2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_range.h>
25 #include <isl_local_space_private.h>
26 #include <isl_aff_private.h>
27 #include <isl_config.h>
29 static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type)
32 case isl_dim_param: return 0;
33 case isl_dim_in: return dim->nparam;
34 case isl_dim_out: return dim->nparam + dim->n_in;
39 int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
47 __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
52 isl_assert(up->ctx, up->var < 0, return NULL);
54 return (struct isl_upoly_cst *)up;
57 __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
62 isl_assert(up->ctx, up->var >= 0, return NULL);
64 return (struct isl_upoly_rec *)up;
67 int isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
68 __isl_keep struct isl_upoly *up2)
71 struct isl_upoly_rec *rec1, *rec2;
77 if (up1->var != up2->var)
79 if (isl_upoly_is_cst(up1)) {
80 struct isl_upoly_cst *cst1, *cst2;
81 cst1 = isl_upoly_as_cst(up1);
82 cst2 = isl_upoly_as_cst(up2);
85 return isl_int_eq(cst1->n, cst2->n) &&
86 isl_int_eq(cst1->d, cst2->d);
89 rec1 = isl_upoly_as_rec(up1);
90 rec2 = isl_upoly_as_rec(up2);
94 if (rec1->n != rec2->n)
97 for (i = 0; i < rec1->n; ++i) {
98 int eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
106 int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
108 struct isl_upoly_cst *cst;
112 if (!isl_upoly_is_cst(up))
115 cst = isl_upoly_as_cst(up);
119 return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
122 int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
124 struct isl_upoly_cst *cst;
128 if (!isl_upoly_is_cst(up))
131 cst = isl_upoly_as_cst(up);
135 return isl_int_sgn(cst->n);
138 int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
140 struct isl_upoly_cst *cst;
144 if (!isl_upoly_is_cst(up))
147 cst = isl_upoly_as_cst(up);
151 return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
154 int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
156 struct isl_upoly_cst *cst;
160 if (!isl_upoly_is_cst(up))
163 cst = isl_upoly_as_cst(up);
167 return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
170 int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
172 struct isl_upoly_cst *cst;
176 if (!isl_upoly_is_cst(up))
179 cst = isl_upoly_as_cst(up);
183 return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
186 int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
188 struct isl_upoly_cst *cst;
192 if (!isl_upoly_is_cst(up))
195 cst = isl_upoly_as_cst(up);
199 return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
202 int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
204 struct isl_upoly_cst *cst;
208 if (!isl_upoly_is_cst(up))
211 cst = isl_upoly_as_cst(up);
215 return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
218 __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
220 struct isl_upoly_cst *cst;
222 cst = isl_alloc_type(ctx, struct isl_upoly_cst);
231 isl_int_init(cst->n);
232 isl_int_init(cst->d);
237 __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
239 struct isl_upoly_cst *cst;
241 cst = isl_upoly_cst_alloc(ctx);
245 isl_int_set_si(cst->n, 0);
246 isl_int_set_si(cst->d, 1);
251 __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
253 struct isl_upoly_cst *cst;
255 cst = isl_upoly_cst_alloc(ctx);
259 isl_int_set_si(cst->n, 1);
260 isl_int_set_si(cst->d, 1);
265 __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
267 struct isl_upoly_cst *cst;
269 cst = isl_upoly_cst_alloc(ctx);
273 isl_int_set_si(cst->n, 1);
274 isl_int_set_si(cst->d, 0);
279 __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
281 struct isl_upoly_cst *cst;
283 cst = isl_upoly_cst_alloc(ctx);
287 isl_int_set_si(cst->n, -1);
288 isl_int_set_si(cst->d, 0);
293 __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
295 struct isl_upoly_cst *cst;
297 cst = isl_upoly_cst_alloc(ctx);
301 isl_int_set_si(cst->n, 0);
302 isl_int_set_si(cst->d, 0);
307 __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
308 isl_int n, isl_int d)
310 struct isl_upoly_cst *cst;
312 cst = isl_upoly_cst_alloc(ctx);
316 isl_int_set(cst->n, n);
317 isl_int_set(cst->d, d);
322 __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
325 struct isl_upoly_rec *rec;
327 isl_assert(ctx, var >= 0, return NULL);
328 isl_assert(ctx, size >= 0, return NULL);
329 rec = isl_calloc(ctx, struct isl_upoly_rec,
330 sizeof(struct isl_upoly_rec) +
331 size * sizeof(struct isl_upoly *));
346 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
347 __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim)
349 qp = isl_qpolynomial_cow(qp);
353 isl_space_free(qp->dim);
358 isl_qpolynomial_free(qp);
363 /* Reset the space of "qp". This function is called from isl_pw_templ.c
364 * and doesn't know if the space of an element object is represented
365 * directly or through its domain. It therefore passes along both.
367 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
368 __isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
369 __isl_take isl_space *domain)
371 isl_space_free(space);
372 return isl_qpolynomial_reset_domain_space(qp, domain);
375 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
377 return qp ? qp->dim->ctx : NULL;
380 __isl_give isl_space *isl_qpolynomial_get_domain_space(
381 __isl_keep isl_qpolynomial *qp)
383 return qp ? isl_space_copy(qp->dim) : NULL;
386 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
391 space = isl_space_copy(qp->dim);
392 space = isl_space_from_domain(space);
393 space = isl_space_add_dims(space, isl_dim_out, 1);
397 /* Externally, an isl_qpolynomial has a map space, but internally, the
398 * ls field corresponds to the domain of that space.
400 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
401 enum isl_dim_type type)
405 if (type == isl_dim_out)
407 if (type == isl_dim_in)
409 return isl_space_dim(qp->dim, type);
412 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
414 return qp ? isl_upoly_is_zero(qp->upoly) : -1;
417 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
419 return qp ? isl_upoly_is_one(qp->upoly) : -1;
422 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
424 return qp ? isl_upoly_is_nan(qp->upoly) : -1;
427 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
429 return qp ? isl_upoly_is_infty(qp->upoly) : -1;
432 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
434 return qp ? isl_upoly_is_neginfty(qp->upoly) : -1;
437 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
439 return qp ? isl_upoly_sgn(qp->upoly) : 0;
442 static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
444 isl_int_clear(cst->n);
445 isl_int_clear(cst->d);
448 static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
452 for (i = 0; i < rec->n; ++i)
453 isl_upoly_free(rec->p[i]);
456 __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
465 __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
467 struct isl_upoly_cst *cst;
468 struct isl_upoly_cst *dup;
470 cst = isl_upoly_as_cst(up);
474 dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
477 isl_int_set(dup->n, cst->n);
478 isl_int_set(dup->d, cst->d);
483 __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
486 struct isl_upoly_rec *rec;
487 struct isl_upoly_rec *dup;
489 rec = isl_upoly_as_rec(up);
493 dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
497 for (i = 0; i < rec->n; ++i) {
498 dup->p[i] = isl_upoly_copy(rec->p[i]);
506 isl_upoly_free(&dup->up);
510 __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
515 if (isl_upoly_is_cst(up))
516 return isl_upoly_dup_cst(up);
518 return isl_upoly_dup_rec(up);
521 __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
529 return isl_upoly_dup(up);
532 void isl_upoly_free(__isl_take struct isl_upoly *up)
541 upoly_free_cst((struct isl_upoly_cst *)up);
543 upoly_free_rec((struct isl_upoly_rec *)up);
545 isl_ctx_deref(up->ctx);
549 static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
554 isl_int_gcd(gcd, cst->n, cst->d);
555 if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
556 isl_int_divexact(cst->n, cst->n, gcd);
557 isl_int_divexact(cst->d, cst->d, gcd);
562 __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
563 __isl_take struct isl_upoly *up2)
565 struct isl_upoly_cst *cst1;
566 struct isl_upoly_cst *cst2;
568 up1 = isl_upoly_cow(up1);
572 cst1 = isl_upoly_as_cst(up1);
573 cst2 = isl_upoly_as_cst(up2);
575 if (isl_int_eq(cst1->d, cst2->d))
576 isl_int_add(cst1->n, cst1->n, cst2->n);
578 isl_int_mul(cst1->n, cst1->n, cst2->d);
579 isl_int_addmul(cst1->n, cst2->n, cst1->d);
580 isl_int_mul(cst1->d, cst1->d, cst2->d);
583 isl_upoly_cst_reduce(cst1);
593 static __isl_give struct isl_upoly *replace_by_zero(
594 __isl_take struct isl_upoly *up)
602 return isl_upoly_zero(ctx);
605 static __isl_give struct isl_upoly *replace_by_constant_term(
606 __isl_take struct isl_upoly *up)
608 struct isl_upoly_rec *rec;
609 struct isl_upoly *cst;
614 rec = isl_upoly_as_rec(up);
617 cst = isl_upoly_copy(rec->p[0]);
625 __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
626 __isl_take struct isl_upoly *up2)
629 struct isl_upoly_rec *rec1, *rec2;
634 if (isl_upoly_is_nan(up1)) {
639 if (isl_upoly_is_nan(up2)) {
644 if (isl_upoly_is_zero(up1)) {
649 if (isl_upoly_is_zero(up2)) {
654 if (up1->var < up2->var)
655 return isl_upoly_sum(up2, up1);
657 if (up2->var < up1->var) {
658 struct isl_upoly_rec *rec;
659 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
663 up1 = isl_upoly_cow(up1);
664 rec = isl_upoly_as_rec(up1);
667 rec->p[0] = isl_upoly_sum(rec->p[0], up2);
669 up1 = replace_by_constant_term(up1);
673 if (isl_upoly_is_cst(up1))
674 return isl_upoly_sum_cst(up1, up2);
676 rec1 = isl_upoly_as_rec(up1);
677 rec2 = isl_upoly_as_rec(up2);
681 if (rec1->n < rec2->n)
682 return isl_upoly_sum(up2, up1);
684 up1 = isl_upoly_cow(up1);
685 rec1 = isl_upoly_as_rec(up1);
689 for (i = rec2->n - 1; i >= 0; --i) {
690 rec1->p[i] = isl_upoly_sum(rec1->p[i],
691 isl_upoly_copy(rec2->p[i]));
694 if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
695 isl_upoly_free(rec1->p[i]);
701 up1 = replace_by_zero(up1);
702 else if (rec1->n == 1)
703 up1 = replace_by_constant_term(up1);
714 __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
715 __isl_take struct isl_upoly *up, isl_int v)
717 struct isl_upoly_cst *cst;
719 up = isl_upoly_cow(up);
723 cst = isl_upoly_as_cst(up);
725 isl_int_addmul(cst->n, cst->d, v);
730 __isl_give struct isl_upoly *isl_upoly_add_isl_int(
731 __isl_take struct isl_upoly *up, isl_int v)
733 struct isl_upoly_rec *rec;
738 if (isl_upoly_is_cst(up))
739 return isl_upoly_cst_add_isl_int(up, v);
741 up = isl_upoly_cow(up);
742 rec = isl_upoly_as_rec(up);
746 rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
756 __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
757 __isl_take struct isl_upoly *up, isl_int v)
759 struct isl_upoly_cst *cst;
761 if (isl_upoly_is_zero(up))
764 up = isl_upoly_cow(up);
768 cst = isl_upoly_as_cst(up);
770 isl_int_mul(cst->n, cst->n, v);
775 __isl_give struct isl_upoly *isl_upoly_mul_isl_int(
776 __isl_take struct isl_upoly *up, isl_int v)
779 struct isl_upoly_rec *rec;
784 if (isl_upoly_is_cst(up))
785 return isl_upoly_cst_mul_isl_int(up, v);
787 up = isl_upoly_cow(up);
788 rec = isl_upoly_as_rec(up);
792 for (i = 0; i < rec->n; ++i) {
793 rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
804 __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
805 __isl_take struct isl_upoly *up2)
807 struct isl_upoly_cst *cst1;
808 struct isl_upoly_cst *cst2;
810 up1 = isl_upoly_cow(up1);
814 cst1 = isl_upoly_as_cst(up1);
815 cst2 = isl_upoly_as_cst(up2);
817 isl_int_mul(cst1->n, cst1->n, cst2->n);
818 isl_int_mul(cst1->d, cst1->d, cst2->d);
820 isl_upoly_cst_reduce(cst1);
830 __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
831 __isl_take struct isl_upoly *up2)
833 struct isl_upoly_rec *rec1;
834 struct isl_upoly_rec *rec2;
835 struct isl_upoly_rec *res = NULL;
839 rec1 = isl_upoly_as_rec(up1);
840 rec2 = isl_upoly_as_rec(up2);
843 size = rec1->n + rec2->n - 1;
844 res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
848 for (i = 0; i < rec1->n; ++i) {
849 res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
850 isl_upoly_copy(rec1->p[i]));
855 for (; i < size; ++i) {
856 res->p[i] = isl_upoly_zero(up1->ctx);
861 for (i = 0; i < rec1->n; ++i) {
862 for (j = 1; j < rec2->n; ++j) {
863 struct isl_upoly *up;
864 up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
865 isl_upoly_copy(rec1->p[i]));
866 res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
879 isl_upoly_free(&res->up);
883 __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
884 __isl_take struct isl_upoly *up2)
889 if (isl_upoly_is_nan(up1)) {
894 if (isl_upoly_is_nan(up2)) {
899 if (isl_upoly_is_zero(up1)) {
904 if (isl_upoly_is_zero(up2)) {
909 if (isl_upoly_is_one(up1)) {
914 if (isl_upoly_is_one(up2)) {
919 if (up1->var < up2->var)
920 return isl_upoly_mul(up2, up1);
922 if (up2->var < up1->var) {
924 struct isl_upoly_rec *rec;
925 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
926 isl_ctx *ctx = up1->ctx;
929 return isl_upoly_nan(ctx);
931 up1 = isl_upoly_cow(up1);
932 rec = isl_upoly_as_rec(up1);
936 for (i = 0; i < rec->n; ++i) {
937 rec->p[i] = isl_upoly_mul(rec->p[i],
938 isl_upoly_copy(up2));
946 if (isl_upoly_is_cst(up1))
947 return isl_upoly_mul_cst(up1, up2);
949 return isl_upoly_mul_rec(up1, up2);
956 __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
959 struct isl_upoly *res;
967 res = isl_upoly_copy(up);
969 res = isl_upoly_one(up->ctx);
971 while (power >>= 1) {
972 up = isl_upoly_mul(up, isl_upoly_copy(up));
974 res = isl_upoly_mul(res, isl_upoly_copy(up));
981 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim,
982 unsigned n_div, __isl_take struct isl_upoly *up)
984 struct isl_qpolynomial *qp = NULL;
990 if (!isl_space_is_set(dim))
991 isl_die(isl_space_get_ctx(dim), isl_error_invalid,
992 "domain of polynomial should be a set", goto error);
994 total = isl_space_dim(dim, isl_dim_all);
996 qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial);
1001 qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div);
1010 isl_space_free(dim);
1012 isl_qpolynomial_free(qp);
1016 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1025 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1027 struct isl_qpolynomial *dup;
1032 dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1033 isl_upoly_copy(qp->upoly));
1036 isl_mat_free(dup->div);
1037 dup->div = isl_mat_copy(qp->div);
1043 isl_qpolynomial_free(dup);
1047 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1055 return isl_qpolynomial_dup(qp);
1058 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp)
1066 isl_space_free(qp->dim);
1067 isl_mat_free(qp->div);
1068 isl_upoly_free(qp->upoly);
1074 __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
1077 struct isl_upoly_rec *rec;
1078 struct isl_upoly_cst *cst;
1080 rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
1083 for (i = 0; i < 1 + power; ++i) {
1084 rec->p[i] = isl_upoly_zero(ctx);
1089 cst = isl_upoly_as_cst(rec->p[power]);
1090 isl_int_set_si(cst->n, 1);
1094 isl_upoly_free(&rec->up);
1098 /* r array maps original positions to new positions.
1100 static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
1104 struct isl_upoly_rec *rec;
1105 struct isl_upoly *base;
1106 struct isl_upoly *res;
1108 if (isl_upoly_is_cst(up))
1111 rec = isl_upoly_as_rec(up);
1115 isl_assert(up->ctx, rec->n >= 1, goto error);
1117 base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
1118 res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
1120 for (i = rec->n - 2; i >= 0; --i) {
1121 res = isl_upoly_mul(res, isl_upoly_copy(base));
1122 res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
1125 isl_upoly_free(base);
1134 static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2)
1139 isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1140 div1->n_col >= div2->n_col, return -1);
1142 if (div1->n_row == div2->n_row)
1143 return isl_mat_is_equal(div1, div2);
1145 n_row = div1->n_row;
1146 n_col = div1->n_col;
1147 div1->n_row = div2->n_row;
1148 div1->n_col = div2->n_col;
1150 equal = isl_mat_is_equal(div1, div2);
1152 div1->n_row = n_row;
1153 div1->n_col = n_col;
1158 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1162 li = isl_seq_last_non_zero(div->row[i], div->n_col);
1163 lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1168 return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1171 struct isl_div_sort_info {
1176 static int div_sort_cmp(const void *p1, const void *p2)
1178 const struct isl_div_sort_info *i1, *i2;
1179 i1 = (const struct isl_div_sort_info *) p1;
1180 i2 = (const struct isl_div_sort_info *) p2;
1182 return cmp_row(i1->div, i1->row, i2->row);
1185 /* Sort divs and remove duplicates.
1187 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1192 struct isl_div_sort_info *array = NULL;
1193 int *pos = NULL, *at = NULL;
1194 int *reordering = NULL;
1199 if (qp->div->n_row <= 1)
1202 div_pos = isl_space_dim(qp->dim, isl_dim_all);
1204 array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1206 pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1207 at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1208 len = qp->div->n_col - 2;
1209 reordering = isl_alloc_array(qp->div->ctx, int, len);
1210 if (!array || !pos || !at || !reordering)
1213 for (i = 0; i < qp->div->n_row; ++i) {
1214 array[i].div = qp->div;
1220 qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1223 for (i = 0; i < div_pos; ++i)
1226 for (i = 0; i < qp->div->n_row; ++i) {
1227 if (pos[array[i].row] == i)
1229 qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1230 pos[at[i]] = pos[array[i].row];
1231 at[pos[array[i].row]] = at[i];
1232 at[i] = array[i].row;
1233 pos[array[i].row] = i;
1237 for (i = 0; i < len - div_pos; ++i) {
1239 isl_seq_eq(qp->div->row[i - skip - 1],
1240 qp->div->row[i - skip], qp->div->n_col)) {
1241 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1242 isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1243 2 + div_pos + i - skip);
1244 qp->div = isl_mat_drop_cols(qp->div,
1245 2 + div_pos + i - skip, 1);
1248 reordering[div_pos + array[i].row] = div_pos + i - skip;
1251 qp->upoly = reorder(qp->upoly, reordering);
1253 if (!qp->upoly || !qp->div)
1267 isl_qpolynomial_free(qp);
1271 static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
1272 int *exp, int first)
1275 struct isl_upoly_rec *rec;
1277 if (isl_upoly_is_cst(up))
1280 if (up->var < first)
1283 if (exp[up->var - first] == up->var - first)
1286 up = isl_upoly_cow(up);
1290 up->var = exp[up->var - first] + first;
1292 rec = isl_upoly_as_rec(up);
1296 for (i = 0; i < rec->n; ++i) {
1297 rec->p[i] = expand(rec->p[i], exp, first);
1308 static __isl_give isl_qpolynomial *with_merged_divs(
1309 __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1310 __isl_take isl_qpolynomial *qp2),
1311 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1315 isl_mat *div = NULL;
1317 qp1 = isl_qpolynomial_cow(qp1);
1318 qp2 = isl_qpolynomial_cow(qp2);
1323 isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1324 qp1->div->n_col >= qp2->div->n_col, goto error);
1326 exp1 = isl_alloc_array(qp1->div->ctx, int, qp1->div->n_row);
1327 exp2 = isl_alloc_array(qp2->div->ctx, int, qp2->div->n_row);
1331 div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1335 isl_mat_free(qp1->div);
1336 qp1->div = isl_mat_copy(div);
1337 isl_mat_free(qp2->div);
1338 qp2->div = isl_mat_copy(div);
1340 qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
1341 qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
1343 if (!qp1->upoly || !qp2->upoly)
1350 return fn(qp1, qp2);
1355 isl_qpolynomial_free(qp1);
1356 isl_qpolynomial_free(qp2);
1360 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1361 __isl_take isl_qpolynomial *qp2)
1363 qp1 = isl_qpolynomial_cow(qp1);
1368 if (qp1->div->n_row < qp2->div->n_row)
1369 return isl_qpolynomial_add(qp2, qp1);
1371 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1372 if (!compatible_divs(qp1->div, qp2->div))
1373 return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1375 qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
1379 isl_qpolynomial_free(qp2);
1383 isl_qpolynomial_free(qp1);
1384 isl_qpolynomial_free(qp2);
1388 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1389 __isl_keep isl_set *dom,
1390 __isl_take isl_qpolynomial *qp1,
1391 __isl_take isl_qpolynomial *qp2)
1393 qp1 = isl_qpolynomial_add(qp1, qp2);
1394 qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1398 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1399 __isl_take isl_qpolynomial *qp2)
1401 return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1404 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1405 __isl_take isl_qpolynomial *qp, isl_int v)
1407 if (isl_int_is_zero(v))
1410 qp = isl_qpolynomial_cow(qp);
1414 qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
1420 isl_qpolynomial_free(qp);
1425 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1430 return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1433 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1434 __isl_take isl_qpolynomial *qp, isl_int v)
1436 if (isl_int_is_one(v))
1439 if (qp && isl_int_is_zero(v)) {
1440 isl_qpolynomial *zero;
1441 zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1442 isl_qpolynomial_free(qp);
1446 qp = isl_qpolynomial_cow(qp);
1450 qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
1456 isl_qpolynomial_free(qp);
1460 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1461 __isl_take isl_qpolynomial *qp, isl_int v)
1463 return isl_qpolynomial_mul_isl_int(qp, v);
1466 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1467 __isl_take isl_qpolynomial *qp2)
1469 qp1 = isl_qpolynomial_cow(qp1);
1474 if (qp1->div->n_row < qp2->div->n_row)
1475 return isl_qpolynomial_mul(qp2, qp1);
1477 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1478 if (!compatible_divs(qp1->div, qp2->div))
1479 return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1481 qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
1485 isl_qpolynomial_free(qp2);
1489 isl_qpolynomial_free(qp1);
1490 isl_qpolynomial_free(qp2);
1494 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1497 qp = isl_qpolynomial_cow(qp);
1502 qp->upoly = isl_upoly_pow(qp->upoly, power);
1508 isl_qpolynomial_free(qp);
1512 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
1513 __isl_take isl_pw_qpolynomial *pwqp, unsigned power)
1520 pwqp = isl_pw_qpolynomial_cow(pwqp);
1524 for (i = 0; i < pwqp->n; ++i) {
1525 pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
1527 return isl_pw_qpolynomial_free(pwqp);
1533 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
1534 __isl_take isl_space *dim)
1538 return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1541 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
1542 __isl_take isl_space *dim)
1546 return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx));
1549 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
1550 __isl_take isl_space *dim)
1554 return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx));
1557 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
1558 __isl_take isl_space *dim)
1562 return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx));
1565 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
1566 __isl_take isl_space *dim)
1570 return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx));
1573 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
1574 __isl_take isl_space *dim,
1577 struct isl_qpolynomial *qp;
1578 struct isl_upoly_cst *cst;
1583 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1587 cst = isl_upoly_as_cst(qp->upoly);
1588 isl_int_set(cst->n, v);
1593 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1594 isl_int *n, isl_int *d)
1596 struct isl_upoly_cst *cst;
1601 if (!isl_upoly_is_cst(qp->upoly))
1604 cst = isl_upoly_as_cst(qp->upoly);
1609 isl_int_set(*n, cst->n);
1611 isl_int_set(*d, cst->d);
1616 int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
1619 struct isl_upoly_rec *rec;
1627 rec = isl_upoly_as_rec(up);
1634 isl_assert(up->ctx, rec->n > 1, return -1);
1636 is_cst = isl_upoly_is_cst(rec->p[1]);
1642 return isl_upoly_is_affine(rec->p[0]);
1645 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
1650 if (qp->div->n_row > 0)
1653 return isl_upoly_is_affine(qp->upoly);
1656 static void update_coeff(__isl_keep isl_vec *aff,
1657 __isl_keep struct isl_upoly_cst *cst, int pos)
1662 if (isl_int_is_zero(cst->n))
1667 isl_int_gcd(gcd, cst->d, aff->el[0]);
1668 isl_int_divexact(f, cst->d, gcd);
1669 isl_int_divexact(gcd, aff->el[0], gcd);
1670 isl_seq_scale(aff->el, aff->el, f, aff->size);
1671 isl_int_mul(aff->el[1 + pos], gcd, cst->n);
1676 int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
1677 __isl_keep isl_vec *aff)
1679 struct isl_upoly_cst *cst;
1680 struct isl_upoly_rec *rec;
1686 struct isl_upoly_cst *cst;
1688 cst = isl_upoly_as_cst(up);
1691 update_coeff(aff, cst, 0);
1695 rec = isl_upoly_as_rec(up);
1698 isl_assert(up->ctx, rec->n == 2, return -1);
1700 cst = isl_upoly_as_cst(rec->p[1]);
1703 update_coeff(aff, cst, 1 + up->var);
1705 return isl_upoly_update_affine(rec->p[0], aff);
1708 __isl_give isl_vec *isl_qpolynomial_extract_affine(
1709 __isl_keep isl_qpolynomial *qp)
1717 d = isl_space_dim(qp->dim, isl_dim_all);
1718 aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
1722 isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
1723 isl_int_set_si(aff->el[0], 1);
1725 if (isl_upoly_update_affine(qp->upoly, aff) < 0)
1734 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
1735 __isl_keep isl_qpolynomial *qp2)
1742 equal = isl_space_is_equal(qp1->dim, qp2->dim);
1743 if (equal < 0 || !equal)
1746 equal = isl_mat_is_equal(qp1->div, qp2->div);
1747 if (equal < 0 || !equal)
1750 return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
1753 static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
1756 struct isl_upoly_rec *rec;
1758 if (isl_upoly_is_cst(up)) {
1759 struct isl_upoly_cst *cst;
1760 cst = isl_upoly_as_cst(up);
1763 isl_int_lcm(*d, *d, cst->d);
1767 rec = isl_upoly_as_rec(up);
1771 for (i = 0; i < rec->n; ++i)
1772 upoly_update_den(rec->p[i], d);
1775 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
1777 isl_int_set_si(*d, 1);
1780 upoly_update_den(qp->upoly, d);
1783 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
1784 __isl_take isl_space *dim, int pos, int power)
1786 struct isl_ctx *ctx;
1793 return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power));
1796 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim,
1797 enum isl_dim_type type, unsigned pos)
1802 isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error);
1803 isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error);
1805 if (type == isl_dim_set)
1806 pos += isl_space_dim(dim, isl_dim_param);
1808 return isl_qpolynomial_var_pow_on_domain(dim, pos, 1);
1810 isl_space_free(dim);
1814 __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
1815 unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
1818 struct isl_upoly_rec *rec;
1819 struct isl_upoly *base, *res;
1824 if (isl_upoly_is_cst(up))
1827 if (up->var < first)
1830 rec = isl_upoly_as_rec(up);
1834 isl_assert(up->ctx, rec->n >= 1, goto error);
1836 if (up->var >= first + n)
1837 base = isl_upoly_var_pow(up->ctx, up->var, 1);
1839 base = isl_upoly_copy(subs[up->var - first]);
1841 res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
1842 for (i = rec->n - 2; i >= 0; --i) {
1843 struct isl_upoly *t;
1844 t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
1845 res = isl_upoly_mul(res, isl_upoly_copy(base));
1846 res = isl_upoly_sum(res, t);
1849 isl_upoly_free(base);
1858 __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
1859 isl_int denom, unsigned len)
1862 struct isl_upoly *up;
1864 isl_assert(ctx, len >= 1, return NULL);
1866 up = isl_upoly_rat_cst(ctx, f[0], denom);
1867 for (i = 0; i < len - 1; ++i) {
1868 struct isl_upoly *t;
1869 struct isl_upoly *c;
1871 if (isl_int_is_zero(f[1 + i]))
1874 c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
1875 t = isl_upoly_var_pow(ctx, i, 1);
1876 t = isl_upoly_mul(c, t);
1877 up = isl_upoly_sum(up, t);
1883 /* Remove common factor of non-constant terms and denominator.
1885 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
1887 isl_ctx *ctx = qp->div->ctx;
1888 unsigned total = qp->div->n_col - 2;
1890 isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
1891 isl_int_gcd(ctx->normalize_gcd,
1892 ctx->normalize_gcd, qp->div->row[div][0]);
1893 if (isl_int_is_one(ctx->normalize_gcd))
1896 isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
1897 ctx->normalize_gcd, total);
1898 isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
1899 ctx->normalize_gcd);
1900 isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
1901 ctx->normalize_gcd);
1904 /* Replace the integer division identified by "div" by the polynomial "s".
1905 * The integer division is assumed not to appear in the definition
1906 * of any other integer divisions.
1908 static __isl_give isl_qpolynomial *substitute_div(
1909 __isl_take isl_qpolynomial *qp,
1910 int div, __isl_take struct isl_upoly *s)
1919 qp = isl_qpolynomial_cow(qp);
1923 total = isl_space_dim(qp->dim, isl_dim_all);
1924 qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
1928 reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
1931 for (i = 0; i < total + div; ++i)
1933 for (i = total + div + 1; i < total + qp->div->n_row; ++i)
1934 reordering[i] = i - 1;
1935 qp->div = isl_mat_drop_rows(qp->div, div, 1);
1936 qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
1937 qp->upoly = reorder(qp->upoly, reordering);
1940 if (!qp->upoly || !qp->div)
1946 isl_qpolynomial_free(qp);
1951 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1952 * divisions because d is equal to 1 by their definition, i.e., e.
1954 static __isl_give isl_qpolynomial *substitute_non_divs(
1955 __isl_take isl_qpolynomial *qp)
1959 struct isl_upoly *s;
1964 total = isl_space_dim(qp->dim, isl_dim_all);
1965 for (i = 0; qp && i < qp->div->n_row; ++i) {
1966 if (!isl_int_is_one(qp->div->row[i][0]))
1968 for (j = i + 1; j < qp->div->n_row; ++j) {
1969 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
1971 isl_seq_combine(qp->div->row[j] + 1,
1972 qp->div->ctx->one, qp->div->row[j] + 1,
1973 qp->div->row[j][2 + total + i],
1974 qp->div->row[i] + 1, 1 + total + i);
1975 isl_int_set_si(qp->div->row[j][2 + total + i], 0);
1976 normalize_div(qp, j);
1978 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
1979 qp->div->row[i][0], qp->div->n_col - 1);
1980 qp = substitute_div(qp, i, s);
1987 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1988 * with d the denominator. When replacing the coefficient e of x by
1989 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1990 * inside the division, so we need to add floor(e/d) * x outside.
1991 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1992 * to adjust the coefficient of x in each later div that depends on the
1993 * current div "div" and also in the affine expression "aff"
1994 * (if it too depends on "div").
1996 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
1997 __isl_keep isl_vec *aff)
2001 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2004 for (i = 0; i < 1 + total + div; ++i) {
2005 if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2006 isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2008 isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2009 isl_int_fdiv_r(qp->div->row[div][1 + i],
2010 qp->div->row[div][1 + i], qp->div->row[div][0]);
2011 if (!isl_int_is_zero(aff->el[1 + total + div]))
2012 isl_int_addmul(aff->el[i], v, aff->el[1 + total + div]);
2013 for (j = div + 1; j < qp->div->n_row; ++j) {
2014 if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2016 isl_int_addmul(qp->div->row[j][1 + i],
2017 v, qp->div->row[j][2 + total + div]);
2023 /* Check if the last non-zero coefficient is bigger that half of the
2024 * denominator. If so, we will invert the div to further reduce the number
2025 * of distinct divs that may appear.
2026 * If the last non-zero coefficient is exactly half the denominator,
2027 * then we continue looking for earlier coefficients that are bigger
2028 * than half the denominator.
2030 static int needs_invert(__isl_keep isl_mat *div, int row)
2035 for (i = div->n_col - 1; i >= 1; --i) {
2036 if (isl_int_is_zero(div->row[row][i]))
2038 isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2039 cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2040 isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2050 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2051 * We only invert the coefficients of e (and the coefficient of q in
2052 * later divs and in "aff"). After calling this function, the
2053 * coefficients of e should be reduced again.
2055 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2056 __isl_keep isl_vec *aff)
2058 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2060 isl_seq_neg(qp->div->row[div] + 1,
2061 qp->div->row[div] + 1, qp->div->n_col - 1);
2062 isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2063 isl_int_add(qp->div->row[div][1],
2064 qp->div->row[div][1], qp->div->row[div][0]);
2065 if (!isl_int_is_zero(aff->el[1 + total + div]))
2066 isl_int_neg(aff->el[1 + total + div], aff->el[1 + total + div]);
2067 isl_mat_col_mul(qp->div, 2 + total + div,
2068 qp->div->ctx->negone, 2 + total + div);
2071 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2072 * in the interval [0, d-1], with d the denominator and such that the
2073 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2075 * After the reduction, some divs may have become redundant or identical,
2076 * so we call substitute_non_divs and sort_divs. If these functions
2077 * eliminate divs or merge two or more divs into one, the coefficients
2078 * of the enclosing divs may have to be reduced again, so we call
2079 * ourselves recursively if the number of divs decreases.
2081 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2084 isl_vec *aff = NULL;
2085 struct isl_upoly *s;
2091 aff = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
2092 aff = isl_vec_clr(aff);
2096 isl_int_set_si(aff->el[1 + qp->upoly->var], 1);
2098 for (i = 0; i < qp->div->n_row; ++i) {
2099 normalize_div(qp, i);
2100 reduce_div(qp, i, aff);
2101 if (needs_invert(qp->div, i)) {
2102 invert_div(qp, i, aff);
2103 reduce_div(qp, i, aff);
2107 s = isl_upoly_from_affine(qp->div->ctx, aff->el,
2108 qp->div->ctx->one, aff->size);
2109 qp->upoly = isl_upoly_subs(qp->upoly, qp->upoly->var, 1, &s);
2116 n_div = qp->div->n_row;
2117 qp = substitute_non_divs(qp);
2119 if (qp && qp->div->n_row < n_div)
2120 return reduce_divs(qp);
2124 isl_qpolynomial_free(qp);
2129 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2130 __isl_take isl_space *dim, const isl_int n, const isl_int d)
2132 struct isl_qpolynomial *qp;
2133 struct isl_upoly_cst *cst;
2138 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
2142 cst = isl_upoly_as_cst(qp->upoly);
2143 isl_int_set(cst->n, n);
2144 isl_int_set(cst->d, d);
2149 static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
2151 struct isl_upoly_rec *rec;
2157 if (isl_upoly_is_cst(up))
2161 active[up->var] = 1;
2163 rec = isl_upoly_as_rec(up);
2164 for (i = 0; i < rec->n; ++i)
2165 if (up_set_active(rec->p[i], active, d) < 0)
2171 static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
2174 int d = isl_space_dim(qp->dim, isl_dim_all);
2179 for (i = 0; i < d; ++i)
2180 for (j = 0; j < qp->div->n_row; ++j) {
2181 if (isl_int_is_zero(qp->div->row[j][2 + i]))
2187 return up_set_active(qp->upoly, active, d);
2190 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2191 enum isl_dim_type type, unsigned first, unsigned n)
2202 isl_assert(qp->dim->ctx,
2203 first + n <= isl_qpolynomial_dim(qp, type), return -1);
2204 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2205 type == isl_dim_in, return -1);
2207 active = isl_calloc_array(qp->dim->ctx, int,
2208 isl_space_dim(qp->dim, isl_dim_all));
2209 if (set_active(qp, active) < 0)
2212 if (type == isl_dim_in)
2213 first += isl_space_dim(qp->dim, isl_dim_param);
2214 for (i = 0; i < n; ++i)
2215 if (active[first + i]) {
2228 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2229 * of the divs that do appear in the quasi-polynomial.
2231 static __isl_give isl_qpolynomial *remove_redundant_divs(
2232 __isl_take isl_qpolynomial *qp)
2239 int *reordering = NULL;
2246 if (qp->div->n_row == 0)
2249 d = isl_space_dim(qp->dim, isl_dim_all);
2250 len = qp->div->n_col - 2;
2251 ctx = isl_qpolynomial_get_ctx(qp);
2252 active = isl_calloc_array(ctx, int, len);
2256 if (up_set_active(qp->upoly, active, len) < 0)
2259 for (i = qp->div->n_row - 1; i >= 0; --i) {
2260 if (!active[d + i]) {
2264 for (j = 0; j < i; ++j) {
2265 if (isl_int_is_zero(qp->div->row[i][2 + d + j]))
2277 reordering = isl_alloc_array(qp->div->ctx, int, len);
2281 for (i = 0; i < d; ++i)
2285 n_div = qp->div->n_row;
2286 for (i = 0; i < n_div; ++i) {
2287 if (!active[d + i]) {
2288 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2289 qp->div = isl_mat_drop_cols(qp->div,
2290 2 + d + i - skip, 1);
2293 reordering[d + i] = d + i - skip;
2296 qp->upoly = reorder(qp->upoly, reordering);
2298 if (!qp->upoly || !qp->div)
2308 isl_qpolynomial_free(qp);
2312 __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
2313 unsigned first, unsigned n)
2316 struct isl_upoly_rec *rec;
2320 if (n == 0 || up->var < 0 || up->var < first)
2322 if (up->var < first + n) {
2323 up = replace_by_constant_term(up);
2324 return isl_upoly_drop(up, first, n);
2326 up = isl_upoly_cow(up);
2330 rec = isl_upoly_as_rec(up);
2334 for (i = 0; i < rec->n; ++i) {
2335 rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
2346 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2347 __isl_take isl_qpolynomial *qp,
2348 enum isl_dim_type type, unsigned pos, const char *s)
2350 qp = isl_qpolynomial_cow(qp);
2353 qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
2358 isl_qpolynomial_free(qp);
2362 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2363 __isl_take isl_qpolynomial *qp,
2364 enum isl_dim_type type, unsigned first, unsigned n)
2368 if (type == isl_dim_out)
2369 isl_die(qp->dim->ctx, isl_error_invalid,
2370 "cannot drop output/set dimension",
2372 if (type == isl_dim_in)
2374 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2377 qp = isl_qpolynomial_cow(qp);
2381 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
2383 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2384 type == isl_dim_set, goto error);
2386 qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
2390 if (type == isl_dim_set)
2391 first += isl_space_dim(qp->dim, isl_dim_param);
2393 qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2397 qp->upoly = isl_upoly_drop(qp->upoly, first, n);
2403 isl_qpolynomial_free(qp);
2407 /* Project the domain of the quasi-polynomial onto its parameter space.
2408 * The quasi-polynomial may not involve any of the domain dimensions.
2410 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
2411 __isl_take isl_qpolynomial *qp)
2417 n = isl_qpolynomial_dim(qp, isl_dim_in);
2418 involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
2420 return isl_qpolynomial_free(qp);
2422 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2423 "polynomial involves some of the domain dimensions",
2424 return isl_qpolynomial_free(qp));
2425 qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
2426 space = isl_qpolynomial_get_domain_space(qp);
2427 space = isl_space_params(space);
2428 qp = isl_qpolynomial_reset_domain_space(qp, space);
2432 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2433 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2439 struct isl_upoly *up;
2443 if (eq->n_eq == 0) {
2444 isl_basic_set_free(eq);
2448 qp = isl_qpolynomial_cow(qp);
2451 qp->div = isl_mat_cow(qp->div);
2455 total = 1 + isl_space_dim(eq->dim, isl_dim_all);
2457 isl_int_init(denom);
2458 for (i = 0; i < eq->n_eq; ++i) {
2459 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
2460 if (j < 0 || j == 0 || j >= total)
2463 for (k = 0; k < qp->div->n_row; ++k) {
2464 if (isl_int_is_zero(qp->div->row[k][1 + j]))
2466 isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
2467 &qp->div->row[k][0]);
2468 normalize_div(qp, k);
2471 if (isl_int_is_pos(eq->eq[i][j]))
2472 isl_seq_neg(eq->eq[i], eq->eq[i], total);
2473 isl_int_abs(denom, eq->eq[i][j]);
2474 isl_int_set_si(eq->eq[i][j], 0);
2476 up = isl_upoly_from_affine(qp->dim->ctx,
2477 eq->eq[i], denom, total);
2478 qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
2481 isl_int_clear(denom);
2486 isl_basic_set_free(eq);
2488 qp = substitute_non_divs(qp);
2493 isl_basic_set_free(eq);
2494 isl_qpolynomial_free(qp);
2498 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2500 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
2501 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2505 if (qp->div->n_row > 0)
2506 eq = isl_basic_set_add(eq, isl_dim_set, qp->div->n_row);
2507 return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
2509 isl_basic_set_free(eq);
2510 isl_qpolynomial_free(qp);
2514 static __isl_give isl_basic_set *add_div_constraints(
2515 __isl_take isl_basic_set *bset, __isl_take isl_mat *div)
2523 bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
2526 total = isl_basic_set_total_dim(bset);
2527 for (i = 0; i < div->n_row; ++i)
2528 if (isl_basic_set_add_div_constraints_var(bset,
2529 total - div->n_row + i, div->row[i]) < 0)
2536 isl_basic_set_free(bset);
2540 /* Look for equalities among the variables shared by context and qp
2541 * and the integer divisions of qp, if any.
2542 * The equalities are then used to eliminate variables and/or integer
2543 * divisions from qp.
2545 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
2546 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2552 if (qp->div->n_row > 0) {
2553 isl_basic_set *bset;
2554 context = isl_set_add_dims(context, isl_dim_set,
2556 bset = isl_basic_set_universe(isl_set_get_space(context));
2557 bset = add_div_constraints(bset, isl_mat_copy(qp->div));
2558 context = isl_set_intersect(context,
2559 isl_set_from_basic_set(bset));
2562 aff = isl_set_affine_hull(context);
2563 return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
2565 isl_qpolynomial_free(qp);
2566 isl_set_free(context);
2570 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
2571 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2573 isl_space *space = isl_qpolynomial_get_domain_space(qp);
2574 isl_set *dom_context = isl_set_universe(space);
2575 dom_context = isl_set_intersect_params(dom_context, context);
2576 return isl_qpolynomial_gist(qp, dom_context);
2579 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
2580 __isl_take isl_qpolynomial *qp)
2586 if (isl_qpolynomial_is_zero(qp)) {
2587 isl_space *dim = isl_qpolynomial_get_space(qp);
2588 isl_qpolynomial_free(qp);
2589 return isl_pw_qpolynomial_zero(dim);
2592 dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp));
2593 return isl_pw_qpolynomial_alloc(dom, qp);
2597 #define PW isl_pw_qpolynomial
2599 #define EL isl_qpolynomial
2601 #define EL_IS_ZERO is_zero
2605 #define IS_ZERO is_zero
2608 #undef DEFAULT_IS_ZERO
2609 #define DEFAULT_IS_ZERO 1
2611 #include <isl_pw_templ.c>
2614 #define UNION isl_union_pw_qpolynomial
2616 #define PART isl_pw_qpolynomial
2618 #define PARTS pw_qpolynomial
2619 #define ALIGN_DOMAIN
2621 #include <isl_union_templ.c>
2623 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
2631 if (!isl_set_plain_is_universe(pwqp->p[0].set))
2634 return isl_qpolynomial_is_one(pwqp->p[0].qp);
2637 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
2638 __isl_take isl_pw_qpolynomial *pwqp1,
2639 __isl_take isl_pw_qpolynomial *pwqp2)
2641 return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
2644 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2645 __isl_take isl_pw_qpolynomial *pwqp1,
2646 __isl_take isl_pw_qpolynomial *pwqp2)
2649 struct isl_pw_qpolynomial *res;
2651 if (!pwqp1 || !pwqp2)
2654 isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
2657 if (isl_pw_qpolynomial_is_zero(pwqp1)) {
2658 isl_pw_qpolynomial_free(pwqp2);
2662 if (isl_pw_qpolynomial_is_zero(pwqp2)) {
2663 isl_pw_qpolynomial_free(pwqp1);
2667 if (isl_pw_qpolynomial_is_one(pwqp1)) {
2668 isl_pw_qpolynomial_free(pwqp1);
2672 if (isl_pw_qpolynomial_is_one(pwqp2)) {
2673 isl_pw_qpolynomial_free(pwqp2);
2677 n = pwqp1->n * pwqp2->n;
2678 res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
2680 for (i = 0; i < pwqp1->n; ++i) {
2681 for (j = 0; j < pwqp2->n; ++j) {
2682 struct isl_set *common;
2683 struct isl_qpolynomial *prod;
2684 common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
2685 isl_set_copy(pwqp2->p[j].set));
2686 if (isl_set_plain_is_empty(common)) {
2687 isl_set_free(common);
2691 prod = isl_qpolynomial_mul(
2692 isl_qpolynomial_copy(pwqp1->p[i].qp),
2693 isl_qpolynomial_copy(pwqp2->p[j].qp));
2695 res = isl_pw_qpolynomial_add_piece(res, common, prod);
2699 isl_pw_qpolynomial_free(pwqp1);
2700 isl_pw_qpolynomial_free(pwqp2);
2704 isl_pw_qpolynomial_free(pwqp1);
2705 isl_pw_qpolynomial_free(pwqp2);
2709 __isl_give struct isl_upoly *isl_upoly_eval(
2710 __isl_take struct isl_upoly *up, __isl_take isl_vec *vec)
2713 struct isl_upoly_rec *rec;
2714 struct isl_upoly *res;
2715 struct isl_upoly *base;
2717 if (isl_upoly_is_cst(up)) {
2722 rec = isl_upoly_as_rec(up);
2726 isl_assert(up->ctx, rec->n >= 1, goto error);
2728 base = isl_upoly_rat_cst(up->ctx, vec->el[1 + up->var], vec->el[0]);
2730 res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),
2733 for (i = rec->n - 2; i >= 0; --i) {
2734 res = isl_upoly_mul(res, isl_upoly_copy(base));
2735 res = isl_upoly_sum(res,
2736 isl_upoly_eval(isl_upoly_copy(rec->p[i]),
2737 isl_vec_copy(vec)));
2740 isl_upoly_free(base);
2750 __isl_give isl_qpolynomial *isl_qpolynomial_eval(
2751 __isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt)
2754 struct isl_upoly *up;
2759 isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
2761 if (qp->div->n_row == 0)
2762 ext = isl_vec_copy(pnt->vec);
2765 unsigned dim = isl_space_dim(qp->dim, isl_dim_all);
2766 ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row);
2770 isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size);
2771 for (i = 0; i < qp->div->n_row; ++i) {
2772 isl_seq_inner_product(qp->div->row[i] + 1, ext->el,
2773 1 + dim + i, &ext->el[1+dim+i]);
2774 isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i],
2775 qp->div->row[i][0]);
2779 up = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext);
2783 dim = isl_space_copy(qp->dim);
2784 isl_qpolynomial_free(qp);
2785 isl_point_free(pnt);
2787 return isl_qpolynomial_alloc(dim, 0, up);
2789 isl_qpolynomial_free(qp);
2790 isl_point_free(pnt);
2794 int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1,
2795 __isl_keep struct isl_upoly_cst *cst2)
2800 isl_int_mul(t, cst1->n, cst2->d);
2801 isl_int_submul(t, cst2->n, cst1->d);
2802 cmp = isl_int_sgn(t);
2807 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial *qp1,
2808 __isl_keep isl_qpolynomial *qp2)
2810 struct isl_upoly_cst *cst1, *cst2;
2814 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), return -1);
2815 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), return -1);
2816 if (isl_qpolynomial_is_nan(qp1))
2818 if (isl_qpolynomial_is_nan(qp2))
2820 cst1 = isl_upoly_as_cst(qp1->upoly);
2821 cst2 = isl_upoly_as_cst(qp2->upoly);
2823 return isl_upoly_cmp(cst1, cst2) <= 0;
2826 __isl_give isl_qpolynomial *isl_qpolynomial_min_cst(
2827 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2829 struct isl_upoly_cst *cst1, *cst2;
2834 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2835 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2836 cst1 = isl_upoly_as_cst(qp1->upoly);
2837 cst2 = isl_upoly_as_cst(qp2->upoly);
2838 cmp = isl_upoly_cmp(cst1, cst2);
2841 isl_qpolynomial_free(qp2);
2843 isl_qpolynomial_free(qp1);
2848 isl_qpolynomial_free(qp1);
2849 isl_qpolynomial_free(qp2);
2853 __isl_give isl_qpolynomial *isl_qpolynomial_max_cst(
2854 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2856 struct isl_upoly_cst *cst1, *cst2;
2861 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2862 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2863 cst1 = isl_upoly_as_cst(qp1->upoly);
2864 cst2 = isl_upoly_as_cst(qp2->upoly);
2865 cmp = isl_upoly_cmp(cst1, cst2);
2868 isl_qpolynomial_free(qp2);
2870 isl_qpolynomial_free(qp1);
2875 isl_qpolynomial_free(qp1);
2876 isl_qpolynomial_free(qp2);
2880 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
2881 __isl_take isl_qpolynomial *qp, enum isl_dim_type type,
2882 unsigned first, unsigned n)
2890 if (type == isl_dim_out)
2891 isl_die(qp->div->ctx, isl_error_invalid,
2892 "cannot insert output/set dimensions",
2894 if (type == isl_dim_in)
2896 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2899 qp = isl_qpolynomial_cow(qp);
2903 isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type),
2906 g_pos = pos(qp->dim, type) + first;
2908 qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
2912 total = qp->div->n_col - 2;
2913 if (total > g_pos) {
2915 exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
2918 for (i = 0; i < total - g_pos; ++i)
2920 qp->upoly = expand(qp->upoly, exp, g_pos);
2926 qp->dim = isl_space_insert_dims(qp->dim, type, first, n);
2932 isl_qpolynomial_free(qp);
2936 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
2937 __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
2941 pos = isl_qpolynomial_dim(qp, type);
2943 return isl_qpolynomial_insert_dims(qp, type, pos, n);
2946 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims(
2947 __isl_take isl_pw_qpolynomial *pwqp,
2948 enum isl_dim_type type, unsigned n)
2952 pos = isl_pw_qpolynomial_dim(pwqp, type);
2954 return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n);
2957 static int *reordering_move(isl_ctx *ctx,
2958 unsigned len, unsigned dst, unsigned src, unsigned n)
2963 reordering = isl_alloc_array(ctx, int, len);
2968 for (i = 0; i < dst; ++i)
2970 for (i = 0; i < n; ++i)
2971 reordering[src + i] = dst + i;
2972 for (i = 0; i < src - dst; ++i)
2973 reordering[dst + i] = dst + n + i;
2974 for (i = 0; i < len - src - n; ++i)
2975 reordering[src + n + i] = src + n + i;
2977 for (i = 0; i < src; ++i)
2979 for (i = 0; i < n; ++i)
2980 reordering[src + i] = dst + i;
2981 for (i = 0; i < dst - src; ++i)
2982 reordering[src + n + i] = src + i;
2983 for (i = 0; i < len - dst - n; ++i)
2984 reordering[dst + n + i] = dst + n + i;
2990 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
2991 __isl_take isl_qpolynomial *qp,
2992 enum isl_dim_type dst_type, unsigned dst_pos,
2993 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
2999 qp = isl_qpolynomial_cow(qp);
3003 if (dst_type == isl_dim_out || src_type == isl_dim_out)
3004 isl_die(qp->dim->ctx, isl_error_invalid,
3005 "cannot move output/set dimension",
3007 if (dst_type == isl_dim_in)
3008 dst_type = isl_dim_set;
3009 if (src_type == isl_dim_in)
3010 src_type = isl_dim_set;
3012 isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type),
3015 g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
3016 g_src_pos = pos(qp->dim, src_type) + src_pos;
3017 if (dst_type > src_type)
3020 qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
3027 reordering = reordering_move(qp->dim->ctx,
3028 qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
3032 qp->upoly = reorder(qp->upoly, reordering);
3037 qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
3043 isl_qpolynomial_free(qp);
3047 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim,
3048 isl_int *f, isl_int denom)
3050 struct isl_upoly *up;
3052 dim = isl_space_domain(dim);
3056 up = isl_upoly_from_affine(dim->ctx, f, denom,
3057 1 + isl_space_dim(dim, isl_dim_all));
3059 return isl_qpolynomial_alloc(dim, 0, up);
3062 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3065 struct isl_upoly *up;
3066 isl_qpolynomial *qp;
3071 ctx = isl_aff_get_ctx(aff);
3072 up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3075 qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3076 aff->ls->div->n_row, up);
3080 isl_mat_free(qp->div);
3081 qp->div = isl_mat_copy(aff->ls->div);
3082 qp->div = isl_mat_cow(qp->div);
3087 qp = reduce_divs(qp);
3088 qp = remove_redundant_divs(qp);
3095 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3096 __isl_take isl_pw_aff *pwaff)
3099 isl_pw_qpolynomial *pwqp;
3104 pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3107 for (i = 0; i < pwaff->n; ++i) {
3109 isl_qpolynomial *qp;
3111 dom = isl_set_copy(pwaff->p[i].set);
3112 qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3113 pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp);
3116 isl_pw_aff_free(pwaff);
3120 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3121 __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3125 aff = isl_constraint_get_bound(c, type, pos);
3126 isl_constraint_free(c);
3127 return isl_qpolynomial_from_aff(aff);
3130 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3131 * in "qp" by subs[i].
3133 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3134 __isl_take isl_qpolynomial *qp,
3135 enum isl_dim_type type, unsigned first, unsigned n,
3136 __isl_keep isl_qpolynomial **subs)
3139 struct isl_upoly **ups;
3144 qp = isl_qpolynomial_cow(qp);
3148 if (type == isl_dim_out)
3149 isl_die(qp->dim->ctx, isl_error_invalid,
3150 "cannot substitute output/set dimension",
3152 if (type == isl_dim_in)
3155 for (i = 0; i < n; ++i)
3159 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
3162 for (i = 0; i < n; ++i)
3163 isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim),
3166 isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3167 for (i = 0; i < n; ++i)
3168 isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3170 first += pos(qp->dim, type);
3172 ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n);
3175 for (i = 0; i < n; ++i)
3176 ups[i] = subs[i]->upoly;
3178 qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups);
3187 isl_qpolynomial_free(qp);
3191 /* Extend "bset" with extra set dimensions for each integer division
3192 * in "qp" and then call "fn" with the extended bset and the polynomial
3193 * that results from replacing each of the integer divisions by the
3194 * corresponding extra set dimension.
3196 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3197 __isl_keep isl_basic_set *bset,
3198 int (*fn)(__isl_take isl_basic_set *bset,
3199 __isl_take isl_qpolynomial *poly, void *user), void *user)
3203 isl_qpolynomial *poly;
3207 if (qp->div->n_row == 0)
3208 return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3211 div = isl_mat_copy(qp->div);
3212 dim = isl_space_copy(qp->dim);
3213 dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row);
3214 poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly));
3215 bset = isl_basic_set_copy(bset);
3216 bset = isl_basic_set_add(bset, isl_dim_set, qp->div->n_row);
3217 bset = add_div_constraints(bset, div);
3219 return fn(bset, poly, user);
3224 /* Return total degree in variables first (inclusive) up to last (exclusive).
3226 int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last)
3230 struct isl_upoly_rec *rec;
3234 if (isl_upoly_is_zero(up))
3236 if (isl_upoly_is_cst(up) || up->var < first)
3239 rec = isl_upoly_as_rec(up);
3243 for (i = 0; i < rec->n; ++i) {
3246 if (isl_upoly_is_zero(rec->p[i]))
3248 d = isl_upoly_degree(rec->p[i], first, last);
3258 /* Return total degree in set variables.
3260 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3268 ovar = isl_space_offset(poly->dim, isl_dim_set);
3269 nvar = isl_space_dim(poly->dim, isl_dim_set);
3270 return isl_upoly_degree(poly->upoly, ovar, ovar + nvar);
3273 __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up,
3274 unsigned pos, int deg)
3277 struct isl_upoly_rec *rec;
3282 if (isl_upoly_is_cst(up) || up->var < pos) {
3284 return isl_upoly_copy(up);
3286 return isl_upoly_zero(up->ctx);
3289 rec = isl_upoly_as_rec(up);
3293 if (up->var == pos) {
3295 return isl_upoly_copy(rec->p[deg]);
3297 return isl_upoly_zero(up->ctx);
3300 up = isl_upoly_copy(up);
3301 up = isl_upoly_cow(up);
3302 rec = isl_upoly_as_rec(up);
3306 for (i = 0; i < rec->n; ++i) {
3307 struct isl_upoly *t;
3308 t = isl_upoly_coeff(rec->p[i], pos, deg);
3311 isl_upoly_free(rec->p[i]);
3321 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3323 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3324 __isl_keep isl_qpolynomial *qp,
3325 enum isl_dim_type type, unsigned t_pos, int deg)
3328 struct isl_upoly *up;
3334 if (type == isl_dim_out)
3335 isl_die(qp->div->ctx, isl_error_invalid,
3336 "output/set dimension does not have a coefficient",
3338 if (type == isl_dim_in)
3341 isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type),
3344 g_pos = pos(qp->dim, type) + t_pos;
3345 up = isl_upoly_coeff(qp->upoly, g_pos, deg);
3347 c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up);
3350 isl_mat_free(c->div);
3351 c->div = isl_mat_copy(qp->div);
3356 isl_qpolynomial_free(c);
3360 /* Homogenize the polynomial in the variables first (inclusive) up to
3361 * last (exclusive) by inserting powers of variable first.
3362 * Variable first is assumed not to appear in the input.
3364 __isl_give struct isl_upoly *isl_upoly_homogenize(
3365 __isl_take struct isl_upoly *up, int deg, int target,
3366 int first, int last)
3369 struct isl_upoly_rec *rec;
3373 if (isl_upoly_is_zero(up))
3377 if (isl_upoly_is_cst(up) || up->var < first) {
3378 struct isl_upoly *hom;
3380 hom = isl_upoly_var_pow(up->ctx, first, target - deg);
3383 rec = isl_upoly_as_rec(hom);
3384 rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up);
3389 up = isl_upoly_cow(up);
3390 rec = isl_upoly_as_rec(up);
3394 for (i = 0; i < rec->n; ++i) {
3395 if (isl_upoly_is_zero(rec->p[i]))
3397 rec->p[i] = isl_upoly_homogenize(rec->p[i],
3398 up->var < last ? deg + i : i, target,
3410 /* Homogenize the polynomial in the set variables by introducing
3411 * powers of an extra set variable at position 0.
3413 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3414 __isl_take isl_qpolynomial *poly)
3418 int deg = isl_qpolynomial_degree(poly);
3423 poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
3424 poly = isl_qpolynomial_cow(poly);
3428 ovar = isl_space_offset(poly->dim, isl_dim_set);
3429 nvar = isl_space_dim(poly->dim, isl_dim_set);
3430 poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg,
3437 isl_qpolynomial_free(poly);
3441 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *dim,
3442 __isl_take isl_mat *div)
3450 n = isl_space_dim(dim, isl_dim_all) + div->n_row;
3452 term = isl_calloc(dim->ctx, struct isl_term,
3453 sizeof(struct isl_term) + (n - 1) * sizeof(int));
3460 isl_int_init(term->n);
3461 isl_int_init(term->d);
3465 isl_space_free(dim);
3470 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3479 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3488 total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3490 dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
3494 isl_int_set(dup->n, term->n);
3495 isl_int_set(dup->d, term->d);
3497 for (i = 0; i < total; ++i)
3498 dup->pow[i] = term->pow[i];
3503 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3511 return isl_term_dup(term);
3514 void isl_term_free(__isl_take isl_term *term)
3519 if (--term->ref > 0)
3522 isl_space_free(term->dim);
3523 isl_mat_free(term->div);
3524 isl_int_clear(term->n);
3525 isl_int_clear(term->d);
3529 unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3537 case isl_dim_out: return isl_space_dim(term->dim, type);
3538 case isl_dim_div: return term->div->n_row;
3539 case isl_dim_all: return isl_space_dim(term->dim, isl_dim_all) +
3545 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
3547 return term ? term->dim->ctx : NULL;
3550 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
3554 isl_int_set(*n, term->n);
3557 void isl_term_get_den(__isl_keep isl_term *term, isl_int *d)
3561 isl_int_set(*d, term->d);
3564 int isl_term_get_exp(__isl_keep isl_term *term,
3565 enum isl_dim_type type, unsigned pos)
3570 isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1);
3572 if (type >= isl_dim_set)
3573 pos += isl_space_dim(term->dim, isl_dim_param);
3574 if (type >= isl_dim_div)
3575 pos += isl_space_dim(term->dim, isl_dim_set);
3577 return term->pow[pos];
3580 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
3582 isl_local_space *ls;
3588 isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div),
3591 ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
3592 isl_mat_copy(term->div));
3593 aff = isl_aff_alloc(ls);
3597 isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
3599 aff = isl_aff_normalize(aff);
3604 __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up,
3605 int (*fn)(__isl_take isl_term *term, void *user),
3606 __isl_take isl_term *term, void *user)
3609 struct isl_upoly_rec *rec;
3614 if (isl_upoly_is_zero(up))
3617 isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error);
3618 isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error);
3619 isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error);
3621 if (isl_upoly_is_cst(up)) {
3622 struct isl_upoly_cst *cst;
3623 cst = isl_upoly_as_cst(up);
3626 term = isl_term_cow(term);
3629 isl_int_set(term->n, cst->n);
3630 isl_int_set(term->d, cst->d);
3631 if (fn(isl_term_copy(term), user) < 0)
3636 rec = isl_upoly_as_rec(up);
3640 for (i = 0; i < rec->n; ++i) {
3641 term = isl_term_cow(term);
3644 term->pow[up->var] = i;
3645 term = isl_upoly_foreach_term(rec->p[i], fn, term, user);
3649 term->pow[up->var] = 0;
3653 isl_term_free(term);
3657 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
3658 int (*fn)(__isl_take isl_term *term, void *user), void *user)
3665 term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div));
3669 term = isl_upoly_foreach_term(qp->upoly, fn, term, user);
3671 isl_term_free(term);
3673 return term ? 0 : -1;
3676 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
3678 struct isl_upoly *up;
3679 isl_qpolynomial *qp;
3685 n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3687 up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d);
3688 for (i = 0; i < n; ++i) {
3691 up = isl_upoly_mul(up,
3692 isl_upoly_var_pow(term->dim->ctx, i, term->pow[i]));
3695 qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up);
3698 isl_mat_free(qp->div);
3699 qp->div = isl_mat_copy(term->div);
3703 isl_term_free(term);
3706 isl_qpolynomial_free(qp);
3707 isl_term_free(term);
3711 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
3712 __isl_take isl_space *dim)
3721 if (isl_space_is_equal(qp->dim, dim)) {
3722 isl_space_free(dim);
3726 qp = isl_qpolynomial_cow(qp);
3730 extra = isl_space_dim(dim, isl_dim_set) -
3731 isl_space_dim(qp->dim, isl_dim_set);
3732 total = isl_space_dim(qp->dim, isl_dim_all);
3733 if (qp->div->n_row) {
3736 exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
3739 for (i = 0; i < qp->div->n_row; ++i)
3741 qp->upoly = expand(qp->upoly, exp, total);
3746 qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
3749 for (i = 0; i < qp->div->n_row; ++i)
3750 isl_seq_clr(qp->div->row[i] + 2 + total, extra);
3752 isl_space_free(qp->dim);
3757 isl_space_free(dim);
3758 isl_qpolynomial_free(qp);
3762 /* For each parameter or variable that does not appear in qp,
3763 * first eliminate the variable from all constraints and then set it to zero.
3765 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
3766 __isl_keep isl_qpolynomial *qp)
3777 d = isl_space_dim(set->dim, isl_dim_all);
3778 active = isl_calloc_array(set->ctx, int, d);
3779 if (set_active(qp, active) < 0)
3782 for (i = 0; i < d; ++i)
3791 nparam = isl_space_dim(set->dim, isl_dim_param);
3792 nvar = isl_space_dim(set->dim, isl_dim_set);
3793 for (i = 0; i < nparam; ++i) {
3796 set = isl_set_eliminate(set, isl_dim_param, i, 1);
3797 set = isl_set_fix_si(set, isl_dim_param, i, 0);
3799 for (i = 0; i < nvar; ++i) {
3800 if (active[nparam + i])
3802 set = isl_set_eliminate(set, isl_dim_set, i, 1);
3803 set = isl_set_fix_si(set, isl_dim_set, i, 0);
3815 struct isl_opt_data {
3816 isl_qpolynomial *qp;
3818 isl_qpolynomial *opt;
3822 static int opt_fn(__isl_take isl_point *pnt, void *user)
3824 struct isl_opt_data *data = (struct isl_opt_data *)user;
3825 isl_qpolynomial *val;
3827 val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
3831 } else if (data->max) {
3832 data->opt = isl_qpolynomial_max_cst(data->opt, val);
3834 data->opt = isl_qpolynomial_min_cst(data->opt, val);
3840 __isl_give isl_qpolynomial *isl_qpolynomial_opt_on_domain(
3841 __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
3843 struct isl_opt_data data = { NULL, 1, NULL, max };
3848 if (isl_upoly_is_cst(qp->upoly)) {
3853 set = fix_inactive(set, qp);
3856 if (isl_set_foreach_point(set, opt_fn, &data) < 0)
3860 isl_space *space = isl_qpolynomial_get_domain_space(qp);
3861 data.opt = isl_qpolynomial_zero_on_domain(space);
3865 isl_qpolynomial_free(qp);
3869 isl_qpolynomial_free(qp);
3870 isl_qpolynomial_free(data.opt);
3874 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
3875 __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
3880 struct isl_upoly **subs;
3881 isl_mat *mat, *diag;
3883 qp = isl_qpolynomial_cow(qp);
3888 isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error);
3890 n_sub = morph->inv->n_row - 1;
3891 if (morph->inv->n_row != morph->inv->n_col)
3892 n_sub += qp->div->n_row;
3893 subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub);
3897 for (i = 0; 1 + i < morph->inv->n_row; ++i)
3898 subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i],
3899 morph->inv->row[0][0], morph->inv->n_col);
3900 if (morph->inv->n_row != morph->inv->n_col)
3901 for (i = 0; i < qp->div->n_row; ++i)
3902 subs[morph->inv->n_row - 1 + i] =
3903 isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
3905 qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs);
3907 for (i = 0; i < n_sub; ++i)
3908 isl_upoly_free(subs[i]);
3911 diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
3912 mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
3913 diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
3914 mat = isl_mat_diagonal(mat, diag);
3915 qp->div = isl_mat_product(qp->div, mat);
3916 isl_space_free(qp->dim);
3917 qp->dim = isl_space_copy(morph->ran->dim);
3919 if (!qp->upoly || !qp->div || !qp->dim)
3922 isl_morph_free(morph);
3926 isl_qpolynomial_free(qp);
3927 isl_morph_free(morph);
3931 static int neg_entry(void **entry, void *user)
3933 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
3935 *pwqp = isl_pw_qpolynomial_neg(*pwqp);
3937 return *pwqp ? 0 : -1;
3940 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_neg(
3941 __isl_take isl_union_pw_qpolynomial *upwqp)
3943 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
3947 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
3948 &neg_entry, NULL) < 0)
3953 isl_union_pw_qpolynomial_free(upwqp);
3957 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3958 __isl_take isl_union_pw_qpolynomial *upwqp1,
3959 __isl_take isl_union_pw_qpolynomial *upwqp2)
3961 return isl_union_pw_qpolynomial_add(upwqp1,
3962 isl_union_pw_qpolynomial_neg(upwqp2));
3965 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3966 __isl_take isl_union_pw_qpolynomial *upwqp1,
3967 __isl_take isl_union_pw_qpolynomial *upwqp2)
3969 return match_bin_op(upwqp1, upwqp2, &isl_pw_qpolynomial_mul);
3972 /* Reorder the columns of the given div definitions according to the
3975 static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div,
3976 __isl_take isl_reordering *r)
3985 extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len;
3986 mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra);
3990 for (i = 0; i < div->n_row; ++i) {
3991 isl_seq_cpy(mat->row[i], div->row[i], 2);
3992 isl_seq_clr(mat->row[i] + 2, mat->n_col - 2);
3993 for (j = 0; j < r->len; ++j)
3994 isl_int_set(mat->row[i][2 + r->pos[j]],
3995 div->row[i][2 + j]);
3998 isl_reordering_free(r);
4002 isl_reordering_free(r);
4007 /* Reorder the dimension of "qp" according to the given reordering.
4009 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4010 __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4012 qp = isl_qpolynomial_cow(qp);
4016 r = isl_reordering_extend(r, qp->div->n_row);
4020 qp->div = reorder_divs(qp->div, isl_reordering_copy(r));
4024 qp->upoly = reorder(qp->upoly, r->pos);
4028 qp = isl_qpolynomial_reset_domain_space(qp, isl_space_copy(r->dim));
4030 isl_reordering_free(r);
4033 isl_qpolynomial_free(qp);
4034 isl_reordering_free(r);
4038 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4039 __isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4044 if (!isl_space_match(qp->dim, isl_dim_param, model, isl_dim_param)) {
4045 isl_reordering *exp;
4047 model = isl_space_drop_dims(model, isl_dim_in,
4048 0, isl_space_dim(model, isl_dim_in));
4049 model = isl_space_drop_dims(model, isl_dim_out,
4050 0, isl_space_dim(model, isl_dim_out));
4051 exp = isl_parameter_alignment_reordering(qp->dim, model);
4052 exp = isl_reordering_extend_space(exp,
4053 isl_qpolynomial_get_domain_space(qp));
4054 qp = isl_qpolynomial_realign_domain(qp, exp);
4057 isl_space_free(model);
4060 isl_space_free(model);
4061 isl_qpolynomial_free(qp);
4065 struct isl_split_periods_data {
4067 isl_pw_qpolynomial *res;
4070 /* Create a slice where the integer division "div" has the fixed value "v".
4071 * In particular, if "div" refers to floor(f/m), then create a slice
4073 * m v <= f <= m v + (m - 1)
4078 * -f + m v + (m - 1) >= 0
4080 static __isl_give isl_set *set_div_slice(__isl_take isl_space *dim,
4081 __isl_keep isl_qpolynomial *qp, int div, isl_int v)
4084 isl_basic_set *bset = NULL;
4090 total = isl_space_dim(dim, isl_dim_all);
4091 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 0, 2);
4093 k = isl_basic_set_alloc_inequality(bset);
4096 isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4097 isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4099 k = isl_basic_set_alloc_inequality(bset);
4102 isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4103 isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4104 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4105 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4107 isl_space_free(dim);
4108 return isl_set_from_basic_set(bset);
4110 isl_basic_set_free(bset);
4111 isl_space_free(dim);
4115 static int split_periods(__isl_take isl_set *set,
4116 __isl_take isl_qpolynomial *qp, void *user);
4118 /* Create a slice of the domain "set" such that integer division "div"
4119 * has the fixed value "v" and add the results to data->res,
4120 * replacing the integer division by "v" in "qp".
4122 static int set_div(__isl_take isl_set *set,
4123 __isl_take isl_qpolynomial *qp, int div, isl_int v,
4124 struct isl_split_periods_data *data)
4129 struct isl_upoly *cst;
4131 slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4132 set = isl_set_intersect(set, slice);
4137 total = isl_space_dim(qp->dim, isl_dim_all);
4139 for (i = div + 1; i < qp->div->n_row; ++i) {
4140 if (isl_int_is_zero(qp->div->row[i][2 + total + div]))
4142 isl_int_addmul(qp->div->row[i][1],
4143 qp->div->row[i][2 + total + div], v);
4144 isl_int_set_si(qp->div->row[i][2 + total + div], 0);
4147 cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4148 qp = substitute_div(qp, div, cst);
4150 return split_periods(set, qp, data);
4153 isl_qpolynomial_free(qp);
4157 /* Split the domain "set" such that integer division "div"
4158 * has a fixed value (ranging from "min" to "max") on each slice
4159 * and add the results to data->res.
4161 static int split_div(__isl_take isl_set *set,
4162 __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4163 struct isl_split_periods_data *data)
4165 for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4166 isl_set *set_i = isl_set_copy(set);
4167 isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4169 if (set_div(set_i, qp_i, div, min, data) < 0)
4173 isl_qpolynomial_free(qp);
4177 isl_qpolynomial_free(qp);
4181 /* If "qp" refers to any integer division
4182 * that can only attain "max_periods" distinct values on "set"
4183 * then split the domain along those distinct values.
4184 * Add the results (or the original if no splitting occurs)
4187 static int split_periods(__isl_take isl_set *set,
4188 __isl_take isl_qpolynomial *qp, void *user)
4191 isl_pw_qpolynomial *pwqp;
4192 struct isl_split_periods_data *data;
4197 data = (struct isl_split_periods_data *)user;
4202 if (qp->div->n_row == 0) {
4203 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4204 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4210 total = isl_space_dim(qp->dim, isl_dim_all);
4211 for (i = 0; i < qp->div->n_row; ++i) {
4212 enum isl_lp_result lp_res;
4214 if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total,
4215 qp->div->n_row) != -1)
4218 lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4219 set->ctx->one, &min, NULL, NULL);
4220 if (lp_res == isl_lp_error)
4222 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4224 isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4226 lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4227 set->ctx->one, &max, NULL, NULL);
4228 if (lp_res == isl_lp_error)
4230 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4232 isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4234 isl_int_sub(max, max, min);
4235 if (isl_int_cmp_si(max, data->max_periods) < 0) {
4236 isl_int_add(max, max, min);
4241 if (i < qp->div->n_row) {
4242 r = split_div(set, qp, i, min, max, data);
4244 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4245 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4257 isl_qpolynomial_free(qp);
4261 /* If any quasi-polynomial in pwqp refers to any integer division
4262 * that can only attain "max_periods" distinct values on its domain
4263 * then split the domain along those distinct values.
4265 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4266 __isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4268 struct isl_split_periods_data data;
4270 data.max_periods = max_periods;
4271 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4273 if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4276 isl_pw_qpolynomial_free(pwqp);
4280 isl_pw_qpolynomial_free(data.res);
4281 isl_pw_qpolynomial_free(pwqp);
4285 /* Construct a piecewise quasipolynomial that is constant on the given
4286 * domain. In particular, it is
4289 * infinity if cst == -1
4291 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4292 __isl_take isl_basic_set *bset, int cst)
4295 isl_qpolynomial *qp;
4300 bset = isl_basic_set_params(bset);
4301 dim = isl_basic_set_get_space(bset);
4303 qp = isl_qpolynomial_infty_on_domain(dim);
4305 qp = isl_qpolynomial_zero_on_domain(dim);
4307 qp = isl_qpolynomial_one_on_domain(dim);
4308 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4311 /* Factor bset, call fn on each of the factors and return the product.
4313 * If no factors can be found, simply call fn on the input.
4314 * Otherwise, construct the factors based on the factorizer,
4315 * call fn on each factor and compute the product.
4317 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4318 __isl_take isl_basic_set *bset,
4319 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4325 isl_qpolynomial *qp;
4326 isl_pw_qpolynomial *pwqp;
4330 f = isl_basic_set_factorizer(bset);
4333 if (f->n_group == 0) {
4334 isl_factorizer_free(f);
4338 nparam = isl_basic_set_dim(bset, isl_dim_param);
4339 nvar = isl_basic_set_dim(bset, isl_dim_set);
4341 dim = isl_basic_set_get_space(bset);
4342 dim = isl_space_domain(dim);
4343 set = isl_set_universe(isl_space_copy(dim));
4344 qp = isl_qpolynomial_one_on_domain(dim);
4345 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4347 bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
4349 for (i = 0, n = 0; i < f->n_group; ++i) {
4350 isl_basic_set *bset_i;
4351 isl_pw_qpolynomial *pwqp_i;
4353 bset_i = isl_basic_set_copy(bset);
4354 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4355 nparam + n + f->len[i], nvar - n - f->len[i]);
4356 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4358 bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
4359 n + f->len[i], nvar - n - f->len[i]);
4360 bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
4362 pwqp_i = fn(bset_i);
4363 pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i);
4368 isl_basic_set_free(bset);
4369 isl_factorizer_free(f);
4373 isl_basic_set_free(bset);
4377 /* Factor bset, call fn on each of the factors and return the product.
4378 * The function is assumed to evaluate to zero on empty domains,
4379 * to one on zero-dimensional domains and to infinity on unbounded domains
4380 * and will not be called explicitly on zero-dimensional or unbounded domains.
4382 * We first check for some special cases and remove all equalities.
4383 * Then we hand over control to compressed_multiplicative_call.
4385 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4386 __isl_take isl_basic_set *bset,
4387 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4391 isl_pw_qpolynomial *pwqp;
4396 if (isl_basic_set_plain_is_empty(bset))
4397 return constant_on_domain(bset, 0);
4399 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
4400 return constant_on_domain(bset, 1);
4402 bounded = isl_basic_set_is_bounded(bset);
4406 return constant_on_domain(bset, -1);
4408 if (bset->n_eq == 0)
4409 return compressed_multiplicative_call(bset, fn);
4411 morph = isl_basic_set_full_compression(bset);
4412 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4414 pwqp = compressed_multiplicative_call(bset, fn);
4416 morph = isl_morph_dom_params(morph);
4417 morph = isl_morph_ran_params(morph);
4418 morph = isl_morph_inverse(morph);
4420 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
4424 isl_basic_set_free(bset);
4428 /* Drop all floors in "qp", turning each integer division [a/m] into
4429 * a rational division a/m. If "down" is set, then the integer division
4430 * is replaces by (a-(m-1))/m instead.
4432 static __isl_give isl_qpolynomial *qp_drop_floors(
4433 __isl_take isl_qpolynomial *qp, int down)
4436 struct isl_upoly *s;
4440 if (qp->div->n_row == 0)
4443 qp = isl_qpolynomial_cow(qp);
4447 for (i = qp->div->n_row - 1; i >= 0; --i) {
4449 isl_int_sub(qp->div->row[i][1],
4450 qp->div->row[i][1], qp->div->row[i][0]);
4451 isl_int_add_ui(qp->div->row[i][1],
4452 qp->div->row[i][1], 1);
4454 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4455 qp->div->row[i][0], qp->div->n_col - 1);
4456 qp = substitute_div(qp, i, s);
4464 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4465 * a rational division a/m.
4467 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4468 __isl_take isl_pw_qpolynomial *pwqp)
4475 if (isl_pw_qpolynomial_is_zero(pwqp))
4478 pwqp = isl_pw_qpolynomial_cow(pwqp);
4482 for (i = 0; i < pwqp->n; ++i) {
4483 pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4490 isl_pw_qpolynomial_free(pwqp);
4494 /* Adjust all the integer divisions in "qp" such that they are at least
4495 * one over the given orthant (identified by "signs"). This ensures
4496 * that they will still be non-negative even after subtracting (m-1)/m.
4498 * In particular, f is replaced by f' + v, changing f = [a/m]
4499 * to f' = [(a - m v)/m].
4500 * If the constant term k in a is smaller than m,
4501 * the constant term of v is set to floor(k/m) - 1.
4502 * For any other term, if the coefficient c and the variable x have
4503 * the same sign, then no changes are needed.
4504 * Otherwise, if the variable is positive (and c is negative),
4505 * then the coefficient of x in v is set to floor(c/m).
4506 * If the variable is negative (and c is positive),
4507 * then the coefficient of x in v is set to ceil(c/m).
4509 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
4515 struct isl_upoly *s;
4517 qp = isl_qpolynomial_cow(qp);
4520 qp->div = isl_mat_cow(qp->div);
4524 total = isl_space_dim(qp->dim, isl_dim_all);
4525 v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
4527 for (i = 0; i < qp->div->n_row; ++i) {
4528 isl_int *row = qp->div->row[i];
4532 if (isl_int_lt(row[1], row[0])) {
4533 isl_int_fdiv_q(v->el[0], row[1], row[0]);
4534 isl_int_sub_ui(v->el[0], v->el[0], 1);
4535 isl_int_submul(row[1], row[0], v->el[0]);
4537 for (j = 0; j < total; ++j) {
4538 if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
4541 isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
4543 isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
4544 isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
4546 for (j = 0; j < i; ++j) {
4547 if (isl_int_sgn(row[2 + total + j]) >= 0)
4549 isl_int_fdiv_q(v->el[1 + total + j],
4550 row[2 + total + j], row[0]);
4551 isl_int_submul(row[2 + total + j],
4552 row[0], v->el[1 + total + j]);
4554 for (j = i + 1; j < qp->div->n_row; ++j) {
4555 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
4557 isl_seq_combine(qp->div->row[j] + 1,
4558 qp->div->ctx->one, qp->div->row[j] + 1,
4559 qp->div->row[j][2 + total + i], v->el, v->size);
4561 isl_int_set_si(v->el[1 + total + i], 1);
4562 s = isl_upoly_from_affine(qp->dim->ctx, v->el,
4563 qp->div->ctx->one, v->size);
4564 qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s);
4574 isl_qpolynomial_free(qp);
4578 struct isl_to_poly_data {
4580 isl_pw_qpolynomial *res;
4581 isl_qpolynomial *qp;
4584 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4585 * We first make all integer divisions positive and then split the
4586 * quasipolynomials into terms with sign data->sign (the direction
4587 * of the requested approximation) and terms with the opposite sign.
4588 * In the first set of terms, each integer division [a/m] is
4589 * overapproximated by a/m, while in the second it is underapproximated
4592 static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs,
4595 struct isl_to_poly_data *data = user;
4596 isl_pw_qpolynomial *t;
4597 isl_qpolynomial *qp, *up, *down;
4599 qp = isl_qpolynomial_copy(data->qp);
4600 qp = make_divs_pos(qp, signs);
4602 up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
4603 up = qp_drop_floors(up, 0);
4604 down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
4605 down = qp_drop_floors(down, 1);
4607 isl_qpolynomial_free(qp);
4608 qp = isl_qpolynomial_add(up, down);
4610 t = isl_pw_qpolynomial_alloc(orthant, qp);
4611 data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
4616 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4617 * the polynomial will be an overapproximation. If "sign" is negative,
4618 * it will be an underapproximation. If "sign" is zero, the approximation
4619 * will lie somewhere in between.
4621 * In particular, is sign == 0, we simply drop the floors, turning
4622 * the integer divisions into rational divisions.
4623 * Otherwise, we split the domains into orthants, make all integer divisions
4624 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4625 * depending on the requested sign and the sign of the term in which
4626 * the integer division appears.
4628 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4629 __isl_take isl_pw_qpolynomial *pwqp, int sign)
4632 struct isl_to_poly_data data;
4635 return pwqp_drop_floors(pwqp);
4641 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4643 for (i = 0; i < pwqp->n; ++i) {
4644 if (pwqp->p[i].qp->div->n_row == 0) {
4645 isl_pw_qpolynomial *t;
4646 t = isl_pw_qpolynomial_alloc(
4647 isl_set_copy(pwqp->p[i].set),
4648 isl_qpolynomial_copy(pwqp->p[i].qp));
4649 data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
4652 data.qp = pwqp->p[i].qp;
4653 if (isl_set_foreach_orthant(pwqp->p[i].set,
4654 &to_polynomial_on_orthant, &data) < 0)
4658 isl_pw_qpolynomial_free(pwqp);
4662 isl_pw_qpolynomial_free(pwqp);
4663 isl_pw_qpolynomial_free(data.res);
4667 static int poly_entry(void **entry, void *user)
4670 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
4672 *pwqp = isl_pw_qpolynomial_to_polynomial(*pwqp, *sign);
4674 return *pwqp ? 0 : -1;
4677 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
4678 __isl_take isl_union_pw_qpolynomial *upwqp, int sign)
4680 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
4684 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
4685 &poly_entry, &sign) < 0)
4690 isl_union_pw_qpolynomial_free(upwqp);
4694 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
4695 __isl_take isl_qpolynomial *qp)
4699 isl_vec *aff = NULL;
4700 isl_basic_map *bmap = NULL;
4706 if (!isl_upoly_is_affine(qp->upoly))
4707 isl_die(qp->dim->ctx, isl_error_invalid,
4708 "input quasi-polynomial not affine", goto error);
4709 aff = isl_qpolynomial_extract_affine(qp);
4712 dim = isl_qpolynomial_get_space(qp);
4713 pos = 1 + isl_space_offset(dim, isl_dim_out);
4714 n_div = qp->div->n_row;
4715 bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div);
4717 for (i = 0; i < n_div; ++i) {
4718 k = isl_basic_map_alloc_div(bmap);
4721 isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
4722 isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
4723 if (isl_basic_map_add_div_constraints(bmap, k) < 0)
4726 k = isl_basic_map_alloc_equality(bmap);
4729 isl_int_neg(bmap->eq[k][pos], aff->el[0]);
4730 isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
4731 isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
4734 isl_qpolynomial_free(qp);
4735 bmap = isl_basic_map_finalize(bmap);
4739 isl_qpolynomial_free(qp);
4740 isl_basic_map_free(bmap);