1 #include "isl_map_private.h"
5 * The implementation of tableaus in this file was inspired by Section 8
6 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
7 * prover for program checking".
10 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
11 unsigned n_row, unsigned n_var)
16 tab = isl_calloc_type(ctx, struct isl_tab);
19 tab->mat = isl_mat_alloc(ctx, n_row, 2 + n_var);
22 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
25 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
28 tab->col_var = isl_alloc_array(ctx, int, n_var);
31 tab->row_var = isl_alloc_array(ctx, int, n_row);
34 for (i = 0; i < n_var; ++i) {
35 tab->var[i].index = i;
36 tab->var[i].is_row = 0;
37 tab->var[i].is_nonneg = 0;
38 tab->var[i].is_zero = 0;
39 tab->var[i].is_redundant = 0;
40 tab->var[i].frozen = 0;
53 tab->bottom.type = isl_tab_undo_bottom;
54 tab->bottom.next = NULL;
55 tab->top = &tab->bottom;
58 isl_tab_free(ctx, tab);
62 static int extend_cons(struct isl_ctx *ctx, struct isl_tab *tab, unsigned n_new)
64 if (tab->max_con < tab->n_con + n_new) {
65 struct isl_tab_var *con;
67 con = isl_realloc_array(ctx, tab->con,
68 struct isl_tab_var, tab->max_con + n_new);
72 tab->max_con += n_new;
74 if (tab->mat->n_row < tab->n_row + n_new) {
77 tab->mat = isl_mat_extend(ctx, tab->mat,
78 tab->n_row + n_new, tab->n_col);
81 row_var = isl_realloc_array(ctx, tab->row_var,
82 int, tab->mat->n_row);
85 tab->row_var = row_var;
90 struct isl_tab *isl_tab_extend(struct isl_ctx *ctx, struct isl_tab *tab,
93 if (extend_cons(ctx, tab, n_new) >= 0)
96 isl_tab_free(ctx, tab);
100 static void free_undo(struct isl_ctx *ctx, struct isl_tab *tab)
102 struct isl_tab_undo *undo, *next;
104 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
111 void isl_tab_free(struct isl_ctx *ctx, struct isl_tab *tab)
116 isl_mat_free(ctx, tab->mat);
124 static struct isl_tab_var *var_from_index(struct isl_ctx *ctx,
125 struct isl_tab *tab, int i)
130 return &tab->con[~i];
133 static struct isl_tab_var *var_from_row(struct isl_ctx *ctx,
134 struct isl_tab *tab, int i)
136 return var_from_index(ctx, tab, tab->row_var[i]);
139 static struct isl_tab_var *var_from_col(struct isl_ctx *ctx,
140 struct isl_tab *tab, int i)
142 return var_from_index(ctx, tab, tab->col_var[i]);
145 /* Check if there are any upper bounds on column variable "var",
146 * i.e., non-negative rows where var appears with a negative coefficient.
147 * Return 1 if there are no such bounds.
149 static int max_is_manifestly_unbounded(struct isl_ctx *ctx,
150 struct isl_tab *tab, struct isl_tab_var *var)
156 for (i = tab->n_redundant; i < tab->n_row; ++i) {
157 if (!isl_int_is_neg(tab->mat->row[i][2 + var->index]))
159 if (var_from_row(ctx, tab, i)->is_nonneg)
165 /* Check if there are any lower bounds on column variable "var",
166 * i.e., non-negative rows where var appears with a positive coefficient.
167 * Return 1 if there are no such bounds.
169 static int min_is_manifestly_unbounded(struct isl_ctx *ctx,
170 struct isl_tab *tab, struct isl_tab_var *var)
176 for (i = tab->n_redundant; i < tab->n_row; ++i) {
177 if (!isl_int_is_pos(tab->mat->row[i][2 + var->index]))
179 if (var_from_row(ctx, tab, i)->is_nonneg)
185 /* Given the index of a column "c", return the index of a row
186 * that can be used to pivot the column in, with either an increase
187 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
188 * If "var" is not NULL, then the row returned will be different from
189 * the one associated with "var".
191 * Each row in the tableau is of the form
193 * x_r = a_r0 + \sum_i a_ri x_i
195 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
196 * impose any limit on the increase or decrease in the value of x_c
197 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
198 * for the row with the smallest (most stringent) such bound.
199 * Note that the common denominator of each row drops out of the fraction.
200 * To check if row j has a smaller bound than row r, i.e.,
201 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
202 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
203 * where -sign(a_jc) is equal to "sgn".
205 static int pivot_row(struct isl_ctx *ctx, struct isl_tab *tab,
206 struct isl_tab_var *var, int sgn, int c)
213 for (j = tab->n_redundant; j < tab->n_row; ++j) {
214 if (var && j == var->index)
216 if (!var_from_row(ctx, tab, j)->is_nonneg)
218 if (sgn * isl_int_sgn(tab->mat->row[j][2 + c]) >= 0)
224 isl_int_mul(t, tab->mat->row[r][1], tab->mat->row[j][2 + c]);
225 isl_int_submul(t, tab->mat->row[j][1], tab->mat->row[r][2 + c]);
226 tsgn = sgn * isl_int_sgn(t);
227 if (tsgn < 0 || (tsgn == 0 &&
228 tab->row_var[j] < tab->row_var[r]))
235 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
236 * (sgn < 0) the value of row variable var.
237 * As the given row in the tableau is of the form
239 * x_r = a_r0 + \sum_i a_ri x_i
241 * we need to find a column such that the sign of a_ri is equal to "sgn"
242 * (such that an increase in x_i will have the desired effect) or a
243 * column with a variable that may attain negative values.
244 * If a_ri is positive, then we need to move x_i in the same direction
245 * to obtain the desired effect. Otherwise, x_i has to move in the
246 * opposite direction.
248 static void find_pivot(struct isl_ctx *ctx, struct isl_tab *tab,
249 struct isl_tab_var *var, int sgn, int *row, int *col)
256 isl_assert(ctx, var->is_row, return);
257 tr = tab->mat->row[var->index];
260 for (j = tab->n_dead; j < tab->n_col; ++j) {
261 if (isl_int_is_zero(tr[2 + j]))
263 if (isl_int_sgn(tr[2 + j]) != sgn &&
264 var_from_col(ctx, tab, j)->is_nonneg)
266 if (c < 0 || tab->col_var[j] < tab->col_var[c])
272 sgn *= isl_int_sgn(tr[2 + c]);
273 r = pivot_row(ctx, tab, var, sgn, c);
274 *row = r < 0 ? var->index : r;
278 /* Return 1 if row "row" represents an obviously redundant inequality.
280 * - it represents an inequality or a variable
281 * - that is the sum of a non-negative sample value and a positive
282 * combination of zero or more non-negative variables.
284 static int is_redundant(struct isl_ctx *ctx, struct isl_tab *tab, int row)
288 if (tab->row_var[row] < 0 && !var_from_row(ctx, tab, row)->is_nonneg)
291 if (isl_int_is_neg(tab->mat->row[row][1]))
294 for (i = tab->n_dead; i < tab->n_col; ++i) {
295 if (isl_int_is_zero(tab->mat->row[row][2 + i]))
297 if (isl_int_is_neg(tab->mat->row[row][2 + i]))
299 if (!var_from_col(ctx, tab, i)->is_nonneg)
305 static void swap_rows(struct isl_ctx *ctx,
306 struct isl_tab *tab, int row1, int row2)
309 t = tab->row_var[row1];
310 tab->row_var[row1] = tab->row_var[row2];
311 tab->row_var[row2] = t;
312 var_from_row(ctx, tab, row1)->index = row1;
313 var_from_row(ctx, tab, row2)->index = row2;
314 tab->mat = isl_mat_swap_rows(ctx, tab->mat, row1, row2);
317 static void push(struct isl_ctx *ctx, struct isl_tab *tab,
318 enum isl_tab_undo_type type, struct isl_tab_var *var)
320 struct isl_tab_undo *undo;
325 undo = isl_alloc_type(ctx, struct isl_tab_undo);
333 undo->next = tab->top;
337 /* Mark row with index "row" as being redundant.
338 * If we may need to undo the operation or if the row represents
339 * a variable of the original problem, the row is kept,
340 * but no longer considered when looking for a pivot row.
341 * Otherwise, the row is simply removed.
343 * The row may be interchanged with some other row. If it
344 * is interchanged with a later row, return 1. Otherwise return 0.
345 * If the rows are checked in order in the calling function,
346 * then a return value of 1 means that the row with the given
347 * row number may now contain a different row that hasn't been checked yet.
349 static int mark_redundant(struct isl_ctx *ctx,
350 struct isl_tab *tab, int row)
352 struct isl_tab_var *var = var_from_row(ctx, tab, row);
353 var->is_redundant = 1;
354 isl_assert(ctx, row >= tab->n_redundant, return);
355 if (tab->need_undo || tab->row_var[row] >= 0) {
356 if (tab->row_var[row] >= 0) {
358 push(ctx, tab, isl_tab_undo_nonneg, var);
360 if (row != tab->n_redundant)
361 swap_rows(ctx, tab, row, tab->n_redundant);
362 push(ctx, tab, isl_tab_undo_redundant, var);
366 if (row != tab->n_row - 1)
367 swap_rows(ctx, tab, row, tab->n_row - 1);
368 var_from_row(ctx, tab, tab->n_row - 1)->index = -1;
374 static void mark_empty(struct isl_ctx *ctx, struct isl_tab *tab)
376 if (!tab->empty && tab->need_undo)
377 push(ctx, tab, isl_tab_undo_empty, NULL);
381 /* Given a row number "row" and a column number "col", pivot the tableau
382 * such that the associated variable are interchanged.
383 * The given row in the tableau expresses
385 * x_r = a_r0 + \sum_i a_ri x_i
389 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
391 * Substituting this equality into the other rows
393 * x_j = a_j0 + \sum_i a_ji x_i
395 * with a_jc \ne 0, we obtain
397 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
404 * where i is any other column and j is any other row,
405 * is therefore transformed into
407 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
408 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
410 * The transformation is performed along the following steps
415 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
418 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
419 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
421 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
422 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
424 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
425 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
427 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
428 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
431 static void pivot(struct isl_ctx *ctx,
432 struct isl_tab *tab, int row, int col)
437 struct isl_mat *mat = tab->mat;
438 struct isl_tab_var *var;
440 isl_int_swap(mat->row[row][0], mat->row[row][2 + col]);
441 sgn = isl_int_sgn(mat->row[row][0]);
443 isl_int_neg(mat->row[row][0], mat->row[row][0]);
444 isl_int_neg(mat->row[row][2 + col], mat->row[row][2 + col]);
446 for (j = 0; j < 1 + tab->n_col; ++j) {
449 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
451 if (!isl_int_is_one(mat->row[row][0]))
452 isl_seq_normalize(mat->row[row], 2 + tab->n_col);
453 for (i = 0; i < tab->n_row; ++i) {
456 if (isl_int_is_zero(mat->row[i][2 + col]))
458 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
459 for (j = 0; j < 1 + tab->n_col; ++j) {
462 isl_int_mul(mat->row[i][1 + j],
463 mat->row[i][1 + j], mat->row[row][0]);
464 isl_int_addmul(mat->row[i][1 + j],
465 mat->row[i][2 + col], mat->row[row][1 + j]);
467 isl_int_mul(mat->row[i][2 + col],
468 mat->row[i][2 + col], mat->row[row][2 + col]);
469 if (!isl_int_is_one(mat->row[row][0]))
470 isl_seq_normalize(mat->row[i], 2 + tab->n_col);
472 t = tab->row_var[row];
473 tab->row_var[row] = tab->col_var[col];
474 tab->col_var[col] = t;
475 var = var_from_row(ctx, tab, row);
478 var = var_from_col(ctx, tab, col);
481 for (i = tab->n_redundant; i < tab->n_row; ++i) {
482 if (isl_int_is_zero(mat->row[i][2 + col]))
484 if (!var_from_row(ctx, tab, i)->frozen &&
485 is_redundant(ctx, tab, i))
486 if (mark_redundant(ctx, tab, i))
491 /* If "var" represents a column variable, then pivot is up (sgn > 0)
492 * or down (sgn < 0) to a row. The variable is assumed not to be
493 * unbounded in the specified direction.
495 static void to_row(struct isl_ctx *ctx,
496 struct isl_tab *tab, struct isl_tab_var *var, int sign)
503 r = pivot_row(ctx, tab, NULL, sign, var->index);
504 isl_assert(ctx, r >= 0, return);
505 pivot(ctx, tab, r, var->index);
508 static void check_table(struct isl_ctx *ctx, struct isl_tab *tab)
514 for (i = 0; i < tab->n_row; ++i) {
515 if (!var_from_row(ctx, tab, i)->is_nonneg)
517 assert(!isl_int_is_neg(tab->mat->row[i][1]));
521 /* Return the sign of the maximal value of "var".
522 * If the sign is not negative, then on return from this function,
523 * the sample value will also be non-negative.
525 * If "var" is manifestly unbounded wrt positive values, we are done.
526 * Otherwise, we pivot the variable up to a row if needed
527 * Then we continue pivoting down until either
528 * - no more down pivots can be performed
529 * - the sample value is positive
530 * - the variable is pivoted into a manifestly unbounded column
532 static int sign_of_max(struct isl_ctx *ctx,
533 struct isl_tab *tab, struct isl_tab_var *var)
537 if (max_is_manifestly_unbounded(ctx, tab, var))
539 to_row(ctx, tab, var, 1);
540 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
541 find_pivot(ctx, tab, var, 1, &row, &col);
543 return isl_int_sgn(tab->mat->row[var->index][1]);
544 pivot(ctx, tab, row, col);
545 if (!var->is_row) /* manifestly unbounded */
551 /* Perform pivots until the row variable "var" has a non-negative
552 * sample value or until no more upward pivots can be performed.
553 * Return the sign of the sample value after the pivots have been
556 static int restore_row(struct isl_ctx *ctx,
557 struct isl_tab *tab, struct isl_tab_var *var)
561 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
562 find_pivot(ctx, tab, var, 1, &row, &col);
565 pivot(ctx, tab, row, col);
566 if (!var->is_row) /* manifestly unbounded */
569 return isl_int_sgn(tab->mat->row[var->index][1]);
572 /* Perform pivots until we are sure that the row variable "var"
573 * can attain non-negative values. After return from this
574 * function, "var" is still a row variable, but its sample
575 * value may not be non-negative, even if the function returns 1.
577 static int at_least_zero(struct isl_ctx *ctx,
578 struct isl_tab *tab, struct isl_tab_var *var)
582 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
583 find_pivot(ctx, tab, var, 1, &row, &col);
586 if (row == var->index) /* manifestly unbounded */
588 pivot(ctx, tab, row, col);
590 return !isl_int_is_neg(tab->mat->row[var->index][1]);
593 /* Return a negative value if "var" can attain negative values.
594 * Return a non-negative value otherwise.
596 * If "var" is manifestly unbounded wrt negative values, we are done.
597 * Otherwise, if var is in a column, we can pivot it down to a row.
598 * Then we continue pivoting down until either
599 * - the pivot would result in a manifestly unbounded column
600 * => we don't perform the pivot, but simply return -1
601 * - no more down pivots can be performed
602 * - the sample value is negative
603 * If the sample value becomes negative and the variable is supposed
604 * to be nonnegative, then we undo the last pivot.
605 * However, if the last pivot has made the pivoting variable
606 * obviously redundant, then it may have moved to another row.
607 * In that case we look for upward pivots until we reach a non-negative
610 static int sign_of_min(struct isl_ctx *ctx,
611 struct isl_tab *tab, struct isl_tab_var *var)
614 struct isl_tab_var *pivot_var;
616 if (min_is_manifestly_unbounded(ctx, tab, var))
620 row = pivot_row(ctx, tab, NULL, -1, col);
621 pivot_var = var_from_col(ctx, tab, col);
622 pivot(ctx, tab, row, col);
623 if (var->is_redundant)
625 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
626 if (var->is_nonneg) {
627 if (!pivot_var->is_redundant &&
628 pivot_var->index == row)
629 pivot(ctx, tab, row, col);
631 restore_row(ctx, tab, var);
636 if (var->is_redundant)
638 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
639 find_pivot(ctx, tab, var, -1, &row, &col);
640 if (row == var->index)
643 return isl_int_sgn(tab->mat->row[var->index][1]);
644 pivot_var = var_from_col(ctx, tab, col);
645 pivot(ctx, tab, row, col);
646 if (var->is_redundant)
649 if (var->is_nonneg) {
650 /* pivot back to non-negative value */
651 if (!pivot_var->is_redundant && pivot_var->index == row)
652 pivot(ctx, tab, row, col);
654 restore_row(ctx, tab, var);
659 /* Return 1 if "var" can attain values <= -1.
660 * Return 0 otherwise.
662 * The sample value of "var" is assumed to be non-negative when the
663 * the function is called and will be made non-negative again before
664 * the function returns.
666 static int min_at_most_neg_one(struct isl_ctx *ctx,
667 struct isl_tab *tab, struct isl_tab_var *var)
670 struct isl_tab_var *pivot_var;
672 if (min_is_manifestly_unbounded(ctx, tab, var))
676 row = pivot_row(ctx, tab, NULL, -1, col);
677 pivot_var = var_from_col(ctx, tab, col);
678 pivot(ctx, tab, row, col);
679 if (var->is_redundant)
681 if (isl_int_is_neg(tab->mat->row[var->index][1]) &&
682 isl_int_abs_ge(tab->mat->row[var->index][1],
683 tab->mat->row[var->index][0])) {
684 if (var->is_nonneg) {
685 if (!pivot_var->is_redundant &&
686 pivot_var->index == row)
687 pivot(ctx, tab, row, col);
689 restore_row(ctx, tab, var);
694 if (var->is_redundant)
697 find_pivot(ctx, tab, var, -1, &row, &col);
698 if (row == var->index)
702 pivot_var = var_from_col(ctx, tab, col);
703 pivot(ctx, tab, row, col);
704 if (var->is_redundant)
706 } while (!isl_int_is_neg(tab->mat->row[var->index][1]) ||
707 isl_int_abs_lt(tab->mat->row[var->index][1],
708 tab->mat->row[var->index][0]));
709 if (var->is_nonneg) {
710 /* pivot back to non-negative value */
711 if (!pivot_var->is_redundant && pivot_var->index == row)
712 pivot(ctx, tab, row, col);
713 restore_row(ctx, tab, var);
718 /* Return 1 if "var" can attain values >= 1.
719 * Return 0 otherwise.
721 static int at_least_one(struct isl_ctx *ctx,
722 struct isl_tab *tab, struct isl_tab_var *var)
727 if (max_is_manifestly_unbounded(ctx, tab, var))
729 to_row(ctx, tab, var, 1);
730 r = tab->mat->row[var->index];
731 while (isl_int_lt(r[1], r[0])) {
732 find_pivot(ctx, tab, var, 1, &row, &col);
734 return isl_int_ge(r[1], r[0]);
735 if (row == var->index) /* manifestly unbounded */
737 pivot(ctx, tab, row, col);
742 static void swap_cols(struct isl_ctx *ctx,
743 struct isl_tab *tab, int col1, int col2)
746 t = tab->col_var[col1];
747 tab->col_var[col1] = tab->col_var[col2];
748 tab->col_var[col2] = t;
749 var_from_col(ctx, tab, col1)->index = col1;
750 var_from_col(ctx, tab, col2)->index = col2;
751 tab->mat = isl_mat_swap_cols(ctx, tab->mat, 2 + col1, 2 + col2);
754 /* Mark column with index "col" as representing a zero variable.
755 * If we may need to undo the operation the column is kept,
756 * but no longer considered.
757 * Otherwise, the column is simply removed.
759 * The column may be interchanged with some other column. If it
760 * is interchanged with a later column, return 1. Otherwise return 0.
761 * If the columns are checked in order in the calling function,
762 * then a return value of 1 means that the column with the given
763 * column number may now contain a different column that
764 * hasn't been checked yet.
766 static int kill_col(struct isl_ctx *ctx,
767 struct isl_tab *tab, int col)
769 var_from_col(ctx, tab, col)->is_zero = 1;
770 if (tab->need_undo) {
771 push(ctx, tab, isl_tab_undo_zero, var_from_col(ctx, tab, col));
772 if (col != tab->n_dead)
773 swap_cols(ctx, tab, col, tab->n_dead);
777 if (col != tab->n_col - 1)
778 swap_cols(ctx, tab, col, tab->n_col - 1);
779 var_from_col(ctx, tab, tab->n_col - 1)->index = -1;
785 /* Row variable "var" is non-negative and cannot attain any values
786 * larger than zero. This means that the coefficients of the unrestricted
787 * column variables are zero and that the coefficients of the non-negative
788 * column variables are zero or negative.
789 * Each of the non-negative variables with a negative coefficient can
790 * then also be written as the negative sum of non-negative variables
791 * and must therefore also be zero.
793 static void close_row(struct isl_ctx *ctx,
794 struct isl_tab *tab, struct isl_tab_var *var)
797 struct isl_mat *mat = tab->mat;
799 isl_assert(ctx, var->is_nonneg, return);
801 for (j = tab->n_dead; j < tab->n_col; ++j) {
802 if (isl_int_is_zero(mat->row[var->index][2 + j]))
804 isl_assert(ctx, isl_int_is_neg(mat->row[var->index][2 + j]),
806 if (kill_col(ctx, tab, j))
809 mark_redundant(ctx, tab, var->index);
812 /* Add a row to the tableau. The row is given as an affine combination
813 * of the original variables and needs to be expressed in terms of the
816 * We add each term in turn.
817 * If r = n/d_r is the current sum and we need to add k x, then
818 * if x is a column variable, we increase the numerator of
819 * this column by k d_r
820 * if x = f/d_x is a row variable, then the new representation of r is
822 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
823 * --- + --- = ------------------- = -------------------
824 * d_r d_r d_r d_x/g m
826 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
828 static int add_row(struct isl_ctx *ctx, struct isl_tab *tab, isl_int *line)
835 isl_assert(ctx, tab->n_row < tab->mat->n_row, return -1);
840 tab->con[r].index = tab->n_row;
841 tab->con[r].is_row = 1;
842 tab->con[r].is_nonneg = 0;
843 tab->con[r].is_zero = 0;
844 tab->con[r].is_redundant = 0;
845 tab->con[r].frozen = 0;
846 tab->row_var[tab->n_row] = ~r;
847 row = tab->mat->row[tab->n_row];
848 isl_int_set_si(row[0], 1);
849 isl_int_set(row[1], line[0]);
850 isl_seq_clr(row + 2, tab->n_col);
851 for (i = 0; i < tab->n_var; ++i) {
852 if (tab->var[i].is_zero)
854 if (tab->var[i].is_row) {
856 row[0], tab->mat->row[tab->var[i].index][0]);
857 isl_int_swap(a, row[0]);
858 isl_int_divexact(a, row[0], a);
860 row[0], tab->mat->row[tab->var[i].index][0]);
861 isl_int_mul(b, b, line[1 + i]);
862 isl_seq_combine(row + 1, a, row + 1,
863 b, tab->mat->row[tab->var[i].index] + 1,
866 isl_int_addmul(row[2 + tab->var[i].index],
867 line[1 + i], row[0]);
869 isl_seq_normalize(row, 2 + tab->n_col);
872 push(ctx, tab, isl_tab_undo_allocate, &tab->con[r]);
879 static int drop_row(struct isl_ctx *ctx, struct isl_tab *tab, int row)
881 isl_assert(ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
882 if (row != tab->n_row - 1)
883 swap_rows(ctx, tab, row, tab->n_row - 1);
889 /* Add inequality "ineq" and check if it conflicts with the
890 * previously added constraints or if it is obviously redundant.
892 struct isl_tab *isl_tab_add_ineq(struct isl_ctx *ctx,
893 struct isl_tab *tab, isl_int *ineq)
900 r = add_row(ctx, tab, ineq);
903 tab->con[r].is_nonneg = 1;
904 push(ctx, tab, isl_tab_undo_nonneg, &tab->con[r]);
905 if (is_redundant(ctx, tab, tab->con[r].index)) {
906 mark_redundant(ctx, tab, tab->con[r].index);
910 sgn = restore_row(ctx, tab, &tab->con[r]);
912 mark_empty(ctx, tab);
913 else if (tab->con[r].is_row &&
914 is_redundant(ctx, tab, tab->con[r].index))
915 mark_redundant(ctx, tab, tab->con[r].index);
918 isl_tab_free(ctx, tab);
922 /* We assume Gaussian elimination has been performed on the equalities.
923 * The equalities can therefore never conflict.
924 * Adding the equalities is currently only really useful for a later call
925 * to isl_tab_ineq_type.
927 static struct isl_tab *add_eq(struct isl_ctx *ctx,
928 struct isl_tab *tab, isl_int *eq)
935 r = add_row(ctx, tab, eq);
939 r = tab->con[r].index;
940 for (i = tab->n_dead; i < tab->n_col; ++i) {
941 if (isl_int_is_zero(tab->mat->row[r][2 + i]))
943 pivot(ctx, tab, r, i);
944 kill_col(ctx, tab, i);
950 isl_tab_free(ctx, tab);
954 struct isl_tab *isl_tab_from_basic_map(struct isl_basic_map *bmap)
961 tab = isl_tab_alloc(bmap->ctx,
962 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
963 isl_basic_map_total_dim(bmap));
966 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
967 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
968 mark_empty(bmap->ctx, tab);
971 for (i = 0; i < bmap->n_eq; ++i) {
972 tab = add_eq(bmap->ctx, tab, bmap->eq[i]);
976 for (i = 0; i < bmap->n_ineq; ++i) {
977 tab = isl_tab_add_ineq(bmap->ctx, tab, bmap->ineq[i]);
978 if (!tab || tab->empty)
984 struct isl_tab *isl_tab_from_basic_set(struct isl_basic_set *bset)
986 return isl_tab_from_basic_map((struct isl_basic_map *)bset);
989 /* Construct a tableau corresponding to the recession cone of "bmap".
991 struct isl_tab *isl_tab_from_recession_cone(struct isl_basic_map *bmap)
999 tab = isl_tab_alloc(bmap->ctx, bmap->n_eq + bmap->n_ineq,
1000 isl_basic_map_total_dim(bmap));
1003 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1006 for (i = 0; i < bmap->n_eq; ++i) {
1007 isl_int_swap(bmap->eq[i][0], cst);
1008 tab = add_eq(bmap->ctx, tab, bmap->eq[i]);
1009 isl_int_swap(bmap->eq[i][0], cst);
1013 for (i = 0; i < bmap->n_ineq; ++i) {
1015 isl_int_swap(bmap->ineq[i][0], cst);
1016 r = add_row(bmap->ctx, tab, bmap->ineq[i]);
1017 isl_int_swap(bmap->ineq[i][0], cst);
1020 tab->con[r].is_nonneg = 1;
1021 push(bmap->ctx, tab, isl_tab_undo_nonneg, &tab->con[r]);
1028 isl_tab_free(bmap->ctx, tab);
1032 /* Assuming "tab" is the tableau of a cone, check if the cone is
1033 * bounded, i.e., if it is empty or only contains the origin.
1035 int isl_tab_cone_is_bounded(struct isl_ctx *ctx, struct isl_tab *tab)
1043 if (tab->n_dead == tab->n_col)
1046 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1047 struct isl_tab_var *var;
1048 var = var_from_row(ctx, tab, i);
1049 if (!var->is_nonneg)
1051 if (sign_of_max(ctx, tab, var) == 0)
1052 close_row(ctx, tab, var);
1055 if (tab->n_dead == tab->n_col)
1061 static int sample_is_integer(struct isl_ctx *ctx, struct isl_tab *tab)
1065 for (i = 0; i < tab->n_var; ++i) {
1067 if (!tab->var[i].is_row)
1069 row = tab->var[i].index;
1070 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
1071 tab->mat->row[row][0]))
1077 static struct isl_vec *extract_integer_sample(struct isl_ctx *ctx,
1078 struct isl_tab *tab)
1081 struct isl_vec *vec;
1083 vec = isl_vec_alloc(ctx, 1 + tab->n_var);
1087 isl_int_set_si(vec->block.data[0], 1);
1088 for (i = 0; i < tab->n_var; ++i) {
1089 if (!tab->var[i].is_row)
1090 isl_int_set_si(vec->block.data[1 + i], 0);
1092 int row = tab->var[i].index;
1093 isl_int_divexact(vec->block.data[1 + i],
1094 tab->mat->row[row][1], tab->mat->row[row][0]);
1101 /* Update "bmap" based on the results of the tableau "tab".
1102 * In particular, implicit equalities are made explicit, redundant constraints
1103 * are removed and if the sample value happens to be integer, it is stored
1104 * in "bmap" (unless "bmap" already had an integer sample).
1106 * The tableau is assumed to have been created from "bmap" using
1107 * isl_tab_from_basic_map.
1109 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
1110 struct isl_tab *tab)
1122 bmap = isl_basic_map_set_to_empty(bmap);
1124 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1125 if (isl_tab_is_equality(bmap->ctx, tab, n_eq + i))
1126 isl_basic_map_inequality_to_equality(bmap, i);
1127 else if (isl_tab_is_redundant(bmap->ctx, tab, n_eq + i))
1128 isl_basic_map_drop_inequality(bmap, i);
1130 if (!tab->rational &&
1131 !bmap->sample && sample_is_integer(bmap->ctx, tab))
1132 bmap->sample = extract_integer_sample(bmap->ctx, tab);
1136 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
1137 struct isl_tab *tab)
1139 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
1140 (struct isl_basic_map *)bset, tab);
1143 /* Given a non-negative variable "var", add a new non-negative variable
1144 * that is the opposite of "var", ensuring that var can only attain the
1146 * If var = n/d is a row variable, then the new variable = -n/d.
1147 * If var is a column variables, then the new variable = -var.
1148 * If the new variable cannot attain non-negative values, then
1149 * the resulting tableau is empty.
1150 * Otherwise, we know the value will be zero and we close the row.
1152 static struct isl_tab *cut_to_hyperplane(struct isl_ctx *ctx,
1153 struct isl_tab *tab, struct isl_tab_var *var)
1159 if (extend_cons(ctx, tab, 1) < 0)
1163 tab->con[r].index = tab->n_row;
1164 tab->con[r].is_row = 1;
1165 tab->con[r].is_nonneg = 0;
1166 tab->con[r].is_zero = 0;
1167 tab->con[r].is_redundant = 0;
1168 tab->con[r].frozen = 0;
1169 tab->row_var[tab->n_row] = ~r;
1170 row = tab->mat->row[tab->n_row];
1173 isl_int_set(row[0], tab->mat->row[var->index][0]);
1174 isl_seq_neg(row + 1,
1175 tab->mat->row[var->index] + 1, 1 + tab->n_col);
1177 isl_int_set_si(row[0], 1);
1178 isl_seq_clr(row + 1, 1 + tab->n_col);
1179 isl_int_set_si(row[2 + var->index], -1);
1184 push(ctx, tab, isl_tab_undo_allocate, &tab->con[r]);
1186 sgn = sign_of_max(ctx, tab, &tab->con[r]);
1188 mark_empty(ctx, tab);
1190 tab->con[r].is_nonneg = 1;
1191 push(ctx, tab, isl_tab_undo_nonneg, &tab->con[r]);
1193 close_row(ctx, tab, &tab->con[r]);
1198 isl_tab_free(ctx, tab);
1202 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
1203 * relax the inequality by one. That is, the inequality r >= 0 is replaced
1204 * by r' = r + 1 >= 0.
1205 * If r is a row variable, we simply increase the constant term by one
1206 * (taking into account the denominator).
1207 * If r is a column variable, then we need to modify each row that
1208 * refers to r = r' - 1 by substituting this equality, effectively
1209 * subtracting the coefficient of the column from the constant.
1211 struct isl_tab *isl_tab_relax(struct isl_ctx *ctx,
1212 struct isl_tab *tab, int con)
1214 struct isl_tab_var *var;
1218 var = &tab->con[con];
1220 if (!var->is_row && !max_is_manifestly_unbounded(ctx, tab, var))
1221 to_row(ctx, tab, var, 1);
1224 isl_int_add(tab->mat->row[var->index][1],
1225 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1229 for (i = 0; i < tab->n_row; ++i) {
1230 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1232 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
1233 tab->mat->row[i][2 + var->index]);
1238 push(ctx, tab, isl_tab_undo_relax, var);
1243 struct isl_tab *isl_tab_select_facet(struct isl_ctx *ctx,
1244 struct isl_tab *tab, int con)
1249 return cut_to_hyperplane(ctx, tab, &tab->con[con]);
1252 static int may_be_equality(struct isl_tab *tab, int row)
1254 return (tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
1255 : isl_int_lt(tab->mat->row[row][1],
1256 tab->mat->row[row][0])) &&
1257 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1258 tab->n_col - tab->n_dead) != -1;
1261 /* Check for (near) equalities among the constraints.
1262 * A constraint is an equality if it is non-negative and if
1263 * its maximal value is either
1264 * - zero (in case of rational tableaus), or
1265 * - strictly less than 1 (in case of integer tableaus)
1267 * We first mark all non-redundant and non-dead variables that
1268 * are not frozen and not obviously not an equality.
1269 * Then we iterate over all marked variables if they can attain
1270 * any values larger than zero or at least one.
1271 * If the maximal value is zero, we mark any column variables
1272 * that appear in the row as being zero and mark the row as being redundant.
1273 * Otherwise, if the maximal value is strictly less than one (and the
1274 * tableau is integer), then we restrict the value to being zero
1275 * by adding an opposite non-negative variable.
1277 struct isl_tab *isl_tab_detect_equalities(struct isl_ctx *ctx,
1278 struct isl_tab *tab)
1287 if (tab->n_dead == tab->n_col)
1291 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1292 struct isl_tab_var *var = var_from_row(ctx, tab, i);
1293 var->marked = !var->frozen && var->is_nonneg &&
1294 may_be_equality(tab, i);
1298 for (i = tab->n_dead; i < tab->n_col; ++i) {
1299 struct isl_tab_var *var = var_from_col(ctx, tab, i);
1300 var->marked = !var->frozen && var->is_nonneg;
1305 struct isl_tab_var *var;
1306 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1307 var = var_from_row(ctx, tab, i);
1311 if (i == tab->n_row) {
1312 for (i = tab->n_dead; i < tab->n_col; ++i) {
1313 var = var_from_col(ctx, tab, i);
1317 if (i == tab->n_col)
1322 if (sign_of_max(ctx, tab, var) == 0)
1323 close_row(ctx, tab, var);
1324 else if (!tab->rational && !at_least_one(ctx, tab, var)) {
1325 tab = cut_to_hyperplane(ctx, tab, var);
1326 return isl_tab_detect_equalities(ctx, tab);
1328 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1329 var = var_from_row(ctx, tab, i);
1332 if (may_be_equality(tab, i))
1342 /* Check for (near) redundant constraints.
1343 * A constraint is redundant if it is non-negative and if
1344 * its minimal value (temporarily ignoring the non-negativity) is either
1345 * - zero (in case of rational tableaus), or
1346 * - strictly larger than -1 (in case of integer tableaus)
1348 * We first mark all non-redundant and non-dead variables that
1349 * are not frozen and not obviously negatively unbounded.
1350 * Then we iterate over all marked variables if they can attain
1351 * any values smaller than zero or at most negative one.
1352 * If not, we mark the row as being redundant (assuming it hasn't
1353 * been detected as being obviously redundant in the mean time).
1355 struct isl_tab *isl_tab_detect_redundant(struct isl_ctx *ctx,
1356 struct isl_tab *tab)
1365 if (tab->n_redundant == tab->n_row)
1369 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1370 struct isl_tab_var *var = var_from_row(ctx, tab, i);
1371 var->marked = !var->frozen && var->is_nonneg;
1375 for (i = tab->n_dead; i < tab->n_col; ++i) {
1376 struct isl_tab_var *var = var_from_col(ctx, tab, i);
1377 var->marked = !var->frozen && var->is_nonneg &&
1378 !min_is_manifestly_unbounded(ctx, tab, var);
1383 struct isl_tab_var *var;
1384 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1385 var = var_from_row(ctx, tab, i);
1389 if (i == tab->n_row) {
1390 for (i = tab->n_dead; i < tab->n_col; ++i) {
1391 var = var_from_col(ctx, tab, i);
1395 if (i == tab->n_col)
1400 if ((tab->rational ? (sign_of_min(ctx, tab, var) >= 0)
1401 : !min_at_most_neg_one(ctx, tab, var)) &&
1403 mark_redundant(ctx, tab, var->index);
1404 for (i = tab->n_dead; i < tab->n_col; ++i) {
1405 var = var_from_col(ctx, tab, i);
1408 if (!min_is_manifestly_unbounded(ctx, tab, var))
1418 int isl_tab_is_equality(struct isl_ctx *ctx, struct isl_tab *tab, int con)
1424 if (tab->con[con].is_zero)
1426 if (tab->con[con].is_redundant)
1428 if (!tab->con[con].is_row)
1429 return tab->con[con].index < tab->n_dead;
1431 row = tab->con[con].index;
1433 return isl_int_is_zero(tab->mat->row[row][1]) &&
1434 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1435 tab->n_col - tab->n_dead) == -1;
1438 /* Return the minimial value of the affine expression "f" with denominator
1439 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
1440 * the expression cannot attain arbitrarily small values.
1441 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
1442 * The return value reflects the nature of the result (empty, unbounded,
1443 * minmimal value returned in *opt).
1445 enum isl_lp_result isl_tab_min(struct isl_ctx *ctx, struct isl_tab *tab,
1446 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom)
1449 enum isl_lp_result res = isl_lp_ok;
1450 struct isl_tab_var *var;
1453 return isl_lp_empty;
1455 r = add_row(ctx, tab, f);
1457 return isl_lp_error;
1459 isl_int_mul(tab->mat->row[var->index][0],
1460 tab->mat->row[var->index][0], denom);
1463 find_pivot(ctx, tab, var, -1, &row, &col);
1464 if (row == var->index) {
1465 res = isl_lp_unbounded;
1470 pivot(ctx, tab, row, col);
1472 if (drop_row(ctx, tab, var->index) < 0)
1473 return isl_lp_error;
1474 if (res == isl_lp_ok) {
1476 isl_int_set(*opt, tab->mat->row[var->index][1]);
1477 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
1479 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
1480 tab->mat->row[var->index][0]);
1485 int isl_tab_is_redundant(struct isl_ctx *ctx, struct isl_tab *tab, int con)
1492 if (tab->con[con].is_zero)
1494 if (tab->con[con].is_redundant)
1496 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
1499 /* Take a snapshot of the tableau that can be restored by s call to
1502 struct isl_tab_undo *isl_tab_snap(struct isl_ctx *ctx, struct isl_tab *tab)
1510 /* Undo the operation performed by isl_tab_relax.
1512 static void unrelax(struct isl_ctx *ctx,
1513 struct isl_tab *tab, struct isl_tab_var *var)
1515 if (!var->is_row && !max_is_manifestly_unbounded(ctx, tab, var))
1516 to_row(ctx, tab, var, 1);
1519 isl_int_sub(tab->mat->row[var->index][1],
1520 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1524 for (i = 0; i < tab->n_row; ++i) {
1525 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1527 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
1528 tab->mat->row[i][2 + var->index]);
1534 static void perform_undo(struct isl_ctx *ctx, struct isl_tab *tab,
1535 struct isl_tab_undo *undo)
1537 switch(undo->type) {
1538 case isl_tab_undo_empty:
1541 case isl_tab_undo_nonneg:
1542 undo->var->is_nonneg = 0;
1544 case isl_tab_undo_redundant:
1545 undo->var->is_redundant = 0;
1548 case isl_tab_undo_zero:
1549 undo->var->is_zero = 0;
1552 case isl_tab_undo_allocate:
1553 if (!undo->var->is_row) {
1554 if (max_is_manifestly_unbounded(ctx, tab, undo->var))
1555 to_row(ctx, tab, undo->var, -1);
1557 to_row(ctx, tab, undo->var, 1);
1559 drop_row(ctx, tab, undo->var->index);
1561 case isl_tab_undo_relax:
1562 unrelax(ctx, tab, undo->var);
1567 /* Return the tableau to the state it was in when the snapshot "snap"
1570 int isl_tab_rollback(struct isl_ctx *ctx, struct isl_tab *tab,
1571 struct isl_tab_undo *snap)
1573 struct isl_tab_undo *undo, *next;
1578 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
1582 perform_undo(ctx, tab, undo);
1591 /* The given row "row" represents an inequality violated by all
1592 * points in the tableau. Check for some special cases of such
1593 * separating constraints.
1594 * In particular, if the row has been reduced to the constant -1,
1595 * then we know the inequality is adjacent (but opposite) to
1596 * an equality in the tableau.
1597 * If the row has been reduced to r = -1 -r', with r' an inequality
1598 * of the tableau, then the inequality is adjacent (but opposite)
1599 * to the inequality r'.
1601 static enum isl_ineq_type separation_type(struct isl_ctx *ctx,
1602 struct isl_tab *tab, unsigned row)
1607 return isl_ineq_separate;
1609 if (!isl_int_is_one(tab->mat->row[row][0]))
1610 return isl_ineq_separate;
1611 if (!isl_int_is_negone(tab->mat->row[row][1]))
1612 return isl_ineq_separate;
1614 pos = isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1615 tab->n_col - tab->n_dead);
1617 return isl_ineq_adj_eq;
1619 if (!isl_int_is_negone(tab->mat->row[row][2 + tab->n_dead + pos]))
1620 return isl_ineq_separate;
1622 pos = isl_seq_first_non_zero(
1623 tab->mat->row[row] + 2 + tab->n_dead + pos + 1,
1624 tab->n_col - tab->n_dead - pos - 1);
1626 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
1629 /* Check the effect of inequality "ineq" on the tableau "tab".
1631 * isl_ineq_redundant: satisfied by all points in the tableau
1632 * isl_ineq_separate: satisfied by no point in tha tableau
1633 * isl_ineq_cut: satisfied by some by not all points
1634 * isl_ineq_adj_eq: adjacent to an equality
1635 * isl_ineq_adj_ineq: adjacent to an inequality.
1637 enum isl_ineq_type isl_tab_ineq_type(struct isl_ctx *ctx, struct isl_tab *tab,
1640 enum isl_ineq_type type = isl_ineq_error;
1641 struct isl_tab_undo *snap = NULL;
1646 return isl_ineq_error;
1648 if (extend_cons(ctx, tab, 1) < 0)
1649 return isl_ineq_error;
1651 snap = isl_tab_snap(ctx, tab);
1653 con = add_row(ctx, tab, ineq);
1657 row = tab->con[con].index;
1658 if (is_redundant(ctx, tab, row))
1659 type = isl_ineq_redundant;
1660 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
1662 isl_int_abs_ge(tab->mat->row[row][1],
1663 tab->mat->row[row][0]))) {
1664 if (at_least_zero(ctx, tab, &tab->con[con]))
1665 type = isl_ineq_cut;
1667 type = separation_type(ctx, tab, row);
1668 } else if (tab->rational ? (sign_of_min(ctx, tab, &tab->con[con]) < 0)
1669 : min_at_most_neg_one(ctx, tab, &tab->con[con]))
1670 type = isl_ineq_cut;
1672 type = isl_ineq_redundant;
1674 if (isl_tab_rollback(ctx, tab, snap))
1675 return isl_ineq_error;
1678 isl_tab_rollback(ctx, tab, snap);
1679 return isl_ineq_error;
1682 void isl_tab_dump(struct isl_ctx *ctx, struct isl_tab *tab,
1683 FILE *out, int indent)
1689 fprintf(out, "%*snull tab\n", indent, "");
1692 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
1693 tab->n_redundant, tab->n_dead);
1695 fprintf(out, ", rational");
1697 fprintf(out, ", empty");
1699 fprintf(out, "%*s[", indent, "");
1700 for (i = 0; i < tab->n_var; ++i) {
1703 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
1705 tab->var[i].is_zero ? " [=0]" :
1706 tab->var[i].is_redundant ? " [R]" : "");
1708 fprintf(out, "]\n");
1709 fprintf(out, "%*s[", indent, "");
1710 for (i = 0; i < tab->n_con; ++i) {
1713 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
1715 tab->con[i].is_zero ? " [=0]" :
1716 tab->con[i].is_redundant ? " [R]" : "");
1718 fprintf(out, "]\n");
1719 fprintf(out, "%*s[", indent, "");
1720 for (i = 0; i < tab->n_row; ++i) {
1723 fprintf(out, "r%d: %d%s", i, tab->row_var[i],
1724 var_from_row(ctx, tab, i)->is_nonneg ? " [>=0]" : "");
1726 fprintf(out, "]\n");
1727 fprintf(out, "%*s[", indent, "");
1728 for (i = 0; i < tab->n_col; ++i) {
1731 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
1732 var_from_col(ctx, tab, i)->is_nonneg ? " [>=0]" : "");
1734 fprintf(out, "]\n");
1735 r = tab->mat->n_row;
1736 tab->mat->n_row = tab->n_row;
1737 c = tab->mat->n_col;
1738 tab->mat->n_col = 2 + tab->n_col;
1739 isl_mat_dump(ctx, tab->mat, out, indent);
1740 tab->mat->n_row = r;
1741 tab->mat->n_col = c;