var_from_row(ctx, tab, j)->is_nonneg)
221 if (sgn * isl_int_sgn(tab->mat->row[j][2 + c]) >= 0)
227 isl_int_mul(t, tab->mat->row[r][1], tab->mat->row[j][2 + c]);
228 isl_int_submul(t, tab->mat->row[j][1], tab->mat->row[r][2 + c]);
229 tsgn = sgn * isl_int_sgn(t);
230 if (tsgn < 0 || (tsgn == 0 &&
231 tab->row_var[j] < tab->row_var[r]))
238 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
239 * (sgn < 0) the value of row variable var.
240 * If not NULL, then skip_var is a row variable that should be ignored
241 * while looking for a pivot row. It is usually equal to var.
243 * As the given row in the tableau is of the form
245 * x_r = a_r0 + \sum_i a_ri x_i
247 * we need to find a column such that the sign of a_ri is equal to "sgn"
248 * (such that an increase in x_i will have the desired effect) or a
249 * column with a variable that may attain negative values.
250 * If a_ri is positive, then we need to move x_i in the same direction
251 * to obtain the desired effect. Otherwise, x_i has to move in the
252 * opposite direction.
254 static void find_pivot(struct isl_ctx *ctx, struct isl_tab *tab,
255 struct isl_tab_var *var, struct isl_tab_var *skip_var,
256 int sgn, int *row, int *col)
263 isl_assert(ctx, var->is_row, return);
264 tr = tab->mat->row[var->index];
267 for (j = tab->n_dead; j < tab->n_col; ++j) {
268 if (isl_int_is_zero(tr[2 + j]))
270 if (isl_int_sgn(tr[2 + j]) != sgn &&
271 var_from_col(ctx, tab, j)->is_nonneg)
273 if (c < 0 || tab->col_var[j] < tab->col_var[c])
279 sgn *= isl_int_sgn(tr[2 + c]);
280 r = pivot_row(ctx, tab, skip_var, sgn, c);
281 *row = r < 0 ? var->index : r;
285 /* Return 1 if row "row" represents an obviously redundant inequality.
287 * - it represents an inequality or a variable
288 * - that is the sum of a non-negative sample value and a positive
289 * combination of zero or more non-negative variables.
291 static int is_redundant(struct isl_ctx *ctx, struct isl_tab *tab, int row)
295 if (tab->row_var[row] < 0 && !var_from_row(ctx, tab, row)->is_nonneg)
298 if (isl_int_is_neg(tab->mat->row[row][1]))
301 for (i = tab->n_dead; i < tab->n_col; ++i) {
302 if (isl_int_is_zero(tab->mat->row[row][2 + i]))
304 if (isl_int_is_neg(tab->mat->row[row][2 + i]))
306 if (!var_from_col(ctx, tab, i)->is_nonneg)
312 static void swap_rows(struct isl_ctx *ctx,
313 struct isl_tab *tab, int row1, int row2)
316 t = tab->row_var[row1];
317 tab->row_var[row1] = tab->row_var[row2];
318 tab->row_var[row2] = t;
319 var_from_row(ctx, tab, row1)->index = row1;
320 var_from_row(ctx, tab, row2)->index = row2;
321 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
324 static void push(struct isl_ctx *ctx, struct isl_tab *tab,
325 enum isl_tab_undo_type type, struct isl_tab_var *var)
327 struct isl_tab_undo *undo;
332 undo = isl_alloc_type(ctx, struct isl_tab_undo);
340 undo->next = tab->top;
344 /* Mark row with index "row" as being redundant.
345 * If we may need to undo the operation or if the row represents
346 * a variable of the original problem, the row is kept,
347 * but no longer considered when looking for a pivot row.
348 * Otherwise, the row is simply removed.
350 * The row may be interchanged with some other row. If it
351 * is interchanged with a later row, return 1. Otherwise return 0.
352 * If the rows are checked in order in the calling function,
353 * then a return value of 1 means that the row with the given
354 * row number may now contain a different row that hasn't been checked yet.
356 static int mark_redundant(struct isl_ctx *ctx,
357 struct isl_tab *tab, int row)
359 struct isl_tab_var *var = var_from_row(ctx, tab, row);
360 var->is_redundant = 1;
361 isl_assert(ctx, row >= tab->n_redundant, return);
362 if (tab->need_undo || tab->row_var[row] >= 0) {
363 if (tab->row_var[row] >= 0) {
365 push(ctx, tab, isl_tab_undo_nonneg, var);
367 if (row != tab->n_redundant)
368 swap_rows(ctx, tab, row, tab->n_redundant);
369 push(ctx, tab, isl_tab_undo_redundant, var);
373 if (row != tab->n_row - 1)
374 swap_rows(ctx, tab, row, tab->n_row - 1);
375 var_from_row(ctx, tab, tab->n_row - 1)->index = -1;
381 static void mark_empty(struct isl_ctx *ctx, struct isl_tab *tab)
383 if (!tab->empty && tab->need_undo)
384 push(ctx, tab, isl_tab_undo_empty, NULL);
388 /* Given a row number "row" and a column number "col", pivot the tableau
389 * such that the associated variables are interchanged.
390 * The given row in the tableau expresses
392 * x_r = a_r0 + \sum_i a_ri x_i
396 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
398 * Substituting this equality into the other rows
400 * x_j = a_j0 + \sum_i a_ji x_i
402 * with a_jc \ne 0, we obtain
404 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
411 * where i is any other column and j is any other row,
412 * is therefore transformed into
414 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
415 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
417 * The transformation is performed along the following steps
422 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
425 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
426 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
428 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
429 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
431 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
432 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
434 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
435 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
438 static void pivot(struct isl_ctx *ctx,
439 struct isl_tab *tab, int row, int col)
444 struct isl_mat *mat = tab->mat;
445 struct isl_tab_var *var;
447 isl_int_swap(mat->row[row][0], mat->row[row][2 + col]);
448 sgn = isl_int_sgn(mat->row[row][0]);
450 isl_int_neg(mat->row[row][0], mat->row[row][0]);
451 isl_int_neg(mat->row[row][2 + col], mat->row[row][2 + col]);
453 for (j = 0; j < 1 + tab->n_col; ++j) {
456 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
458 if (!isl_int_is_one(mat->row[row][0]))
459 isl_seq_normalize(mat->row[row], 2 + tab->n_col);
460 for (i = 0; i < tab->n_row; ++i) {
463 if (isl_int_is_zero(mat->row[i][2 + col]))
465 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
466 for (j = 0; j < 1 + tab->n_col; ++j) {
469 isl_int_mul(mat->row[i][1 + j],
470 mat->row[i][1 + j], mat->row[row][0]);
471 isl_int_addmul(mat->row[i][1 + j],
472 mat->row[i][2 + col], mat->row[row][1 + j]);
474 isl_int_mul(mat->row[i][2 + col],
475 mat->row[i][2 + col], mat->row[row][2 + col]);
476 if (!isl_int_is_one(mat->row[row][0]))
477 isl_seq_normalize(mat->row[i], 2 + tab->n_col);
479 t = tab->row_var[row];
480 tab->row_var[row] = tab->col_var[col];
481 tab->col_var[col] = t;
482 var = var_from_row(ctx, tab, row);
485 var = var_from_col(ctx, tab, col);
490 for (i = tab->n_redundant; i < tab->n_row; ++i) {
491 if (isl_int_is_zero(mat->row[i][2 + col]))
493 if (!var_from_row(ctx, tab, i)->frozen &&
494 is_redundant(ctx, tab, i))
495 if (mark_redundant(ctx, tab, i))
500 /* If "var" represents a column variable, then pivot is up (sgn > 0)
501 * or down (sgn < 0) to a row. The variable is assumed not to be
502 * unbounded in the specified direction.
504 static void to_row(struct isl_ctx *ctx,
505 struct isl_tab *tab, struct isl_tab_var *var, int sign)
512 r = pivot_row(ctx, tab, NULL, sign, var->index);
513 isl_assert(ctx, r >= 0, return);
514 pivot(ctx, tab, r, var->index);
517 static void check_table(struct isl_ctx *ctx, struct isl_tab *tab)
523 for (i = 0; i < tab->n_row; ++i) {
524 if (!var_from_row(ctx, tab, i)->is_nonneg)
526 assert(!isl_int_is_neg(tab->mat->row[i][1]));
530 /* Return the sign of the maximal value of "var".
531 * If the sign is not negative, then on return from this function,
532 * the sample value will also be non-negative.
534 * If "var" is manifestly unbounded wrt positive values, we are done.
535 * Otherwise, we pivot the variable up to a row if needed
536 * Then we continue pivoting down until either
537 * - no more down pivots can be performed
538 * - the sample value is positive
539 * - the variable is pivoted into a manifestly unbounded column
541 static int sign_of_max(struct isl_ctx *ctx,
542 struct isl_tab *tab, struct isl_tab_var *var)
546 if (max_is_manifestly_unbounded(ctx, tab, var))
548 to_row(ctx, tab, var, 1);
549 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
550 find_pivot(ctx, tab, var, var, 1, &row, &col);
552 return isl_int_sgn(tab->mat->row[var->index][1]);
553 pivot(ctx, tab, row, col);
554 if (!var->is_row) /* manifestly unbounded */
560 /* Perform pivots until the row variable "var" has a non-negative
561 * sample value or until no more upward pivots can be performed.
562 * Return the sign of the sample value after the pivots have been
565 static int restore_row(struct isl_ctx *ctx,
566 struct isl_tab *tab, struct isl_tab_var *var)
570 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
571 find_pivot(ctx, tab, var, var, 1, &row, &col);
574 pivot(ctx, tab, row, col);
575 if (!var->is_row) /* manifestly unbounded */
578 return isl_int_sgn(tab->mat->row[var->index][1]);
581 /* Perform pivots until we are sure that the row variable "var"
582 * can attain non-negative values. After return from this
583 * function, "var" is still a row variable, but its sample
584 * value may not be non-negative, even if the function returns 1.
586 static int at_least_zero(struct isl_ctx *ctx,
587 struct isl_tab *tab, struct isl_tab_var *var)
591 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
592 find_pivot(ctx, tab, var, var, 1, &row, &col);
595 if (row == var->index) /* manifestly unbounded */
597 pivot(ctx, tab, row, col);
599 return !isl_int_is_neg(tab->mat->row[var->index][1]);
602 /* Return a negative value if "var" can attain negative values.
603 * Return a non-negative value otherwise.
605 * If "var" is manifestly unbounded wrt negative values, we are done.
606 * Otherwise, if var is in a column, we can pivot it down to a row.
607 * Then we continue pivoting down until either
608 * - the pivot would result in a manifestly unbounded column
609 * => we don't perform the pivot, but simply return -1
610 * - no more down pivots can be performed
611 * - the sample value is negative
612 * If the sample value becomes negative and the variable is supposed
613 * to be nonnegative, then we undo the last pivot.
614 * However, if the last pivot has made the pivoting variable
615 * obviously redundant, then it may have moved to another row.
616 * In that case we look for upward pivots until we reach a non-negative
619 static int sign_of_min(struct isl_ctx *ctx,
620 struct isl_tab *tab, struct isl_tab_var *var)
623 struct isl_tab_var *pivot_var;
625 if (min_is_manifestly_unbounded(ctx, tab, var))
629 row = pivot_row(ctx, tab, NULL, -1, col);
630 pivot_var = var_from_col(ctx, tab, col);
631 pivot(ctx, tab, row, col);
632 if (var->is_redundant)
634 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
635 if (var->is_nonneg) {
636 if (!pivot_var->is_redundant &&
637 pivot_var->index == row)
638 pivot(ctx, tab, row, col);
640 restore_row(ctx, tab, var);
645 if (var->is_redundant)
647 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
648 find_pivot(ctx, tab, var, var, -1, &row, &col);
649 if (row == var->index)
652 return isl_int_sgn(tab->mat->row[var->index][1]);
653 pivot_var = var_from_col(ctx, tab, col);
654 pivot(ctx, tab, row, col);
655 if (var->is_redundant)
658 if (var->is_nonneg) {
659 /* pivot back to non-negative value */
660 if (!pivot_var->is_redundant && pivot_var->index == row)
661 pivot(ctx, tab, row, col);
663 restore_row(ctx, tab, var);
668 /* Return 1 if "var" can attain values <= -1.
669 * Return 0 otherwise.
671 * The sample value of "var" is assumed to be non-negative when the
672 * the function is called and will be made non-negative again before
673 * the function returns.
675 static int min_at_most_neg_one(struct isl_ctx *ctx,
676 struct isl_tab *tab, struct isl_tab_var *var)
679 struct isl_tab_var *pivot_var;
681 if (min_is_manifestly_unbounded(ctx, tab, var))
685 row = pivot_row(ctx, tab, NULL, -1, col);
686 pivot_var = var_from_col(ctx, tab, col);
687 pivot(ctx, tab, row, col);
688 if (var->is_redundant)
690 if (isl_int_is_neg(tab->mat->row[var->index][1]) &&
691 isl_int_abs_ge(tab->mat->row[var->index][1],
692 tab->mat->row[var->index][0])) {
693 if (var->is_nonneg) {
694 if (!pivot_var->is_redundant &&
695 pivot_var->index == row)
696 pivot(ctx, tab, row, col);
698 restore_row(ctx, tab, var);
703 if (var->is_redundant)
706 find_pivot(ctx, tab, var, var, -1, &row, &col);
707 if (row == var->index)
711 pivot_var = var_from_col(ctx, tab, col);
712 pivot(ctx, tab, row, col);
713 if (var->is_redundant)
715 } while (!isl_int_is_neg(tab->mat->row[var->index][1]) ||
716 isl_int_abs_lt(tab->mat->row[var->index][1],
717 tab->mat->row[var->index][0]));
718 if (var->is_nonneg) {
719 /* pivot back to non-negative value */
720 if (!pivot_var->is_redundant && pivot_var->index == row)
721 pivot(ctx, tab, row, col);
722 restore_row(ctx, tab, var);
727 /* Return 1 if "var" can attain values >= 1.
728 * Return 0 otherwise.
730 static int at_least_one(struct isl_ctx *ctx,
731 struct isl_tab *tab, struct isl_tab_var *var)
736 if (max_is_manifestly_unbounded(ctx, tab, var))
738 to_row(ctx, tab, var, 1);
739 r = tab->mat->row[var->index];
740 while (isl_int_lt(r[1], r[0])) {
741 find_pivot(ctx, tab, var, var, 1, &row, &col);
743 return isl_int_ge(r[1], r[0]);
744 if (row == var->index) /* manifestly unbounded */
746 pivot(ctx, tab, row, col);
751 static void swap_cols(struct isl_ctx *ctx,
752 struct isl_tab *tab, int col1, int col2)
755 t = tab->col_var[col1];
756 tab->col_var[col1] = tab->col_var[col2];
757 tab->col_var[col2] = t;
758 var_from_col(ctx, tab, col1)->index = col1;
759 var_from_col(ctx, tab, col2)->index = col2;
760 tab->mat = isl_mat_swap_cols(tab->mat, 2 + col1, 2 + col2);
763 /* Mark column with index "col" as representing a zero variable.
764 * If we may need to undo the operation the column is kept,
765 * but no longer considered.
766 * Otherwise, the column is simply removed.
768 * The column may be interchanged with some other column. If it
769 * is interchanged with a later column, return 1. Otherwise return 0.
770 * If the columns are checked in order in the calling function,
771 * then a return value of 1 means that the column with the given
772 * column number may now contain a different column that
773 * hasn't been checked yet.
775 static int kill_col(struct isl_ctx *ctx,
776 struct isl_tab *tab, int col)
778 var_from_col(ctx, tab, col)->is_zero = 1;
779 if (tab->need_undo) {
780 push(ctx, tab, isl_tab_undo_zero, var_from_col(ctx, tab, col));
781 if (col != tab->n_dead)
782 swap_cols(ctx, tab, col, tab->n_dead);
786 if (col != tab->n_col - 1)
787 swap_cols(ctx, tab, col, tab->n_col - 1);
788 var_from_col(ctx, tab, tab->n_col - 1)->index = -1;
794 /* Row variable "var" is non-negative and cannot attain any values
795 * larger than zero. This means that the coefficients of the unrestricted
796 * column variables are zero and that the coefficients of the non-negative
797 * column variables are zero or negative.
798 * Each of the non-negative variables with a negative coefficient can
799 * then also be written as the negative sum of non-negative variables
800 * and must therefore also be zero.
802 static void close_row(struct isl_ctx *ctx,
803 struct isl_tab *tab, struct isl_tab_var *var)
806 struct isl_mat *mat = tab->mat;
808 isl_assert(ctx, var->is_nonneg, return);
810 for (j = tab->n_dead; j < tab->n_col; ++j) {
811 if (isl_int_is_zero(mat->row[var->index][2 + j]))
813 isl_assert(ctx, isl_int_is_neg(mat->row[var->index][2 + j]),
815 if (kill_col(ctx, tab, j))
818 mark_redundant(ctx, tab, var->index);
821 /* Add a row to the tableau. The row is given as an affine combination
822 * of the original variables and needs to be expressed in terms of the
825 * We add each term in turn.
826 * If r = n/d_r is the current sum and we need to add k x, then
827 * if x is a column variable, we increase the numerator of
828 * this column by k d_r
829 * if x = f/d_x is a row variable, then the new representation of r is
831 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
832 * --- + --- = ------------------- = -------------------
833 * d_r d_r d_r d_x/g m
835 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
837 static int add_row(struct isl_ctx *ctx, struct isl_tab *tab, isl_int *line)
844 isl_assert(ctx, tab->n_row < tab->mat->n_row, return -1);
849 tab->con[r].index = tab->n_row;
850 tab->con[r].is_row = 1;
851 tab->con[r].is_nonneg = 0;
852 tab->con[r].is_zero = 0;
853 tab->con[r].is_redundant = 0;
854 tab->con[r].frozen = 0;
855 tab->row_var[tab->n_row] = ~r;
856 row = tab->mat->row[tab->n_row];
857 isl_int_set_si(row[0], 1);
858 isl_int_set(row[1], line[0]);
859 isl_seq_clr(row + 2, tab->n_col);
860 for (i = 0; i < tab->n_var; ++i) {
861 if (tab->var[i].is_zero)
863 if (tab->var[i].is_row) {
865 row[0], tab->mat->row[tab->var[i].index][0]);
866 isl_int_swap(a, row[0]);
867 isl_int_divexact(a, row[0], a);
869 row[0], tab->mat->row[tab->var[i].index][0]);
870 isl_int_mul(b, b, line[1 + i]);
871 isl_seq_combine(row + 1, a, row + 1,
872 b, tab->mat->row[tab->var[i].index] + 1,
875 isl_int_addmul(row[2 + tab->var[i].index],
876 line[1 + i], row[0]);
878 isl_seq_normalize(row, 2 + tab->n_col);
881 push(ctx, tab, isl_tab_undo_allocate, &tab->con[r]);
888 static int drop_row(struct isl_ctx *ctx, struct isl_tab *tab, int row)
890 isl_assert(ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
891 if (row != tab->n_row - 1)
892 swap_rows(ctx, tab, row, tab->n_row - 1);
898 /* Add inequality "ineq" and check if it conflicts with the
899 * previously added constraints or if it is obviously redundant.
901 struct isl_tab *isl_tab_add_ineq(struct isl_ctx *ctx,
902 struct isl_tab *tab, isl_int *ineq)
909 r = add_row(ctx, tab, ineq);
912 tab->con[r].is_nonneg = 1;
913 push(ctx, tab, isl_tab_undo_nonneg, &tab->con[r]);
914 if (is_redundant(ctx, tab, tab->con[r].index)) {
915 mark_redundant(ctx, tab, tab->con[r].index);
919 sgn = restore_row(ctx, tab, &tab->con[r]);
921 mark_empty(ctx, tab);
922 else if (tab->con[r].is_row &&
923 is_redundant(ctx, tab, tab->con[r].index))
924 mark_redundant(ctx, tab, tab->con[r].index);
927 isl_tab_free(ctx, tab);
931 /* Pivot a non-negative variable down until it reaches the value zero
932 * and then pivot the variable into a column position.
934 static int to_col(struct isl_ctx *ctx,
935 struct isl_tab *tab, struct isl_tab_var *var)
943 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
944 find_pivot(ctx, tab, var, NULL, -1, &row, &col);
945 isl_assert(ctx, row != -1, return -1);
946 pivot(ctx, tab, row, col);
951 for (i = tab->n_dead; i < tab->n_col; ++i)
952 if (!isl_int_is_zero(tab->mat->row[var->index][2 + i]))
955 isl_assert(ctx, i < tab->n_col, return -1);
956 pivot(ctx, tab, var->index, i);
961 /* We assume Gaussian elimination has been performed on the equalities.
962 * The equalities can therefore never conflict.
963 * Adding the equalities is currently only really useful for a later call
964 * to isl_tab_ineq_type.
966 static struct isl_tab *add_eq(struct isl_ctx *ctx,
967 struct isl_tab *tab, isl_int *eq)
974 r = add_row(ctx, tab, eq);
978 r = tab->con[r].index;
979 for (i = tab->n_dead; i < tab->n_col; ++i) {
980 if (isl_int_is_zero(tab->mat->row[r][2 + i]))
982 pivot(ctx, tab, r, i);
983 kill_col(ctx, tab, i);
990 isl_tab_free(ctx, tab);
994 /* Add an equality that is known to be valid for the given tableau.
996 struct isl_tab *isl_tab_add_valid_eq(struct isl_ctx *ctx,
997 struct isl_tab *tab, isl_int *eq)
999 struct isl_tab_var *var;
1005 r = add_row(ctx, tab, eq);
1011 if (isl_int_is_neg(tab->mat->row[r][1]))
1012 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1015 if (to_col(ctx, tab, var) < 0)
1018 kill_col(ctx, tab, var->index);
1022 isl_tab_free(ctx, tab);
1026 struct isl_tab *isl_tab_from_basic_map(struct isl_basic_map *bmap)
1029 struct isl_tab *tab;
1033 tab = isl_tab_alloc(bmap->ctx,
1034 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
1035 isl_basic_map_total_dim(bmap));
1038 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1039 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
1040 mark_empty(bmap->ctx, tab);
1043 for (i = 0; i < bmap->n_eq; ++i) {
1044 tab = add_eq(bmap->ctx, tab, bmap->eq[i]);
1048 for (i = 0; i < bmap->n_ineq; ++i) {
1049 tab = isl_tab_add_ineq(bmap->ctx, tab, bmap->ineq[i]);
1050 if (!tab || tab->empty)
1056 struct isl_tab *isl_tab_from_basic_set(struct isl_basic_set *bset)
1058 return isl_tab_from_basic_map((struct isl_basic_map *)bset);
1061 /* Construct a tableau corresponding to the recession cone of "bmap".
1063 struct isl_tab *isl_tab_from_recession_cone(struct isl_basic_map *bmap)
1067 struct isl_tab *tab;
1071 tab = isl_tab_alloc(bmap->ctx, bmap->n_eq + bmap->n_ineq,
1072 isl_basic_map_total_dim(bmap));
1075 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1078 for (i = 0; i < bmap->n_eq; ++i) {
1079 isl_int_swap(bmap->eq[i][0], cst);
1080 tab = add_eq(bmap->ctx, tab, bmap->eq[i]);
1081 isl_int_swap(bmap->eq[i][0], cst);
1085 for (i = 0; i < bmap->n_ineq; ++i) {
1087 isl_int_swap(bmap->ineq[i][0], cst);
1088 r = add_row(bmap->ctx, tab, bmap->ineq[i]);
1089 isl_int_swap(bmap->ineq[i][0], cst);
1092 tab->con[r].is_nonneg = 1;
1093 push(bmap->ctx, tab, isl_tab_undo_nonneg, &tab->con[r]);
1100 isl_tab_free(bmap->ctx, tab);
1104 /* Assuming "tab" is the tableau of a cone, check if the cone is
1105 * bounded, i.e., if it is empty or only contains the origin.
1107 int isl_tab_cone_is_bounded(struct isl_ctx *ctx, struct isl_tab *tab)
1115 if (tab->n_dead == tab->n_col)
1118 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1119 struct isl_tab_var *var;
1120 var = var_from_row(ctx, tab, i);
1121 if (!var->is_nonneg)
1123 if (sign_of_max(ctx, tab, var) == 0)
1124 close_row(ctx, tab, var);
1127 if (tab->n_dead == tab->n_col)
1133 int isl_tab_sample_is_integer(struct isl_ctx *ctx, struct isl_tab *tab)
1140 for (i = 0; i < tab->n_var; ++i) {
1142 if (!tab->var[i].is_row)
1144 row = tab->var[i].index;
1145 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
1146 tab->mat->row[row][0]))
1152 static struct isl_vec *extract_integer_sample(struct isl_ctx *ctx,
1153 struct isl_tab *tab)
1156 struct isl_vec *vec;
1158 vec = isl_vec_alloc(ctx, 1 + tab->n_var);
1162 isl_int_set_si(vec->block.data[0], 1);
1163 for (i = 0; i < tab->n_var; ++i) {
1164 if (!tab->var[i].is_row)
1165 isl_int_set_si(vec->block.data[1 + i], 0);
1167 int row = tab->var[i].index;
1168 isl_int_divexact(vec->block.data[1 + i],
1169 tab->mat->row[row][1], tab->mat->row[row][0]);
1176 struct isl_vec *isl_tab_get_sample_value(struct isl_ctx *ctx,
1177 struct isl_tab *tab)
1180 struct isl_vec *vec;
1186 vec = isl_vec_alloc(ctx, 1 + tab->n_var);
1192 isl_int_set_si(vec->block.data[0], 1);
1193 for (i = 0; i < tab->n_var; ++i) {
1195 if (!tab->var[i].is_row) {
1196 isl_int_set_si(vec->block.data[1 + i], 0);
1199 row = tab->var[i].index;
1200 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
1201 isl_int_divexact(m, tab->mat->row[row][0], m);
1202 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
1203 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
1204 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
1206 isl_seq_normalize(vec->block.data, vec->size);
1212 /* Update "bmap" based on the results of the tableau "tab".
1213 * In particular, implicit equalities are made explicit, redundant constraints
1214 * are removed and if the sample value happens to be integer, it is stored
1215 * in "bmap" (unless "bmap" already had an integer sample).
1217 * The tableau is assumed to have been created from "bmap" using
1218 * isl_tab_from_basic_map.
1220 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
1221 struct isl_tab *tab)
1233 bmap = isl_basic_map_set_to_empty(bmap);
1235 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1236 if (isl_tab_is_equality(bmap->ctx, tab, n_eq + i))
1237 isl_basic_map_inequality_to_equality(bmap, i);
1238 else if (isl_tab_is_redundant(bmap->ctx, tab, n_eq + i))
1239 isl_basic_map_drop_inequality(bmap, i);
1241 if (!tab->rational &&
1242 !bmap->sample && isl_tab_sample_is_integer(bmap->ctx, tab))
1243 bmap->sample = extract_integer_sample(bmap->ctx, tab);
1247 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
1248 struct isl_tab *tab)
1250 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
1251 (struct isl_basic_map *)bset, tab);
1254 /* Given a non-negative variable "var", add a new non-negative variable
1255 * that is the opposite of "var", ensuring that var can only attain the
1257 * If var = n/d is a row variable, then the new variable = -n/d.
1258 * If var is a column variables, then the new variable = -var.
1259 * If the new variable cannot attain non-negative values, then
1260 * the resulting tableau is empty.
1261 * Otherwise, we know the value will be zero and we close the row.
1263 static struct isl_tab *cut_to_hyperplane(struct isl_ctx *ctx,
1264 struct isl_tab *tab, struct isl_tab_var *var)
1270 if (extend_cons(ctx, tab, 1) < 0)
1274 tab->con[r].index = tab->n_row;
1275 tab->con[r].is_row = 1;
1276 tab->con[r].is_nonneg = 0;
1277 tab->con[r].is_zero = 0;
1278 tab->con[r].is_redundant = 0;
1279 tab->con[r].frozen = 0;
1280 tab->row_var[tab->n_row] = ~r;
1281 row = tab->mat->row[tab->n_row];
1284 isl_int_set(row[0], tab->mat->row[var->index][0]);
1285 isl_seq_neg(row + 1,
1286 tab->mat->row[var->index] + 1, 1 + tab->n_col);
1288 isl_int_set_si(row[0], 1);
1289 isl_seq_clr(row + 1, 1 + tab->n_col);
1290 isl_int_set_si(row[2 + var->index], -1);
1295 push(ctx, tab, isl_tab_undo_allocate, &tab->con[r]);
1297 sgn = sign_of_max(ctx, tab, &tab->con[r]);
1299 mark_empty(ctx, tab);
1301 tab->con[r].is_nonneg = 1;
1302 push(ctx, tab, isl_tab_undo_nonneg, &tab->con[r]);
1304 close_row(ctx, tab, &tab->con[r]);
1309 isl_tab_free(ctx, tab);
1313 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
1314 * relax the inequality by one. That is, the inequality r >= 0 is replaced
1315 * by r' = r + 1 >= 0.
1316 * If r is a row variable, we simply increase the constant term by one
1317 * (taking into account the denominator).
1318 * If r is a column variable, then we need to modify each row that
1319 * refers to r = r' - 1 by substituting this equality, effectively
1320 * subtracting the coefficient of the column from the constant.
1322 struct isl_tab *isl_tab_relax(struct isl_ctx *ctx,
1323 struct isl_tab *tab, int con)
1325 struct isl_tab_var *var;
1329 var = &tab->con[con];
1331 if (!var->is_row && !max_is_manifestly_unbounded(ctx, tab, var))
1332 to_row(ctx, tab, var, 1);
1335 isl_int_add(tab->mat->row[var->index][1],
1336 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1340 for (i = 0; i < tab->n_row; ++i) {
1341 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1343 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
1344 tab->mat->row[i][2 + var->index]);
1349 push(ctx, tab, isl_tab_undo_relax, var);
1354 struct isl_tab *isl_tab_select_facet(struct isl_ctx *ctx,
1355 struct isl_tab *tab, int con)
1360 return cut_to_hyperplane(ctx, tab, &tab->con[con]);
1363 static int may_be_equality(struct isl_tab *tab, int row)
1365 return (tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
1366 : isl_int_lt(tab->mat->row[row][1],
1367 tab->mat->row[row][0])) &&
1368 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1369 tab->n_col - tab->n_dead) != -1;
1372 /* Check for (near) equalities among the constraints.
1373 * A constraint is an equality if it is non-negative and if
1374 * its maximal value is either
1375 * - zero (in case of rational tableaus), or
1376 * - strictly less than 1 (in case of integer tableaus)
1378 * We first mark all non-redundant and non-dead variables that
1379 * are not frozen and not obviously not an equality.
1380 * Then we iterate over all marked variables if they can attain
1381 * any values larger than zero or at least one.
1382 * If the maximal value is zero, we mark any column variables
1383 * that appear in the row as being zero and mark the row as being redundant.
1384 * Otherwise, if the maximal value is strictly less than one (and the
1385 * tableau is integer), then we restrict the value to being zero
1386 * by adding an opposite non-negative variable.
1388 struct isl_tab *isl_tab_detect_equalities(struct isl_ctx *ctx,
1389 struct isl_tab *tab)
1398 if (tab->n_dead == tab->n_col)
1402 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1403 struct isl_tab_var *var = var_from_row(ctx, tab, i);
1404 var->marked = !var->frozen && var->is_nonneg &&
1405 may_be_equality(tab, i);
1409 for (i = tab->n_dead; i < tab->n_col; ++i) {
1410 struct isl_tab_var *var = var_from_col(ctx, tab, i);
1411 var->marked = !var->frozen && var->is_nonneg;
1416 struct isl_tab_var *var;
1417 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1418 var = var_from_row(ctx, tab, i);
1422 if (i == tab->n_row) {
1423 for (i = tab->n_dead; i < tab->n_col; ++i) {
1424 var = var_from_col(ctx, tab, i);
1428 if (i == tab->n_col)
1433 if (sign_of_max(ctx, tab, var) == 0)
1434 close_row(ctx, tab, var);
1435 else if (!tab->rational && !at_least_one(ctx, tab, var)) {
1436 tab = cut_to_hyperplane(ctx, tab, var);
1437 return isl_tab_detect_equalities(ctx, tab);
1439 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1440 var = var_from_row(ctx, tab, i);
1443 if (may_be_equality(tab, i))
1453 /* Check for (near) redundant constraints.
1454 * A constraint is redundant if it is non-negative and if
1455 * its minimal value (temporarily ignoring the non-negativity) is either
1456 * - zero (in case of rational tableaus), or
1457 * - strictly larger than -1 (in case of integer tableaus)
1459 * We first mark all non-redundant and non-dead variables that
1460 * are not frozen and not obviously negatively unbounded.
1461 * Then we iterate over all marked variables if they can attain
1462 * any values smaller than zero or at most negative one.
1463 * If not, we mark the row as being redundant (assuming it hasn't
1464 * been detected as being obviously redundant in the mean time).
1466 struct isl_tab *isl_tab_detect_redundant(struct isl_ctx *ctx,
1467 struct isl_tab *tab)
1476 if (tab->n_redundant == tab->n_row)
1480 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1481 struct isl_tab_var *var = var_from_row(ctx, tab, i);
1482 var->marked = !var->frozen && var->is_nonneg;
1486 for (i = tab->n_dead; i < tab->n_col; ++i) {
1487 struct isl_tab_var *var = var_from_col(ctx, tab, i);
1488 var->marked = !var->frozen && var->is_nonneg &&
1489 !min_is_manifestly_unbounded(ctx, tab, var);
1494 struct isl_tab_var *var;
1495 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1496 var = var_from_row(ctx, tab, i);
1500 if (i == tab->n_row) {
1501 for (i = tab->n_dead; i < tab->n_col; ++i) {
1502 var = var_from_col(ctx, tab, i);
1506 if (i == tab->n_col)
1511 if ((tab->rational ? (sign_of_min(ctx, tab, var) >= 0)
1512 : !min_at_most_neg_one(ctx, tab, var)) &&
1514 mark_redundant(ctx, tab, var->index);
1515 for (i = tab->n_dead; i < tab->n_col; ++i) {
1516 var = var_from_col(ctx, tab, i);
1519 if (!min_is_manifestly_unbounded(ctx, tab, var))
1529 int isl_tab_is_equality(struct isl_ctx *ctx, struct isl_tab *tab, int con)
1535 if (tab->con[con].is_zero)
1537 if (tab->con[con].is_redundant)
1539 if (!tab->con[con].is_row)
1540 return tab->con[con].index < tab->n_dead;
1542 row = tab->con[con].index;
1544 return isl_int_is_zero(tab->mat->row[row][1]) &&
1545 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1546 tab->n_col - tab->n_dead) == -1;
1549 /* Return the minimial value of the affine expression "f" with denominator
1550 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
1551 * the expression cannot attain arbitrarily small values.
1552 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
1553 * The return value reflects the nature of the result (empty, unbounded,
1554 * minmimal value returned in *opt).
1556 enum isl_lp_result isl_tab_min(struct isl_ctx *ctx, struct isl_tab *tab,
1557 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
1561 enum isl_lp_result res = isl_lp_ok;
1562 struct isl_tab_var *var;
1563 struct isl_tab_undo *snap;
1566 return isl_lp_empty;
1568 snap = isl_tab_snap(ctx, tab);
1569 r = add_row(ctx, tab, f);
1571 return isl_lp_error;
1573 isl_int_mul(tab->mat->row[var->index][0],
1574 tab->mat->row[var->index][0], denom);
1577 find_pivot(ctx, tab, var, var, -1, &row, &col);
1578 if (row == var->index) {
1579 res = isl_lp_unbounded;
1584 pivot(ctx, tab, row, col);
1586 if (isl_tab_rollback(ctx, tab, snap) < 0)
1587 return isl_lp_error;
1588 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
1591 isl_vec_free(tab->dual);
1592 tab->dual = isl_vec_alloc(ctx, 1 + tab->n_con);
1594 return isl_lp_error;
1595 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
1596 for (i = 0; i < tab->n_con; ++i) {
1597 if (tab->con[i].is_row)
1598 isl_int_set_si(tab->dual->el[1 + i], 0);
1600 int pos = 2 + tab->con[i].index;
1601 isl_int_set(tab->dual->el[1 + i],
1602 tab->mat->row[var->index][pos]);
1606 if (res == isl_lp_ok) {
1608 isl_int_set(*opt, tab->mat->row[var->index][1]);
1609 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
1611 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
1612 tab->mat->row[var->index][0]);
1617 int isl_tab_is_redundant(struct isl_ctx *ctx, struct isl_tab *tab, int con)
1624 if (tab->con[con].is_zero)
1626 if (tab->con[con].is_redundant)
1628 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
1631 /* Take a snapshot of the tableau that can be restored by s call to
1634 struct isl_tab_undo *isl_tab_snap(struct isl_ctx *ctx, struct isl_tab *tab)
1642 /* Undo the operation performed by isl_tab_relax.
1644 static void unrelax(struct isl_ctx *ctx,
1645 struct isl_tab *tab, struct isl_tab_var *var)
1647 if (!var->is_row && !max_is_manifestly_unbounded(ctx, tab, var))
1648 to_row(ctx, tab, var, 1);
1651 isl_int_sub(tab->mat->row[var->index][1],
1652 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1656 for (i = 0; i < tab->n_row; ++i) {
1657 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1659 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
1660 tab->mat->row[i][2 + var->index]);
1666 static void perform_undo(struct isl_ctx *ctx, struct isl_tab *tab,
1667 struct isl_tab_undo *undo)
1669 switch(undo->type) {
1670 case isl_tab_undo_empty:
1673 case isl_tab_undo_nonneg:
1674 undo->var->is_nonneg = 0;
1676 case isl_tab_undo_redundant:
1677 undo->var->is_redundant = 0;
1680 case isl_tab_undo_zero:
1681 undo->var->is_zero = 0;
1684 case isl_tab_undo_allocate:
1685 if (!undo->var->is_row) {
1686 if (max_is_manifestly_unbounded(ctx, tab, undo->var))
1687 to_row(ctx, tab, undo->var, -1);
1689 to_row(ctx, tab, undo->var, 1);
1691 drop_row(ctx, tab, undo->var->index);
1693 case isl_tab_undo_relax:
1694 unrelax(ctx, tab, undo->var);
1699 /* Return the tableau to the state it was in when the snapshot "snap"
1702 int isl_tab_rollback(struct isl_ctx *ctx, struct isl_tab *tab,
1703 struct isl_tab_undo *snap)
1705 struct isl_tab_undo *undo, *next;
1711 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
1715 perform_undo(ctx, tab, undo);
1725 /* The given row "row" represents an inequality violated by all
1726 * points in the tableau. Check for some special cases of such
1727 * separating constraints.
1728 * In particular, if the row has been reduced to the constant -1,
1729 * then we know the inequality is adjacent (but opposite) to
1730 * an equality in the tableau.
1731 * If the row has been reduced to r = -1 -r', with r' an inequality
1732 * of the tableau, then the inequality is adjacent (but opposite)
1733 * to the inequality r'.
1735 static enum isl_ineq_type separation_type(struct isl_ctx *ctx,
1736 struct isl_tab *tab, unsigned row)
1741 return isl_ineq_separate;
1743 if (!isl_int_is_one(tab->mat->row[row][0]))
1744 return isl_ineq_separate;
1745 if (!isl_int_is_negone(tab->mat->row[row][1]))
1746 return isl_ineq_separate;
1748 pos = isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1749 tab->n_col - tab->n_dead);
1751 return isl_ineq_adj_eq;
1753 if (!isl_int_is_negone(tab->mat->row[row][2 + tab->n_dead + pos]))
1754 return isl_ineq_separate;
1756 pos = isl_seq_first_non_zero(
1757 tab->mat->row[row] + 2 + tab->n_dead + pos + 1,
1758 tab->n_col - tab->n_dead - pos - 1);
1760 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
1763 /* Check the effect of inequality "ineq" on the tableau "tab".
1765 * isl_ineq_redundant: satisfied by all points in the tableau
1766 * isl_ineq_separate: satisfied by no point in the tableau
1767 * isl_ineq_cut: satisfied by some by not all points
1768 * isl_ineq_adj_eq: adjacent to an equality
1769 * isl_ineq_adj_ineq: adjacent to an inequality.
1771 enum isl_ineq_type isl_tab_ineq_type(struct isl_ctx *ctx, struct isl_tab *tab,
1774 enum isl_ineq_type type = isl_ineq_error;
1775 struct isl_tab_undo *snap = NULL;
1780 return isl_ineq_error;
1782 if (extend_cons(ctx, tab, 1) < 0)
1783 return isl_ineq_error;
1785 snap = isl_tab_snap(ctx, tab);
1787 con = add_row(ctx, tab, ineq);
1791 row = tab->con[con].index;
1792 if (is_redundant(ctx, tab, row))
1793 type = isl_ineq_redundant;
1794 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
1796 isl_int_abs_ge(tab->mat->row[row][1],
1797 tab->mat->row[row][0]))) {
1798 if (at_least_zero(ctx, tab, &tab->con[con]))
1799 type = isl_ineq_cut;
1801 type = separation_type(ctx, tab, row);
1802 } else if (tab->rational ? (sign_of_min(ctx, tab, &tab->con[con]) < 0)
1803 : min_at_most_neg_one(ctx, tab, &tab->con[con]))
1804 type = isl_ineq_cut;
1806 type = isl_ineq_redundant;
1808 if (isl_tab_rollback(ctx, tab, snap))
1809 return isl_ineq_error;
1812 isl_tab_rollback(ctx, tab, snap);
1813 return isl_ineq_error;
1816 void isl_tab_dump(struct isl_ctx *ctx, struct isl_tab *tab,
1817 FILE *out, int indent)
1823 fprintf(out, "%*snull tab\n", indent, "");
1826 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
1827 tab->n_redundant, tab->n_dead);
1829 fprintf(out, ", rational");
1831 fprintf(out, ", empty");
1833 fprintf(out, "%*s[", indent, "");
1834 for (i = 0; i < tab->n_var; ++i) {
1837 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
1839 tab->var[i].is_zero ? " [=0]" :
1840 tab->var[i].is_redundant ? " [R]" : "");
1842 fprintf(out, "]\n");
1843 fprintf(out, "%*s[", indent, "");
1844 for (i = 0; i < tab->n_con; ++i) {
1847 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
1849 tab->con[i].is_zero ? " [=0]" :
1850 tab->con[i].is_redundant ? " [R]" : "");
1852 fprintf(out, "]\n");
1853 fprintf(out, "%*s[", indent, "");
1854 for (i = 0; i < tab->n_row; ++i) {
1857 fprintf(out, "r%d: %d%s", i, tab->row_var[i],
1858 var_from_row(ctx, tab, i)->is_nonneg ? " [>=0]" : "");
1860 fprintf(out, "]\n");
1861 fprintf(out, "%*s[", indent, "");
1862 for (i = 0; i < tab->n_col; ++i) {
1865 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
1866 var_from_col(ctx, tab, i)->is_nonneg ? " [>=0]" : "");
1868 fprintf(out, "]\n");
1869 r = tab->mat->n_row;
1870 tab->mat->n_row = tab->n_row;
1871 c = tab->mat->n_col;
1872 tab->mat->n_col = 2 + tab->n_col;
1873 isl_mat_dump(tab->mat, out, indent);
1874 tab->mat->n_row = r;
1875 tab->mat->n_col = c;