isl_tab_pip.c: remove unused context_lex_extend
[platform/upstream/isl.git] / isl_range.c
1 #include <isl_ctx_private.h>
2 #include <isl/constraint.h>
3 #include <isl/set.h>
4 #include <isl_polynomial_private.h>
5 #include <isl_morph.h>
6 #include <isl_range.h>
7
8 struct range_data {
9         struct isl_bound        *bound;
10         int                     *signs;
11         int                     sign;
12         int                     test_monotonicity;
13         int                     monotonicity;
14         int                     tight;
15         isl_qpolynomial         *poly;
16         isl_pw_qpolynomial_fold *pwf;
17         isl_pw_qpolynomial_fold *pwf_tight;
18 };
19
20 static int propagate_on_domain(__isl_take isl_basic_set *bset,
21         __isl_take isl_qpolynomial *poly, struct range_data *data);
22
23 /* Check whether the polynomial "poly" has sign "sign" over "bset",
24  * i.e., if sign == 1, check that the lower bound on the polynomial
25  * is non-negative and if sign == -1, check that the upper bound on
26  * the polynomial is non-positive.
27  */
28 static int has_sign(__isl_keep isl_basic_set *bset,
29         __isl_keep isl_qpolynomial *poly, int sign, int *signs)
30 {
31         struct range_data data_m;
32         unsigned nvar;
33         unsigned nparam;
34         isl_dim *dim;
35         isl_qpolynomial *opt;
36         int r;
37         enum isl_fold type;
38
39         nparam = isl_basic_set_dim(bset, isl_dim_param);
40         nvar = isl_basic_set_dim(bset, isl_dim_set);
41
42         bset = isl_basic_set_copy(bset);
43         poly = isl_qpolynomial_copy(poly);
44
45         bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
46                                         isl_dim_param, 0, nparam);
47         poly = isl_qpolynomial_move_dims(poly, isl_dim_set, 0,
48                                         isl_dim_param, 0, nparam);
49
50         dim = isl_qpolynomial_get_dim(poly);
51         dim = isl_dim_drop(dim, isl_dim_set, 0, isl_dim_size(dim, isl_dim_set));
52
53         data_m.test_monotonicity = 0;
54         data_m.signs = signs;
55         data_m.sign = -sign;
56         type = data_m.sign < 0 ? isl_fold_min : isl_fold_max;
57         data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type);
58         data_m.tight = 0;
59         data_m.pwf_tight = NULL;
60
61         if (propagate_on_domain(bset, poly, &data_m) < 0)
62                 goto error;
63
64         if (sign > 0)
65                 opt = isl_pw_qpolynomial_fold_min(data_m.pwf);
66         else
67                 opt = isl_pw_qpolynomial_fold_max(data_m.pwf);
68
69         if (!opt)
70                 r = -1;
71         else if (isl_qpolynomial_is_nan(opt) ||
72                  isl_qpolynomial_is_infty(opt) ||
73                  isl_qpolynomial_is_neginfty(opt))
74                 r = 0;
75         else
76                 r = sign * isl_qpolynomial_sgn(opt) >= 0;
77
78         isl_qpolynomial_free(opt);
79
80         return r;
81 error:
82         isl_pw_qpolynomial_fold_free(data_m.pwf);
83         return -1;
84 }
85
86 /* Return  1 if poly is monotonically increasing in the last set variable,
87  *        -1 if poly is monotonically decreasing in the last set variable,
88  *         0 if no conclusion,
89  *        -2 on error.
90  *
91  * We simply check the sign of p(x+1)-p(x)
92  */
93 static int monotonicity(__isl_keep isl_basic_set *bset,
94         __isl_keep isl_qpolynomial *poly, struct range_data *data)
95 {
96         isl_ctx *ctx;
97         isl_dim *dim;
98         isl_qpolynomial *sub = NULL;
99         isl_qpolynomial *diff = NULL;
100         int result = 0;
101         int s;
102         unsigned nvar;
103
104         ctx = isl_qpolynomial_get_ctx(poly);
105         dim = isl_qpolynomial_get_dim(poly);
106
107         nvar = isl_basic_set_dim(bset, isl_dim_set);
108
109         sub = isl_qpolynomial_var(isl_dim_copy(dim), isl_dim_set, nvar - 1);
110         sub = isl_qpolynomial_add(sub,
111                 isl_qpolynomial_rat_cst(dim, ctx->one, ctx->one));
112
113         diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
114                         isl_dim_set, nvar - 1, 1, &sub);
115         diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));
116
117         s = has_sign(bset, diff, 1, data->signs);
118         if (s < 0)
119                 goto error;
120         if (s)
121                 result = 1;
122         else {
123                 s = has_sign(bset, diff, -1, data->signs);
124                 if (s < 0)
125                         goto error;
126                 if (s)
127                         result = -1;
128         }
129
130         isl_qpolynomial_free(diff);
131         isl_qpolynomial_free(sub);
132
133         return result;
134 error:
135         isl_qpolynomial_free(diff);
136         isl_qpolynomial_free(sub);
137         return -2;
138 }
139
140 static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound,
141         __isl_take isl_dim *dim, unsigned pos, int sign)
142 {
143         if (!bound) {
144                 if (sign > 0)
145                         return isl_qpolynomial_infty(dim);
146                 else
147                         return isl_qpolynomial_neginfty(dim);
148         }
149         isl_dim_free(dim);
150         return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos);
151 }
152
153 static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos)
154 {
155         isl_int c;
156         int is_int;
157
158         if (!bound)
159                 return 1;
160
161         isl_int_init(c);
162         isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c);
163         is_int = isl_int_is_one(c) || isl_int_is_negone(c);
164         isl_int_clear(c);
165
166         return is_int;
167 }
168
169 struct isl_fixed_sign_data {
170         int             *signs;
171         int             sign;
172         isl_qpolynomial *poly;
173 };
174
175 /* Add term "term" to data->poly if it has sign data->sign.
176  * The sign is determined based on the signs of the parameters
177  * and variables in data->signs.  The integer divisions, if
178  * any, are assumed to be non-negative.
179  */
180 static int collect_fixed_sign_terms(__isl_take isl_term *term, void *user)
181 {
182         struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user;
183         isl_int n;
184         int i;
185         int sign;
186         unsigned nparam;
187         unsigned nvar;
188
189         if (!term)
190                 return -1;
191
192         nparam = isl_term_dim(term, isl_dim_param);
193         nvar = isl_term_dim(term, isl_dim_set);
194
195         isl_int_init(n);
196
197         isl_term_get_num(term, &n);
198
199         sign = isl_int_sgn(n);
200         for (i = 0; i < nparam; ++i) {
201                 if (data->signs[i] > 0)
202                         continue;
203                 if (isl_term_get_exp(term, isl_dim_param, i) % 2)
204                         sign = -sign;
205         }
206         for (i = 0; i < nvar; ++i) {
207                 if (data->signs[nparam + i] > 0)
208                         continue;
209                 if (isl_term_get_exp(term, isl_dim_set, i) % 2)
210                         sign = -sign;
211         }
212
213         if (sign == data->sign) {
214                 isl_qpolynomial *t = isl_qpolynomial_from_term(term);
215
216                 data->poly = isl_qpolynomial_add(data->poly, t);
217         } else
218                 isl_term_free(term);
219
220         isl_int_clear(n);
221
222         return 0;
223 }
224
225 /* Construct and return a polynomial that consists of the terms
226  * in "poly" that have sign "sign".  The integer divisions, if
227  * any, are assumed to be non-negative.
228  */
229 __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign(
230         __isl_keep isl_qpolynomial *poly, int *signs, int sign)
231 {
232         struct isl_fixed_sign_data data = { signs, sign };
233         data.poly = isl_qpolynomial_zero(isl_qpolynomial_get_dim(poly));
234
235         if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0)
236                 goto error;
237
238         return data.poly;
239 error:
240         isl_qpolynomial_free(data.poly);
241         return NULL;
242 }
243
244 /* Helper function to add a guarded polynomial to either pwf_tight or pwf,
245  * depending on whether the result has been determined to be tight.
246  */
247 static int add_guarded_poly(__isl_take isl_basic_set *bset,
248         __isl_take isl_qpolynomial *poly, struct range_data *data)
249 {
250         enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max;
251         isl_set *set;
252         isl_qpolynomial_fold *fold;
253         isl_pw_qpolynomial_fold *pwf;
254
255         fold = isl_qpolynomial_fold_alloc(type, poly);
256         set = isl_set_from_basic_set(bset);
257         pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold);
258         if (data->tight)
259                 data->pwf_tight = isl_pw_qpolynomial_fold_fold(
260                                                 data->pwf_tight, pwf);
261         else
262                 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
263
264         return 0;
265 }
266
267 /* Given a lower and upper bound on the final variable and constraints
268  * on the remaining variables where these bounds are active,
269  * eliminate the variable from data->poly based on these bounds.
270  * If the polynomial has been determined to be monotonic
271  * in the variable, then simply plug in the appropriate bound.
272  * If the current polynomial is tight and if this bound is integer,
273  * then the result is still tight.  In all other cases, the results
274  * may not be tight.
275  * Otherwise, plug in the largest bound (in absolute value) in
276  * the positive terms (if an upper bound is wanted) or the negative terms
277  * (if a lower bounded is wanted) and the other bound in the other terms.
278  *
279  * If all variables have been eliminated, then record the result.
280  * Ohterwise, recurse on the next variable.
281  */
282 static int propagate_on_bound_pair(__isl_take isl_constraint *lower,
283         __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
284         void *user)
285 {
286         struct range_data *data = (struct range_data *)user;
287         int save_tight = data->tight;
288         isl_qpolynomial *poly;
289         int r;
290         unsigned nvar;
291
292         nvar = isl_basic_set_dim(bset, isl_dim_set);
293
294         if (data->monotonicity) {
295                 isl_qpolynomial *sub;
296                 isl_dim *dim = isl_qpolynomial_get_dim(data->poly);
297                 if (data->monotonicity * data->sign > 0) {
298                         if (data->tight)
299                                 data->tight = bound_is_integer(upper, nvar);
300                         sub = bound2poly(upper, dim, nvar, 1);
301                         isl_constraint_free(lower);
302                 } else {
303                         if (data->tight)
304                                 data->tight = bound_is_integer(lower, nvar);
305                         sub = bound2poly(lower, dim, nvar, -1);
306                         isl_constraint_free(upper);
307                 }
308                 poly = isl_qpolynomial_copy(data->poly);
309                 poly = isl_qpolynomial_substitute(poly, isl_dim_set, nvar, 1, &sub);
310                 poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, nvar, 1);
311
312                 isl_qpolynomial_free(sub);
313         } else {
314                 isl_qpolynomial *l, *u;
315                 isl_qpolynomial *pos, *neg;
316                 isl_dim *dim = isl_qpolynomial_get_dim(data->poly);
317                 unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
318                 int sign = data->sign * data->signs[nparam + nvar];
319
320                 data->tight = 0;
321
322                 u = bound2poly(upper, isl_dim_copy(dim), nvar, 1);
323                 l = bound2poly(lower, dim, nvar, -1);
324
325                 pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign);
326                 neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign);
327
328                 pos = isl_qpolynomial_substitute(pos, isl_dim_set, nvar, 1, &u);
329                 neg = isl_qpolynomial_substitute(neg, isl_dim_set, nvar, 1, &l);
330
331                 poly = isl_qpolynomial_add(pos, neg);
332                 poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, nvar, 1);
333
334                 isl_qpolynomial_free(u);
335                 isl_qpolynomial_free(l);
336         }
337
338         if (isl_basic_set_dim(bset, isl_dim_set) == 0)
339                 r = add_guarded_poly(bset, poly, data);
340         else
341                 r = propagate_on_domain(bset, poly, data);
342
343         data->tight = save_tight;
344
345         return r;
346 }
347
348 /* Recursively perform range propagation on the polynomial "poly"
349  * defined over the basic set "bset" and collect the results in "data".
350  */
351 static int propagate_on_domain(__isl_take isl_basic_set *bset,
352         __isl_take isl_qpolynomial *poly, struct range_data *data)
353 {
354         isl_ctx *ctx;
355         isl_qpolynomial *save_poly = data->poly;
356         int save_monotonicity = data->monotonicity;
357         unsigned d;
358
359         if (!bset || !poly)
360                 goto error;
361
362         ctx = isl_basic_set_get_ctx(bset);
363         d = isl_basic_set_dim(bset, isl_dim_set);
364         isl_assert(ctx, d >= 1, goto error);
365
366         if (isl_qpolynomial_is_cst(poly, NULL, NULL)) {
367                 bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d);
368                 poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, d);
369                 return add_guarded_poly(bset, poly, data);
370         }
371
372         if (data->test_monotonicity)
373                 data->monotonicity = monotonicity(bset, poly, data);
374         else
375                 data->monotonicity = 0;
376         if (data->monotonicity < -1)
377                 goto error;
378
379         data->poly = poly;
380         if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1,
381                                             &propagate_on_bound_pair, data) < 0)
382                 goto error;
383
384         isl_basic_set_free(bset);
385         isl_qpolynomial_free(poly);
386         data->monotonicity = save_monotonicity;
387         data->poly = save_poly;
388
389         return 0;
390 error:
391         isl_basic_set_free(bset);
392         isl_qpolynomial_free(poly);
393         data->monotonicity = save_monotonicity;
394         data->poly = save_poly;
395         return -1;
396 }
397
398 static int basic_guarded_poly_bound(__isl_take isl_basic_set *bset, void *user)
399 {
400         struct range_data *data = (struct range_data *)user;
401         isl_ctx *ctx;
402         unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
403         unsigned dim = isl_basic_set_dim(bset, isl_dim_set);
404         int r;
405
406         data->signs = NULL;
407
408         ctx = isl_basic_set_get_ctx(bset);
409         data->signs = isl_alloc_array(ctx, int,
410                                         isl_basic_set_dim(bset, isl_dim_all));
411
412         if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim,
413                                         data->signs + nparam) < 0)
414                 goto error;
415         if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam,
416                                         data->signs) < 0)
417                 goto error;
418
419         r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data);
420
421         free(data->signs);
422
423         return r;
424 error:
425         free(data->signs);
426         isl_basic_set_free(bset);
427         return -1;
428 }
429
430 static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
431         __isl_take isl_qpolynomial *poly, struct range_data *data)
432 {
433         unsigned nparam = isl_basic_set_dim(bset, isl_dim_param);
434         unsigned nvar = isl_basic_set_dim(bset, isl_dim_set);
435         isl_set *set;
436
437         if (!bset)
438                 goto error;
439
440         if (nvar == 0)
441                 return add_guarded_poly(bset, poly, data);
442
443         set = isl_set_from_basic_set(bset);
444         set = isl_set_split_dims(set, isl_dim_param, 0, nparam);
445         set = isl_set_split_dims(set, isl_dim_set, 0, nvar);
446
447         data->poly = poly;
448
449         data->test_monotonicity = 1;
450         if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0)
451                 goto error;
452
453         isl_set_free(set);
454         isl_qpolynomial_free(poly);
455
456         return 0;
457 error:
458         isl_set_free(set);
459         isl_qpolynomial_free(poly);
460         return -1;
461 }
462
463 int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
464         __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
465 {
466         struct range_data data;
467         int r;
468
469         data.pwf = bound->pwf;
470         data.pwf_tight = bound->pwf_tight;
471         data.tight = bound->check_tight;
472         if (bound->type == isl_fold_min)
473                 data.sign = -1;
474         else
475                 data.sign = 1;
476
477         r = qpolynomial_bound_on_domain_range(bset, poly, &data);
478
479         bound->pwf = data.pwf;
480         bound->pwf_tight = data.pwf_tight;
481
482         return r;
483 }