1 #include "isl_sample.h"
2 #include "isl_sample_piplib.h"
6 #include "isl_map_private.h"
7 #include "isl_equalities.h"
9 #include "isl_basis_reduction.h"
11 static struct isl_vec *empty_sample(struct isl_basic_set *bset)
15 vec = isl_vec_alloc(bset->ctx, 0);
16 isl_basic_set_free(bset);
20 /* Construct a zero sample of the same dimension as bset.
21 * As a special case, if bset is zero-dimensional, this
22 * function creates a zero-dimensional sample point.
24 static struct isl_vec *zero_sample(struct isl_basic_set *bset)
27 struct isl_vec *sample;
29 dim = isl_basic_set_total_dim(bset);
30 sample = isl_vec_alloc(bset->ctx, 1 + dim);
32 isl_int_set_si(sample->el[0], 1);
33 isl_seq_clr(sample->el + 1, dim);
35 isl_basic_set_free(bset);
39 static struct isl_vec *interval_sample(struct isl_basic_set *bset)
43 struct isl_vec *sample;
45 bset = isl_basic_set_simplify(bset);
48 if (isl_basic_set_fast_is_empty(bset))
49 return empty_sample(bset);
50 if (bset->n_eq == 0 && bset->n_ineq == 0)
51 return zero_sample(bset);
53 sample = isl_vec_alloc(bset->ctx, 2);
54 isl_int_set_si(sample->block.data[0], 1);
57 isl_assert(bset->ctx, bset->n_eq == 1, goto error);
58 isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
59 if (isl_int_is_one(bset->eq[0][1]))
60 isl_int_neg(sample->el[1], bset->eq[0][0]);
62 isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
64 isl_int_set(sample->el[1], bset->eq[0][0]);
66 isl_basic_set_free(bset);
71 if (isl_int_is_one(bset->ineq[0][1]))
72 isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
74 isl_int_set(sample->block.data[1], bset->ineq[0][0]);
75 for (i = 1; i < bset->n_ineq; ++i) {
76 isl_seq_inner_product(sample->block.data,
77 bset->ineq[i], 2, &t);
78 if (isl_int_is_neg(t))
82 if (i < bset->n_ineq) {
84 return empty_sample(bset);
87 isl_basic_set_free(bset);
90 isl_basic_set_free(bset);
95 static struct isl_mat *independent_bounds(struct isl_basic_set *bset)
98 struct isl_mat *dirs = NULL;
99 struct isl_mat *bounds = NULL;
105 dim = isl_basic_set_n_dim(bset);
106 bounds = isl_mat_alloc(bset->ctx, 1+dim, 1+dim);
110 isl_int_set_si(bounds->row[0][0], 1);
111 isl_seq_clr(bounds->row[0]+1, dim);
114 if (bset->n_ineq == 0)
117 dirs = isl_mat_alloc(bset->ctx, dim, dim);
119 isl_mat_free(bounds);
122 isl_seq_cpy(dirs->row[0], bset->ineq[0]+1, dirs->n_col);
123 isl_seq_cpy(bounds->row[1], bset->ineq[0], bounds->n_col);
124 for (j = 1, n = 1; n < dim && j < bset->n_ineq; ++j) {
127 isl_seq_cpy(dirs->row[n], bset->ineq[j]+1, dirs->n_col);
129 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
132 for (i = 0; i < n; ++i) {
134 pos_i = isl_seq_first_non_zero(dirs->row[i], dirs->n_col);
139 isl_seq_elim(dirs->row[n], dirs->row[i], pos,
141 pos = isl_seq_first_non_zero(dirs->row[n], dirs->n_col);
149 isl_int *t = dirs->row[n];
150 for (k = n; k > i; --k)
151 dirs->row[k] = dirs->row[k-1];
155 isl_seq_cpy(bounds->row[n], bset->ineq[j], bounds->n_col);
162 static void swap_inequality(struct isl_basic_set *bset, int a, int b)
164 isl_int *t = bset->ineq[a];
165 bset->ineq[a] = bset->ineq[b];
169 /* Skew into positive orthant and project out lineality space.
171 * We perform a unimodular transformation that turns a selected
172 * maximal set of linearly independent bounds into constraints
173 * on the first dimensions that impose that these first dimensions
174 * are non-negative. In particular, the constraint matrix is lower
175 * triangular with positive entries on the diagonal and negative
177 * If "bset" has a lineality space then these constraints (and therefore
178 * all constraints in bset) only involve the first dimensions.
179 * The remaining dimensions then do not appear in any constraints and
180 * we can select any value for them, say zero. We therefore project
181 * out this final dimensions and plug in the value zero later. This
182 * is accomplished by simply dropping the final columns of
183 * the unimodular transformation.
185 static struct isl_basic_set *isl_basic_set_skew_to_positive_orthant(
186 struct isl_basic_set *bset, struct isl_mat **T)
188 struct isl_mat *U = NULL;
189 struct isl_mat *bounds = NULL;
191 unsigned old_dim, new_dim;
197 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
198 isl_assert(bset->ctx, bset->n_div == 0, goto error);
199 isl_assert(bset->ctx, bset->n_eq == 0, goto error);
201 old_dim = isl_basic_set_n_dim(bset);
202 /* Try to move (multiples of) unit rows up. */
203 for (i = 0, j = 0; i < bset->n_ineq; ++i) {
204 int pos = isl_seq_first_non_zero(bset->ineq[i]+1, old_dim);
207 if (isl_seq_first_non_zero(bset->ineq[i]+1+pos+1,
211 swap_inequality(bset, i, j);
214 bounds = independent_bounds(bset);
217 new_dim = bounds->n_row - 1;
218 bounds = isl_mat_left_hermite(bounds, 1, &U, NULL);
221 U = isl_mat_drop_cols(U, 1 + new_dim, old_dim - new_dim);
222 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
226 isl_mat_free(bounds);
229 isl_mat_free(bounds);
231 isl_basic_set_free(bset);
235 /* Find a sample integer point, if any, in bset, which is known
236 * to have equalities. If bset contains no integer points, then
237 * return a zero-length vector.
238 * We simply remove the known equalities, compute a sample
239 * in the resulting bset, using the specified recurse function,
240 * and then transform the sample back to the original space.
242 static struct isl_vec *sample_eq(struct isl_basic_set *bset,
243 struct isl_vec *(*recurse)(struct isl_basic_set *))
246 struct isl_vec *sample;
251 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
252 sample = recurse(bset);
253 if (!sample || sample->size == 0)
256 sample = isl_mat_vec_product(T, sample);
260 /* Given a tableau that is known to represent a bounded set, find and return
261 * an integer point in the set, if there is any.
263 * We perform a depth first search
264 * for an integer point, by scanning all possible values in the range
265 * attained by a basis vector, where the initial basis is assumed
266 * to have been set by the calling function.
267 * tab->n_zero is currently ignored and is clobbered by this function.
269 * The search is implemented iteratively. "level" identifies the current
270 * basis vector. "init" is true if we want the first value at the current
271 * level and false if we want the next value.
273 * The initial basis is the identity matrix. If the range in some direction
274 * contains more than one integer value, we perform basis reduction based
275 * on the value of ctx->gbr
276 * - ISL_GBR_NEVER: never perform basis reduction
277 * - ISL_GBR_ONCE: only perform basis reduction the first
278 * time such a range is encountered
279 * - ISL_GBR_ALWAYS: always perform basis reduction when
280 * such a range is encountered
282 * When ctx->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
283 * reduction computation to return early. That is, as soon as it
284 * finds a reasonable first direction.
286 struct isl_vec *isl_tab_sample(struct isl_tab *tab)
291 struct isl_vec *sample;
294 enum isl_lp_result res;
298 struct isl_tab_undo **snap;
303 return isl_vec_alloc(tab->mat->ctx, 0);
309 isl_assert(ctx, tab->basis, return NULL);
311 if (isl_tab_extend_cons(tab, dim + 1) < 0)
314 min = isl_vec_alloc(ctx, dim);
315 max = isl_vec_alloc(ctx, dim);
316 snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);
318 if (!min || !max || !snap)
328 res = isl_tab_min(tab, tab->basis->row[1 + level],
329 ctx->one, &min->el[level], NULL, 0);
330 if (res == isl_lp_empty)
332 if (res == isl_lp_error || res == isl_lp_unbounded)
334 if (!empty && isl_tab_sample_is_integer(tab))
336 isl_seq_neg(tab->basis->row[1 + level] + 1,
337 tab->basis->row[1 + level] + 1, dim);
338 res = isl_tab_min(tab, tab->basis->row[1 + level],
339 ctx->one, &max->el[level], NULL, 0);
340 isl_seq_neg(tab->basis->row[1 + level] + 1,
341 tab->basis->row[1 + level] + 1, dim);
342 isl_int_neg(max->el[level], max->el[level]);
343 if (res == isl_lp_empty)
345 if (res == isl_lp_error || res == isl_lp_unbounded)
347 if (!empty && isl_tab_sample_is_integer(tab))
349 if (!empty && !reduced && ctx->gbr != ISL_GBR_NEVER &&
350 isl_int_lt(min->el[level], max->el[level])) {
351 unsigned gbr_only_first;
352 if (ctx->gbr == ISL_GBR_ONCE)
353 ctx->gbr = ISL_GBR_NEVER;
355 gbr_only_first = ctx->gbr_only_first;
356 ctx->gbr_only_first =
357 ctx->gbr == ISL_GBR_ALWAYS;
358 tab = isl_tab_compute_reduced_basis(tab);
359 ctx->gbr_only_first = gbr_only_first;
360 if (!tab || !tab->basis)
366 snap[level] = isl_tab_snap(tab);
368 isl_int_add_ui(min->el[level], min->el[level], 1);
370 if (empty || isl_int_gt(min->el[level], max->el[level])) {
374 isl_tab_rollback(tab, snap[level]);
377 isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
378 tab = isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]);
379 isl_int_set_si(tab->basis->row[1 + level][0], 0);
380 if (level < dim - 1) {
389 sample = isl_tab_get_sample_value(tab);
391 sample = isl_vec_alloc(ctx, 0);
406 /* Given a basic set that is known to be bounded, find and return
407 * an integer point in the basic set, if there is any.
409 * After handling some trivial cases, we construct a tableau
410 * and then use isl_tab_sample to find a sample, passing it
411 * the identity matrix as initial basis.
413 static struct isl_vec *sample_bounded(struct isl_basic_set *bset)
417 struct isl_vec *sample;
418 struct isl_tab *tab = NULL;
423 if (isl_basic_set_fast_is_empty(bset))
424 return empty_sample(bset);
426 dim = isl_basic_set_total_dim(bset);
428 return zero_sample(bset);
430 return interval_sample(bset);
432 return sample_eq(bset, sample_bounded);
436 tab = isl_tab_from_basic_set(bset);
440 tab->basis = isl_mat_identity(bset->ctx, 1 + dim);
444 sample = isl_tab_sample(tab);
448 if (sample->size > 0) {
449 isl_vec_free(bset->sample);
450 bset->sample = isl_vec_copy(sample);
453 isl_basic_set_free(bset);
457 isl_basic_set_free(bset);
462 /* Given a basic set "bset" and a value "sample" for the first coordinates
463 * of bset, plug in these values and drop the corresponding coordinates.
465 * We do this by computing the preimage of the transformation
471 * where [1 s] is the sample value and I is the identity matrix of the
472 * appropriate dimension.
474 static struct isl_basic_set *plug_in(struct isl_basic_set *bset,
475 struct isl_vec *sample)
481 if (!bset || !sample)
484 total = isl_basic_set_total_dim(bset);
485 T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
489 for (i = 0; i < sample->size; ++i) {
490 isl_int_set(T->row[i][0], sample->el[i]);
491 isl_seq_clr(T->row[i] + 1, T->n_col - 1);
493 for (i = 0; i < T->n_col - 1; ++i) {
494 isl_seq_clr(T->row[sample->size + i], T->n_col);
495 isl_int_set_si(T->row[sample->size + i][1 + i], 1);
497 isl_vec_free(sample);
499 bset = isl_basic_set_preimage(bset, T);
502 isl_basic_set_free(bset);
503 isl_vec_free(sample);
507 /* Given a basic set "bset", return any (possibly non-integer) point
510 static struct isl_vec *rational_sample(struct isl_basic_set *bset)
513 struct isl_vec *sample;
518 tab = isl_tab_from_basic_set(bset);
519 sample = isl_tab_get_sample_value(tab);
522 isl_basic_set_free(bset);
527 /* Given a linear cone "cone" and a rational point "vec",
528 * construct a polyhedron with shifted copies of the constraints in "cone",
529 * i.e., a polyhedron with "cone" as its recession cone, such that each
530 * point x in this polyhedron is such that the unit box positioned at x
531 * lies entirely inside the affine cone 'vec + cone'.
532 * Any rational point in this polyhedron may therefore be rounded up
533 * to yield an integer point that lies inside said affine cone.
535 * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
536 * point "vec" by v/d.
537 * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
538 * by <a_i, x> - b/d >= 0.
539 * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
540 * We prefer this polyhedron over the actual affine cone because it doesn't
541 * require a scaling of the constraints.
542 * If each of the vertices of the unit cube positioned at x lies inside
543 * this polyhedron, then the whole unit cube at x lies inside the affine cone.
544 * We therefore impose that x' = x + \sum e_i, for any selection of unit
545 * vectors lies inside the polyhedron, i.e.,
547 * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
549 * The most stringent of these constraints is the one that selects
550 * all negative a_i, so the polyhedron we are looking for has constraints
552 * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
554 * Note that if cone were known to have only non-negative rays
555 * (which can be accomplished by a unimodular transformation),
556 * then we would only have to check the points x' = x + e_i
557 * and we only have to add the smallest negative a_i (if any)
558 * instead of the sum of all negative a_i.
560 static struct isl_basic_set *shift_cone(struct isl_basic_set *cone,
566 struct isl_basic_set *shift = NULL;
571 isl_assert(cone->ctx, cone->n_eq == 0, goto error);
573 total = isl_basic_set_total_dim(cone);
575 shift = isl_basic_set_alloc_dim(isl_basic_set_get_dim(cone),
578 for (i = 0; i < cone->n_ineq; ++i) {
579 k = isl_basic_set_alloc_inequality(shift);
582 isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
583 isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
585 isl_int_cdiv_q(shift->ineq[k][0],
586 shift->ineq[k][0], vec->el[0]);
587 isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
588 for (j = 0; j < total; ++j) {
589 if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
591 isl_int_add(shift->ineq[k][0],
592 shift->ineq[k][0], shift->ineq[k][1 + j]);
596 isl_basic_set_free(cone);
599 return isl_basic_set_finalize(shift);
601 isl_basic_set_free(shift);
602 isl_basic_set_free(cone);
607 /* Given a rational point vec in a (transformed) basic set,
608 * such that cone is the recession cone of the original basic set,
609 * "round up" the rational point to an integer point.
611 * We first check if the rational point just happens to be integer.
612 * If not, we transform the cone in the same way as the basic set,
613 * pick a point x in this cone shifted to the rational point such that
614 * the whole unit cube at x is also inside this affine cone.
615 * Then we simply round up the coordinates of x and return the
616 * resulting integer point.
618 static struct isl_vec *round_up_in_cone(struct isl_vec *vec,
619 struct isl_basic_set *cone, struct isl_mat *U)
623 if (!vec || !cone || !U)
626 isl_assert(vec->ctx, vec->size != 0, goto error);
627 if (isl_int_is_one(vec->el[0])) {
629 isl_basic_set_free(cone);
633 total = isl_basic_set_total_dim(cone);
634 cone = isl_basic_set_preimage(cone, U);
635 cone = isl_basic_set_remove_dims(cone, 0, total - (vec->size - 1));
637 cone = shift_cone(cone, vec);
639 vec = rational_sample(cone);
640 vec = isl_vec_ceil(vec);
645 isl_basic_set_free(cone);
649 /* Concatenate two integer vectors, i.e., two vectors with denominator
650 * (stored in element 0) equal to 1.
652 static struct isl_vec *vec_concat(struct isl_vec *vec1, struct isl_vec *vec2)
658 isl_assert(vec1->ctx, vec1->size > 0, goto error);
659 isl_assert(vec2->ctx, vec2->size > 0, goto error);
660 isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
661 isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
663 vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
667 isl_seq_cpy(vec->el, vec1->el, vec1->size);
668 isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
680 /* Drop all constraints in bset that involve any of the dimensions
681 * first to first+n-1.
683 static struct isl_basic_set *drop_constraints_involving
684 (struct isl_basic_set *bset, unsigned first, unsigned n)
691 bset = isl_basic_set_cow(bset);
693 for (i = bset->n_ineq - 1; i >= 0; --i) {
694 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
696 isl_basic_set_drop_inequality(bset, i);
702 /* Give a basic set "bset" with recession cone "cone", compute and
703 * return an integer point in bset, if any.
705 * If the recession cone is full-dimensional, then we know that
706 * bset contains an infinite number of integer points and it is
707 * fairly easy to pick one of them.
708 * If the recession cone is not full-dimensional, then we first
709 * transform bset such that the bounded directions appear as
710 * the first dimensions of the transformed basic set.
711 * We do this by using a unimodular transformation that transforms
712 * the equalities in the recession cone to equalities on the first
715 * The transformed set is then projected onto its bounded dimensions.
716 * Note that to compute this projection, we can simply drop all constraints
717 * involving any of the unbounded dimensions since these constraints
718 * cannot be combined to produce a constraint on the bounded dimensions.
719 * To see this, assume that there is such a combination of constraints
720 * that produces a constraint on the bounded dimensions. This means
721 * that some combination of the unbounded dimensions has both an upper
722 * bound and a lower bound in terms of the bounded dimensions, but then
723 * this combination would be a bounded direction too and would have been
724 * transformed into a bounded dimensions.
726 * We then compute a sample value in the bounded dimensions.
727 * If no such value can be found, then the original set did not contain
728 * any integer points and we are done.
729 * Otherwise, we plug in the value we found in the bounded dimensions,
730 * project out these bounded dimensions and end up with a set with
731 * a full-dimensional recession cone.
732 * A sample point in this set is computed by "rounding up" any
733 * rational point in the set.
735 * The sample points in the bounded and unbounded dimensions are
736 * then combined into a single sample point and transformed back
737 * to the original space.
739 __isl_give isl_vec *isl_basic_set_sample_with_cone(
740 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
744 struct isl_mat *M, *U;
745 struct isl_vec *sample;
746 struct isl_vec *cone_sample;
748 struct isl_basic_set *bounded;
754 total = isl_basic_set_total_dim(cone);
755 cone_dim = total - cone->n_eq;
757 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
758 M = isl_mat_left_hermite(M, 0, &U, NULL);
763 U = isl_mat_lin_to_aff(U);
764 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
766 bounded = isl_basic_set_copy(bset);
767 bounded = drop_constraints_involving(bounded, total - cone_dim, cone_dim);
768 bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
769 sample = sample_bounded(bounded);
770 if (!sample || sample->size == 0) {
771 isl_basic_set_free(bset);
772 isl_basic_set_free(cone);
776 bset = plug_in(bset, isl_vec_copy(sample));
777 cone_sample = rational_sample(bset);
778 cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
779 sample = vec_concat(sample, cone_sample);
780 sample = isl_mat_vec_product(U, sample);
783 isl_basic_set_free(cone);
784 isl_basic_set_free(bset);
788 /* Compute and return a sample point in bset using generalized basis
789 * reduction. We first check if the input set has a non-trivial
790 * recession cone. If so, we perform some extra preprocessing in
791 * sample_with_cone. Otherwise, we directly perform generalized basis
794 static struct isl_vec *gbr_sample(struct isl_basic_set *bset)
797 struct isl_basic_set *cone;
799 dim = isl_basic_set_total_dim(bset);
801 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
803 if (cone->n_eq < dim)
804 return isl_basic_set_sample_with_cone(bset, cone);
806 isl_basic_set_free(cone);
807 return sample_bounded(bset);
810 static struct isl_vec *pip_sample(struct isl_basic_set *bset)
814 struct isl_vec *sample;
816 bset = isl_basic_set_skew_to_positive_orthant(bset, &T);
821 sample = isl_pip_basic_set_sample(bset);
823 if (sample && sample->size != 0)
824 sample = isl_mat_vec_product(T, sample);
831 static struct isl_vec *basic_set_sample(struct isl_basic_set *bset, int bounded)
839 if (isl_basic_set_fast_is_empty(bset))
840 return empty_sample(bset);
842 dim = isl_basic_set_n_dim(bset);
843 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
844 isl_assert(ctx, bset->n_div == 0, goto error);
846 if (bset->sample && bset->sample->size == 1 + dim) {
847 int contains = isl_basic_set_contains(bset, bset->sample);
851 struct isl_vec *sample = isl_vec_copy(bset->sample);
852 isl_basic_set_free(bset);
856 isl_vec_free(bset->sample);
860 return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
861 : isl_basic_set_sample_vec);
863 return zero_sample(bset);
865 return interval_sample(bset);
867 switch (bset->ctx->ilp_solver) {
869 return pip_sample(bset);
871 return bounded ? sample_bounded(bset) : gbr_sample(bset);
873 isl_assert(bset->ctx, 0, );
875 isl_basic_set_free(bset);
879 __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
881 return basic_set_sample(bset, 0);
884 /* Compute an integer sample in "bset", where the caller guarantees
885 * that "bset" is bounded.
887 struct isl_vec *isl_basic_set_sample_bounded(struct isl_basic_set *bset)
889 return basic_set_sample(bset, 1);
892 __isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
896 struct isl_basic_set *bset = NULL;
903 isl_assert(ctx, vec->size != 0, goto error);
905 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
908 dim = isl_basic_set_n_dim(bset);
909 for (i = dim - 1; i >= 0; --i) {
910 k = isl_basic_set_alloc_equality(bset);
913 isl_seq_clr(bset->eq[k], 1 + dim);
914 isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
915 isl_int_set(bset->eq[k][1 + i], vec->el[0]);
921 isl_basic_set_free(bset);
926 __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
928 struct isl_basic_set *bset;
929 struct isl_vec *sample_vec;
931 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
932 sample_vec = isl_basic_set_sample_vec(bset);
935 if (sample_vec->size == 0) {
936 struct isl_basic_map *sample;
937 sample = isl_basic_map_empty_like(bmap);
938 isl_vec_free(sample_vec);
939 isl_basic_map_free(bmap);
942 bset = isl_basic_set_from_vec(sample_vec);
943 return isl_basic_map_overlying_set(bset, bmap);
945 isl_basic_map_free(bmap);
949 __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
952 isl_basic_map *sample = NULL;
957 for (i = 0; i < map->n; ++i) {
958 sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
961 if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
963 isl_basic_map_free(sample);
966 sample = isl_basic_map_empty_like_map(map);
974 __isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
976 return (isl_basic_set *) isl_map_sample((isl_map *)set);