2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include <isl_map_private.h>
13 #include <isl_factorization.h>
16 #include <isl_union_map_private.h>
17 #include <isl_polynomial_private.h>
18 #include <isl_point_private.h>
19 #include <isl_dim_private.h>
20 #include <isl_mat_private.h>
21 #include <isl_range.h>
23 static unsigned pos(__isl_keep isl_dim *dim, enum isl_dim_type type)
26 case isl_dim_param: return 0;
27 case isl_dim_in: return dim->nparam;
28 case isl_dim_out: return dim->nparam + dim->n_in;
33 int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
41 __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
46 isl_assert(up->ctx, up->var < 0, return NULL);
48 return (struct isl_upoly_cst *)up;
51 __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
56 isl_assert(up->ctx, up->var >= 0, return NULL);
58 return (struct isl_upoly_rec *)up;
61 int isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
62 __isl_keep struct isl_upoly *up2)
65 struct isl_upoly_rec *rec1, *rec2;
71 if (up1->var != up2->var)
73 if (isl_upoly_is_cst(up1)) {
74 struct isl_upoly_cst *cst1, *cst2;
75 cst1 = isl_upoly_as_cst(up1);
76 cst2 = isl_upoly_as_cst(up2);
79 return isl_int_eq(cst1->n, cst2->n) &&
80 isl_int_eq(cst1->d, cst2->d);
83 rec1 = isl_upoly_as_rec(up1);
84 rec2 = isl_upoly_as_rec(up2);
88 if (rec1->n != rec2->n)
91 for (i = 0; i < rec1->n; ++i) {
92 int eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
100 int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
102 struct isl_upoly_cst *cst;
106 if (!isl_upoly_is_cst(up))
109 cst = isl_upoly_as_cst(up);
113 return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
116 int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
118 struct isl_upoly_cst *cst;
122 if (!isl_upoly_is_cst(up))
125 cst = isl_upoly_as_cst(up);
129 return isl_int_sgn(cst->n);
132 int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
134 struct isl_upoly_cst *cst;
138 if (!isl_upoly_is_cst(up))
141 cst = isl_upoly_as_cst(up);
145 return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
148 int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
150 struct isl_upoly_cst *cst;
154 if (!isl_upoly_is_cst(up))
157 cst = isl_upoly_as_cst(up);
161 return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
164 int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
166 struct isl_upoly_cst *cst;
170 if (!isl_upoly_is_cst(up))
173 cst = isl_upoly_as_cst(up);
177 return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
180 int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
182 struct isl_upoly_cst *cst;
186 if (!isl_upoly_is_cst(up))
189 cst = isl_upoly_as_cst(up);
193 return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
196 int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
198 struct isl_upoly_cst *cst;
202 if (!isl_upoly_is_cst(up))
205 cst = isl_upoly_as_cst(up);
209 return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
212 __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
214 struct isl_upoly_cst *cst;
216 cst = isl_alloc_type(ctx, struct isl_upoly_cst);
225 isl_int_init(cst->n);
226 isl_int_init(cst->d);
231 __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
233 struct isl_upoly_cst *cst;
235 cst = isl_upoly_cst_alloc(ctx);
239 isl_int_set_si(cst->n, 0);
240 isl_int_set_si(cst->d, 1);
245 __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
247 struct isl_upoly_cst *cst;
249 cst = isl_upoly_cst_alloc(ctx);
253 isl_int_set_si(cst->n, 1);
254 isl_int_set_si(cst->d, 1);
259 __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
261 struct isl_upoly_cst *cst;
263 cst = isl_upoly_cst_alloc(ctx);
267 isl_int_set_si(cst->n, 1);
268 isl_int_set_si(cst->d, 0);
273 __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
275 struct isl_upoly_cst *cst;
277 cst = isl_upoly_cst_alloc(ctx);
281 isl_int_set_si(cst->n, -1);
282 isl_int_set_si(cst->d, 0);
287 __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
289 struct isl_upoly_cst *cst;
291 cst = isl_upoly_cst_alloc(ctx);
295 isl_int_set_si(cst->n, 0);
296 isl_int_set_si(cst->d, 0);
301 __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
302 isl_int n, isl_int d)
304 struct isl_upoly_cst *cst;
306 cst = isl_upoly_cst_alloc(ctx);
310 isl_int_set(cst->n, n);
311 isl_int_set(cst->d, d);
316 __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
319 struct isl_upoly_rec *rec;
321 isl_assert(ctx, var >= 0, return NULL);
322 isl_assert(ctx, size >= 0, return NULL);
323 rec = isl_calloc(ctx, struct isl_upoly_rec,
324 sizeof(struct isl_upoly_rec) +
325 (size - 1) * sizeof(struct isl_upoly *));
340 __isl_give isl_qpolynomial *isl_qpolynomial_reset_dim(
341 __isl_take isl_qpolynomial *qp, __isl_take isl_dim *dim)
343 qp = isl_qpolynomial_cow(qp);
347 isl_dim_free(qp->dim);
352 isl_qpolynomial_free(qp);
357 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
359 return qp ? qp->dim->ctx : NULL;
362 __isl_give isl_dim *isl_qpolynomial_get_dim(__isl_keep isl_qpolynomial *qp)
364 return qp ? isl_dim_copy(qp->dim) : NULL;
367 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
368 enum isl_dim_type type)
370 return qp ? isl_dim_size(qp->dim, type) : 0;
373 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
375 return qp ? isl_upoly_is_zero(qp->upoly) : -1;
378 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
380 return qp ? isl_upoly_is_one(qp->upoly) : -1;
383 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
385 return qp ? isl_upoly_is_nan(qp->upoly) : -1;
388 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
390 return qp ? isl_upoly_is_infty(qp->upoly) : -1;
393 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
395 return qp ? isl_upoly_is_neginfty(qp->upoly) : -1;
398 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
400 return qp ? isl_upoly_sgn(qp->upoly) : 0;
403 static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
405 isl_int_clear(cst->n);
406 isl_int_clear(cst->d);
409 static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
413 for (i = 0; i < rec->n; ++i)
414 isl_upoly_free(rec->p[i]);
417 __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
426 __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
428 struct isl_upoly_cst *cst;
429 struct isl_upoly_cst *dup;
431 cst = isl_upoly_as_cst(up);
435 dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
438 isl_int_set(dup->n, cst->n);
439 isl_int_set(dup->d, cst->d);
444 __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
447 struct isl_upoly_rec *rec;
448 struct isl_upoly_rec *dup;
450 rec = isl_upoly_as_rec(up);
454 dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
458 for (i = 0; i < rec->n; ++i) {
459 dup->p[i] = isl_upoly_copy(rec->p[i]);
467 isl_upoly_free(&dup->up);
471 __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
473 struct isl_upoly *dup;
478 if (isl_upoly_is_cst(up))
479 return isl_upoly_dup_cst(up);
481 return isl_upoly_dup_rec(up);
484 __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
492 return isl_upoly_dup(up);
495 void isl_upoly_free(__isl_take struct isl_upoly *up)
504 upoly_free_cst((struct isl_upoly_cst *)up);
506 upoly_free_rec((struct isl_upoly_rec *)up);
508 isl_ctx_deref(up->ctx);
512 static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
517 isl_int_gcd(gcd, cst->n, cst->d);
518 if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
519 isl_int_divexact(cst->n, cst->n, gcd);
520 isl_int_divexact(cst->d, cst->d, gcd);
525 __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
526 __isl_take struct isl_upoly *up2)
528 struct isl_upoly_cst *cst1;
529 struct isl_upoly_cst *cst2;
531 up1 = isl_upoly_cow(up1);
535 cst1 = isl_upoly_as_cst(up1);
536 cst2 = isl_upoly_as_cst(up2);
538 if (isl_int_eq(cst1->d, cst2->d))
539 isl_int_add(cst1->n, cst1->n, cst2->n);
541 isl_int_mul(cst1->n, cst1->n, cst2->d);
542 isl_int_addmul(cst1->n, cst2->n, cst1->d);
543 isl_int_mul(cst1->d, cst1->d, cst2->d);
546 isl_upoly_cst_reduce(cst1);
556 static __isl_give struct isl_upoly *replace_by_zero(
557 __isl_take struct isl_upoly *up)
565 return isl_upoly_zero(ctx);
568 static __isl_give struct isl_upoly *replace_by_constant_term(
569 __isl_take struct isl_upoly *up)
571 struct isl_upoly_rec *rec;
572 struct isl_upoly *cst;
577 rec = isl_upoly_as_rec(up);
580 cst = isl_upoly_copy(rec->p[0]);
588 __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
589 __isl_take struct isl_upoly *up2)
592 struct isl_upoly_rec *rec1, *rec2;
597 if (isl_upoly_is_nan(up1)) {
602 if (isl_upoly_is_nan(up2)) {
607 if (isl_upoly_is_zero(up1)) {
612 if (isl_upoly_is_zero(up2)) {
617 if (up1->var < up2->var)
618 return isl_upoly_sum(up2, up1);
620 if (up2->var < up1->var) {
621 struct isl_upoly_rec *rec;
622 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
626 up1 = isl_upoly_cow(up1);
627 rec = isl_upoly_as_rec(up1);
630 rec->p[0] = isl_upoly_sum(rec->p[0], up2);
632 up1 = replace_by_constant_term(up1);
636 if (isl_upoly_is_cst(up1))
637 return isl_upoly_sum_cst(up1, up2);
639 rec1 = isl_upoly_as_rec(up1);
640 rec2 = isl_upoly_as_rec(up2);
644 if (rec1->n < rec2->n)
645 return isl_upoly_sum(up2, up1);
647 up1 = isl_upoly_cow(up1);
648 rec1 = isl_upoly_as_rec(up1);
652 for (i = rec2->n - 1; i >= 0; --i) {
653 rec1->p[i] = isl_upoly_sum(rec1->p[i],
654 isl_upoly_copy(rec2->p[i]));
657 if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
658 isl_upoly_free(rec1->p[i]);
664 up1 = replace_by_zero(up1);
665 else if (rec1->n == 1)
666 up1 = replace_by_constant_term(up1);
677 __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
678 __isl_take struct isl_upoly *up, isl_int v)
680 struct isl_upoly_cst *cst;
682 up = isl_upoly_cow(up);
686 cst = isl_upoly_as_cst(up);
688 isl_int_addmul(cst->n, cst->d, v);
693 __isl_give struct isl_upoly *isl_upoly_add_isl_int(
694 __isl_take struct isl_upoly *up, isl_int v)
696 struct isl_upoly_rec *rec;
701 if (isl_upoly_is_cst(up))
702 return isl_upoly_cst_add_isl_int(up, v);
704 up = isl_upoly_cow(up);
705 rec = isl_upoly_as_rec(up);
709 rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
719 __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
720 __isl_take struct isl_upoly *up, isl_int v)
722 struct isl_upoly_cst *cst;
724 if (isl_upoly_is_zero(up))
727 up = isl_upoly_cow(up);
731 cst = isl_upoly_as_cst(up);
733 isl_int_mul(cst->n, cst->n, v);
738 __isl_give struct isl_upoly *isl_upoly_mul_isl_int(
739 __isl_take struct isl_upoly *up, isl_int v)
742 struct isl_upoly_rec *rec;
747 if (isl_upoly_is_cst(up))
748 return isl_upoly_cst_mul_isl_int(up, v);
750 up = isl_upoly_cow(up);
751 rec = isl_upoly_as_rec(up);
755 for (i = 0; i < rec->n; ++i) {
756 rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
767 __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
768 __isl_take struct isl_upoly *up2)
770 struct isl_upoly_cst *cst1;
771 struct isl_upoly_cst *cst2;
773 up1 = isl_upoly_cow(up1);
777 cst1 = isl_upoly_as_cst(up1);
778 cst2 = isl_upoly_as_cst(up2);
780 isl_int_mul(cst1->n, cst1->n, cst2->n);
781 isl_int_mul(cst1->d, cst1->d, cst2->d);
783 isl_upoly_cst_reduce(cst1);
793 __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
794 __isl_take struct isl_upoly *up2)
796 struct isl_upoly_rec *rec1;
797 struct isl_upoly_rec *rec2;
798 struct isl_upoly_rec *res;
802 rec1 = isl_upoly_as_rec(up1);
803 rec2 = isl_upoly_as_rec(up2);
806 size = rec1->n + rec2->n - 1;
807 res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
811 for (i = 0; i < rec1->n; ++i) {
812 res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
813 isl_upoly_copy(rec1->p[i]));
818 for (; i < size; ++i) {
819 res->p[i] = isl_upoly_zero(up1->ctx);
824 for (i = 0; i < rec1->n; ++i) {
825 for (j = 1; j < rec2->n; ++j) {
826 struct isl_upoly *up;
827 up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
828 isl_upoly_copy(rec1->p[i]));
829 res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
842 isl_upoly_free(&res->up);
846 __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
847 __isl_take struct isl_upoly *up2)
852 if (isl_upoly_is_nan(up1)) {
857 if (isl_upoly_is_nan(up2)) {
862 if (isl_upoly_is_zero(up1)) {
867 if (isl_upoly_is_zero(up2)) {
872 if (isl_upoly_is_one(up1)) {
877 if (isl_upoly_is_one(up2)) {
882 if (up1->var < up2->var)
883 return isl_upoly_mul(up2, up1);
885 if (up2->var < up1->var) {
887 struct isl_upoly_rec *rec;
888 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
889 isl_ctx *ctx = up1->ctx;
892 return isl_upoly_nan(ctx);
894 up1 = isl_upoly_cow(up1);
895 rec = isl_upoly_as_rec(up1);
899 for (i = 0; i < rec->n; ++i) {
900 rec->p[i] = isl_upoly_mul(rec->p[i],
901 isl_upoly_copy(up2));
909 if (isl_upoly_is_cst(up1))
910 return isl_upoly_mul_cst(up1, up2);
912 return isl_upoly_mul_rec(up1, up2);
919 __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
922 struct isl_upoly *res;
930 res = isl_upoly_copy(up);
932 res = isl_upoly_one(up->ctx);
934 while (power >>= 1) {
935 up = isl_upoly_mul(up, isl_upoly_copy(up));
937 res = isl_upoly_mul(res, isl_upoly_copy(up));
944 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_dim *dim,
945 unsigned n_div, __isl_take struct isl_upoly *up)
947 struct isl_qpolynomial *qp = NULL;
953 total = isl_dim_total(dim);
955 qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial);
960 qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div);
971 isl_qpolynomial_free(qp);
975 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
984 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
986 struct isl_qpolynomial *dup;
991 dup = isl_qpolynomial_alloc(isl_dim_copy(qp->dim), qp->div->n_row,
992 isl_upoly_copy(qp->upoly));
995 isl_mat_free(dup->div);
996 dup->div = isl_mat_copy(qp->div);
1002 isl_qpolynomial_free(dup);
1006 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1014 return isl_qpolynomial_dup(qp);
1017 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp)
1025 isl_dim_free(qp->dim);
1026 isl_mat_free(qp->div);
1027 isl_upoly_free(qp->upoly);
1032 __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
1035 struct isl_upoly *up;
1036 struct isl_upoly_rec *rec;
1037 struct isl_upoly_cst *cst;
1039 rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
1042 for (i = 0; i < 1 + power; ++i) {
1043 rec->p[i] = isl_upoly_zero(ctx);
1048 cst = isl_upoly_as_cst(rec->p[power]);
1049 isl_int_set_si(cst->n, 1);
1053 isl_upoly_free(&rec->up);
1057 /* r array maps original positions to new positions.
1059 static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
1063 struct isl_upoly_rec *rec;
1064 struct isl_upoly *base;
1065 struct isl_upoly *res;
1067 if (isl_upoly_is_cst(up))
1070 rec = isl_upoly_as_rec(up);
1074 isl_assert(up->ctx, rec->n >= 1, goto error);
1076 base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
1077 res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
1079 for (i = rec->n - 2; i >= 0; --i) {
1080 res = isl_upoly_mul(res, isl_upoly_copy(base));
1081 res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
1084 isl_upoly_free(base);
1093 static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2)
1098 isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1099 div1->n_col >= div2->n_col, return -1);
1101 if (div1->n_row == div2->n_row)
1102 return isl_mat_is_equal(div1, div2);
1104 n_row = div1->n_row;
1105 n_col = div1->n_col;
1106 div1->n_row = div2->n_row;
1107 div1->n_col = div2->n_col;
1109 equal = isl_mat_is_equal(div1, div2);
1111 div1->n_row = n_row;
1112 div1->n_col = n_col;
1117 static void expand_row(__isl_keep isl_mat *dst, int d,
1118 __isl_keep isl_mat *src, int s, int *exp)
1121 unsigned c = src->n_col - src->n_row;
1123 isl_seq_cpy(dst->row[d], src->row[s], c);
1124 isl_seq_clr(dst->row[d] + c, dst->n_col - c);
1126 for (i = 0; i < s; ++i)
1127 isl_int_set(dst->row[d][c + exp[i]], src->row[s][c + i]);
1130 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1134 li = isl_seq_last_non_zero(div->row[i], div->n_col);
1135 lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1140 return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1143 struct isl_div_sort_info {
1148 static int div_sort_cmp(const void *p1, const void *p2)
1150 const struct isl_div_sort_info *i1, *i2;
1151 i1 = (const struct isl_div_sort_info *) p1;
1152 i2 = (const struct isl_div_sort_info *) p2;
1154 return cmp_row(i1->div, i1->row, i2->row);
1157 /* Sort divs and remove duplicates.
1159 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1164 struct isl_div_sort_info *array = NULL;
1165 int *pos = NULL, *at = NULL;
1166 int *reordering = NULL;
1171 if (qp->div->n_row <= 1)
1174 div_pos = isl_dim_total(qp->dim);
1176 array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1178 pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1179 at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1180 len = qp->div->n_col - 2;
1181 reordering = isl_alloc_array(qp->div->ctx, int, len);
1182 if (!array || !pos || !at || !reordering)
1185 for (i = 0; i < qp->div->n_row; ++i) {
1186 array[i].div = qp->div;
1192 qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1195 for (i = 0; i < div_pos; ++i)
1198 for (i = 0; i < qp->div->n_row; ++i) {
1199 if (pos[array[i].row] == i)
1201 qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1202 pos[at[i]] = pos[array[i].row];
1203 at[pos[array[i].row]] = at[i];
1204 at[i] = array[i].row;
1205 pos[array[i].row] = i;
1209 for (i = 0; i < len - div_pos; ++i) {
1211 isl_seq_eq(qp->div->row[i - skip - 1],
1212 qp->div->row[i - skip], qp->div->n_col)) {
1213 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1214 isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1215 2 + div_pos + i - skip);
1216 qp->div = isl_mat_drop_cols(qp->div,
1217 2 + div_pos + i - skip, 1);
1220 reordering[div_pos + array[i].row] = div_pos + i - skip;
1223 qp->upoly = reorder(qp->upoly, reordering);
1225 if (!qp->upoly || !qp->div)
1239 isl_qpolynomial_free(qp);
1243 static __isl_give isl_mat *merge_divs(__isl_keep isl_mat *div1,
1244 __isl_keep isl_mat *div2, int *exp1, int *exp2)
1247 isl_mat *div = NULL;
1248 unsigned d = div1->n_col - div1->n_row;
1250 div = isl_mat_alloc(div1->ctx, 1 + div1->n_row + div2->n_row,
1251 d + div1->n_row + div2->n_row);
1255 for (i = 0, j = 0, k = 0; i < div1->n_row && j < div2->n_row; ++k) {
1258 expand_row(div, k, div1, i, exp1);
1259 expand_row(div, k + 1, div2, j, exp2);
1261 cmp = cmp_row(div, k, k + 1);
1265 } else if (cmp < 0) {
1269 isl_seq_cpy(div->row[k], div->row[k + 1], div->n_col);
1272 for (; i < div1->n_row; ++i, ++k) {
1273 expand_row(div, k, div1, i, exp1);
1276 for (; j < div2->n_row; ++j, ++k) {
1277 expand_row(div, k, div2, j, exp2);
1287 static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
1288 int *exp, int first)
1291 struct isl_upoly_rec *rec;
1293 if (isl_upoly_is_cst(up))
1296 if (up->var < first)
1299 if (exp[up->var - first] == up->var - first)
1302 up = isl_upoly_cow(up);
1306 up->var = exp[up->var - first] + first;
1308 rec = isl_upoly_as_rec(up);
1312 for (i = 0; i < rec->n; ++i) {
1313 rec->p[i] = expand(rec->p[i], exp, first);
1324 static __isl_give isl_qpolynomial *with_merged_divs(
1325 __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1326 __isl_take isl_qpolynomial *qp2),
1327 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1331 isl_mat *div = NULL;
1333 qp1 = isl_qpolynomial_cow(qp1);
1334 qp2 = isl_qpolynomial_cow(qp2);
1339 isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1340 qp1->div->n_col >= qp2->div->n_col, goto error);
1342 exp1 = isl_alloc_array(qp1->div->ctx, int, qp1->div->n_row);
1343 exp2 = isl_alloc_array(qp2->div->ctx, int, qp2->div->n_row);
1347 div = merge_divs(qp1->div, qp2->div, exp1, exp2);
1351 isl_mat_free(qp1->div);
1352 qp1->div = isl_mat_copy(div);
1353 isl_mat_free(qp2->div);
1354 qp2->div = isl_mat_copy(div);
1356 qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
1357 qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
1359 if (!qp1->upoly || !qp2->upoly)
1366 return fn(qp1, qp2);
1371 isl_qpolynomial_free(qp1);
1372 isl_qpolynomial_free(qp2);
1376 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1377 __isl_take isl_qpolynomial *qp2)
1379 qp1 = isl_qpolynomial_cow(qp1);
1384 if (qp1->div->n_row < qp2->div->n_row)
1385 return isl_qpolynomial_add(qp2, qp1);
1387 isl_assert(qp1->dim->ctx, isl_dim_equal(qp1->dim, qp2->dim), goto error);
1388 if (!compatible_divs(qp1->div, qp2->div))
1389 return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1391 qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
1395 isl_qpolynomial_free(qp2);
1399 isl_qpolynomial_free(qp1);
1400 isl_qpolynomial_free(qp2);
1404 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1405 __isl_keep isl_set *dom,
1406 __isl_take isl_qpolynomial *qp1,
1407 __isl_take isl_qpolynomial *qp2)
1409 qp1 = isl_qpolynomial_add(qp1, qp2);
1410 qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1414 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1415 __isl_take isl_qpolynomial *qp2)
1417 return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1420 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1421 __isl_take isl_qpolynomial *qp, isl_int v)
1423 if (isl_int_is_zero(v))
1426 qp = isl_qpolynomial_cow(qp);
1430 qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
1436 isl_qpolynomial_free(qp);
1441 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1446 return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1449 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1450 __isl_take isl_qpolynomial *qp, isl_int v)
1452 if (isl_int_is_one(v))
1455 if (qp && isl_int_is_zero(v)) {
1456 isl_qpolynomial *zero;
1457 zero = isl_qpolynomial_zero(isl_dim_copy(qp->dim));
1458 isl_qpolynomial_free(qp);
1462 qp = isl_qpolynomial_cow(qp);
1466 qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
1472 isl_qpolynomial_free(qp);
1476 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1477 __isl_take isl_qpolynomial *qp2)
1479 qp1 = isl_qpolynomial_cow(qp1);
1484 if (qp1->div->n_row < qp2->div->n_row)
1485 return isl_qpolynomial_mul(qp2, qp1);
1487 isl_assert(qp1->dim->ctx, isl_dim_equal(qp1->dim, qp2->dim), goto error);
1488 if (!compatible_divs(qp1->div, qp2->div))
1489 return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1491 qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
1495 isl_qpolynomial_free(qp2);
1499 isl_qpolynomial_free(qp1);
1500 isl_qpolynomial_free(qp2);
1504 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1507 qp = isl_qpolynomial_cow(qp);
1512 qp->upoly = isl_upoly_pow(qp->upoly, power);
1518 isl_qpolynomial_free(qp);
1522 __isl_give isl_qpolynomial *isl_qpolynomial_zero(__isl_take isl_dim *dim)
1524 return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1527 __isl_give isl_qpolynomial *isl_qpolynomial_one(__isl_take isl_dim *dim)
1529 return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx));
1532 __isl_give isl_qpolynomial *isl_qpolynomial_infty(__isl_take isl_dim *dim)
1534 return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx));
1537 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty(__isl_take isl_dim *dim)
1539 return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx));
1542 __isl_give isl_qpolynomial *isl_qpolynomial_nan(__isl_take isl_dim *dim)
1544 return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx));
1547 __isl_give isl_qpolynomial *isl_qpolynomial_cst(__isl_take isl_dim *dim,
1550 struct isl_qpolynomial *qp;
1551 struct isl_upoly_cst *cst;
1553 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1557 cst = isl_upoly_as_cst(qp->upoly);
1558 isl_int_set(cst->n, v);
1563 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1564 isl_int *n, isl_int *d)
1566 struct isl_upoly_cst *cst;
1571 if (!isl_upoly_is_cst(qp->upoly))
1574 cst = isl_upoly_as_cst(qp->upoly);
1579 isl_int_set(*n, cst->n);
1581 isl_int_set(*d, cst->d);
1586 int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
1589 struct isl_upoly_rec *rec;
1597 rec = isl_upoly_as_rec(up);
1604 isl_assert(up->ctx, rec->n > 1, return -1);
1606 is_cst = isl_upoly_is_cst(rec->p[1]);
1612 return isl_upoly_is_affine(rec->p[0]);
1615 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
1620 if (qp->div->n_row > 0)
1623 return isl_upoly_is_affine(qp->upoly);
1626 static void update_coeff(__isl_keep isl_vec *aff,
1627 __isl_keep struct isl_upoly_cst *cst, int pos)
1632 if (isl_int_is_zero(cst->n))
1637 isl_int_gcd(gcd, cst->d, aff->el[0]);
1638 isl_int_divexact(f, cst->d, gcd);
1639 isl_int_divexact(gcd, aff->el[0], gcd);
1640 isl_seq_scale(aff->el, aff->el, f, aff->size);
1641 isl_int_mul(aff->el[1 + pos], gcd, cst->n);
1646 int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
1647 __isl_keep isl_vec *aff)
1649 struct isl_upoly_cst *cst;
1650 struct isl_upoly_rec *rec;
1656 struct isl_upoly_cst *cst;
1658 cst = isl_upoly_as_cst(up);
1661 update_coeff(aff, cst, 0);
1665 rec = isl_upoly_as_rec(up);
1668 isl_assert(up->ctx, rec->n == 2, return -1);
1670 cst = isl_upoly_as_cst(rec->p[1]);
1673 update_coeff(aff, cst, 1 + up->var);
1675 return isl_upoly_update_affine(rec->p[0], aff);
1678 __isl_give isl_vec *isl_qpolynomial_extract_affine(
1679 __isl_keep isl_qpolynomial *qp)
1687 d = isl_dim_total(qp->dim);
1688 aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
1692 isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
1693 isl_int_set_si(aff->el[0], 1);
1695 if (isl_upoly_update_affine(qp->upoly, aff) < 0)
1704 int isl_qpolynomial_is_equal(__isl_keep isl_qpolynomial *qp1,
1705 __isl_keep isl_qpolynomial *qp2)
1710 return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
1713 static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
1716 struct isl_upoly_rec *rec;
1718 if (isl_upoly_is_cst(up)) {
1719 struct isl_upoly_cst *cst;
1720 cst = isl_upoly_as_cst(up);
1723 isl_int_lcm(*d, *d, cst->d);
1727 rec = isl_upoly_as_rec(up);
1731 for (i = 0; i < rec->n; ++i)
1732 upoly_update_den(rec->p[i], d);
1735 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
1737 isl_int_set_si(*d, 1);
1740 upoly_update_den(qp->upoly, d);
1743 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow(__isl_take isl_dim *dim,
1746 struct isl_ctx *ctx;
1753 return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power));
1756 __isl_give isl_qpolynomial *isl_qpolynomial_var(__isl_take isl_dim *dim,
1757 enum isl_dim_type type, unsigned pos)
1762 isl_assert(dim->ctx, isl_dim_size(dim, isl_dim_in) == 0, goto error);
1763 isl_assert(dim->ctx, pos < isl_dim_size(dim, type), goto error);
1765 if (type == isl_dim_set)
1766 pos += isl_dim_size(dim, isl_dim_param);
1768 return isl_qpolynomial_var_pow(dim, pos, 1);
1774 __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
1775 unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
1778 struct isl_upoly_rec *rec;
1779 struct isl_upoly *base, *res;
1784 if (isl_upoly_is_cst(up))
1787 if (up->var < first)
1790 rec = isl_upoly_as_rec(up);
1794 isl_assert(up->ctx, rec->n >= 1, goto error);
1796 if (up->var >= first + n)
1797 base = isl_upoly_var_pow(up->ctx, up->var, 1);
1799 base = isl_upoly_copy(subs[up->var - first]);
1801 res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
1802 for (i = rec->n - 2; i >= 0; --i) {
1803 struct isl_upoly *t;
1804 t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
1805 res = isl_upoly_mul(res, isl_upoly_copy(base));
1806 res = isl_upoly_sum(res, t);
1809 isl_upoly_free(base);
1818 __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
1819 isl_int denom, unsigned len)
1822 struct isl_upoly *up;
1824 isl_assert(ctx, len >= 1, return NULL);
1826 up = isl_upoly_rat_cst(ctx, f[0], denom);
1827 for (i = 0; i < len - 1; ++i) {
1828 struct isl_upoly *t;
1829 struct isl_upoly *c;
1831 if (isl_int_is_zero(f[1 + i]))
1834 c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
1835 t = isl_upoly_var_pow(ctx, i, 1);
1836 t = isl_upoly_mul(c, t);
1837 up = isl_upoly_sum(up, t);
1843 /* Remove common factor of non-constant terms and denominator.
1845 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
1847 isl_ctx *ctx = qp->div->ctx;
1848 unsigned total = qp->div->n_col - 2;
1850 isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
1851 isl_int_gcd(ctx->normalize_gcd,
1852 ctx->normalize_gcd, qp->div->row[div][0]);
1853 if (isl_int_is_one(ctx->normalize_gcd))
1856 isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
1857 ctx->normalize_gcd, total);
1858 isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
1859 ctx->normalize_gcd);
1860 isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
1861 ctx->normalize_gcd);
1864 /* Replace the integer division identified by "div" by the polynomial "s".
1865 * The integer division is assumed not to appear in the definition
1866 * of any other integer divisions.
1868 static __isl_give isl_qpolynomial *substitute_div(
1869 __isl_take isl_qpolynomial *qp,
1870 int div, __isl_take struct isl_upoly *s)
1879 qp = isl_qpolynomial_cow(qp);
1883 total = isl_dim_total(qp->dim);
1884 qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
1888 reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
1891 for (i = 0; i < total + div; ++i)
1893 for (i = total + div + 1; i < total + qp->div->n_row; ++i)
1894 reordering[i] = i - 1;
1895 qp->div = isl_mat_drop_rows(qp->div, div, 1);
1896 qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
1897 qp->upoly = reorder(qp->upoly, reordering);
1900 if (!qp->upoly || !qp->div)
1906 isl_qpolynomial_free(qp);
1911 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1912 * divisions because d is equal to 1 by their definition, i.e., e.
1914 static __isl_give isl_qpolynomial *substitute_non_divs(
1915 __isl_take isl_qpolynomial *qp)
1919 struct isl_upoly *s;
1924 total = isl_dim_total(qp->dim);
1925 for (i = 0; qp && i < qp->div->n_row; ++i) {
1926 if (!isl_int_is_one(qp->div->row[i][0]))
1928 for (j = i + 1; j < qp->div->n_row; ++j) {
1929 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
1931 isl_seq_combine(qp->div->row[j] + 1,
1932 qp->div->ctx->one, qp->div->row[j] + 1,
1933 qp->div->row[j][2 + total + i],
1934 qp->div->row[i] + 1, 1 + total + i);
1935 isl_int_set_si(qp->div->row[j][2 + total + i], 0);
1936 normalize_div(qp, j);
1938 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
1939 qp->div->row[i][0], qp->div->n_col - 1);
1940 qp = substitute_div(qp, i, s);
1947 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1948 * with d the denominator. When replacing the coefficient e of x by
1949 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1950 * inside the division, so we need to add floor(e/d) * x outside.
1951 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1952 * to adjust the coefficient of x in each later div that depends on the
1953 * current div "div" and also in the affine expression "aff"
1954 * (if it too depends on "div").
1956 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
1957 __isl_keep isl_vec *aff)
1961 unsigned total = qp->div->n_col - qp->div->n_row - 2;
1964 for (i = 0; i < 1 + total + div; ++i) {
1965 if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
1966 isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
1968 isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
1969 isl_int_fdiv_r(qp->div->row[div][1 + i],
1970 qp->div->row[div][1 + i], qp->div->row[div][0]);
1971 if (!isl_int_is_zero(aff->el[1 + total + div]))
1972 isl_int_addmul(aff->el[i], v, aff->el[1 + total + div]);
1973 for (j = div + 1; j < qp->div->n_row; ++j) {
1974 if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
1976 isl_int_addmul(qp->div->row[j][1 + i],
1977 v, qp->div->row[j][2 + total + div]);
1983 /* Check if the last non-zero coefficient is bigger that half of the
1984 * denominator. If so, we will invert the div to further reduce the number
1985 * of distinct divs that may appear.
1986 * If the last non-zero coefficient is exactly half the denominator,
1987 * then we continue looking for earlier coefficients that are bigger
1988 * than half the denominator.
1990 static int needs_invert(__isl_keep isl_mat *div, int row)
1995 for (i = div->n_col - 1; i >= 1; --i) {
1996 if (isl_int_is_zero(div->row[row][i]))
1998 isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
1999 cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2000 isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2010 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2011 * We only invert the coefficients of e (and the coefficient of q in
2012 * later divs and in "aff"). After calling this function, the
2013 * coefficients of e should be reduced again.
2015 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2016 __isl_keep isl_vec *aff)
2018 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2020 isl_seq_neg(qp->div->row[div] + 1,
2021 qp->div->row[div] + 1, qp->div->n_col - 1);
2022 isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2023 isl_int_add(qp->div->row[div][1],
2024 qp->div->row[div][1], qp->div->row[div][0]);
2025 if (!isl_int_is_zero(aff->el[1 + total + div]))
2026 isl_int_neg(aff->el[1 + total + div], aff->el[1 + total + div]);
2027 isl_mat_col_mul(qp->div, 2 + total + div,
2028 qp->div->ctx->negone, 2 + total + div);
2031 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2032 * in the interval [0, d-1], with d the denominator and such that the
2033 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2035 * After the reduction, some divs may have become redundant or identical,
2036 * so we call substitute_non_divs and sort_divs. If these functions
2037 * eliminate divs of merge * two or more divs into one, the coefficients
2038 * of the enclosing divs may have to be reduced again, so we call
2039 * ourselves recursively if the number of divs decreases.
2041 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2044 isl_vec *aff = NULL;
2045 struct isl_upoly *s;
2051 aff = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
2052 aff = isl_vec_clr(aff);
2056 isl_int_set_si(aff->el[1 + qp->upoly->var], 1);
2058 for (i = 0; i < qp->div->n_row; ++i) {
2059 normalize_div(qp, i);
2060 reduce_div(qp, i, aff);
2061 if (needs_invert(qp->div, i)) {
2062 invert_div(qp, i, aff);
2063 reduce_div(qp, i, aff);
2067 s = isl_upoly_from_affine(qp->div->ctx, aff->el,
2068 qp->div->ctx->one, aff->size);
2069 qp->upoly = isl_upoly_subs(qp->upoly, qp->upoly->var, 1, &s);
2076 n_div = qp->div->n_row;
2077 qp = substitute_non_divs(qp);
2079 if (qp && qp->div->n_row < n_div)
2080 return reduce_divs(qp);
2084 isl_qpolynomial_free(qp);
2089 /* Assumes each div only depends on earlier divs.
2091 __isl_give isl_qpolynomial *isl_qpolynomial_div_pow(__isl_take isl_div *div,
2094 struct isl_qpolynomial *qp = NULL;
2095 struct isl_upoly_rec *rec;
2096 struct isl_upoly_cst *cst;
2103 d = div->line - div->bmap->div;
2105 pos = isl_dim_total(div->bmap->dim) + d;
2106 rec = isl_upoly_alloc_rec(div->ctx, pos, 1 + power);
2107 qp = isl_qpolynomial_alloc(isl_basic_map_get_dim(div->bmap),
2108 div->bmap->n_div, &rec->up);
2112 for (i = 0; i < div->bmap->n_div; ++i)
2113 isl_seq_cpy(qp->div->row[i], div->bmap->div[i], qp->div->n_col);
2115 for (i = 0; i < 1 + power; ++i) {
2116 rec->p[i] = isl_upoly_zero(div->ctx);
2121 cst = isl_upoly_as_cst(rec->p[power]);
2122 isl_int_set_si(cst->n, 1);
2126 qp = reduce_divs(qp);
2130 isl_qpolynomial_free(qp);
2135 __isl_give isl_qpolynomial *isl_qpolynomial_div(__isl_take isl_div *div)
2137 return isl_qpolynomial_div_pow(div, 1);
2140 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(__isl_take isl_dim *dim,
2141 const isl_int n, const isl_int d)
2143 struct isl_qpolynomial *qp;
2144 struct isl_upoly_cst *cst;
2146 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
2150 cst = isl_upoly_as_cst(qp->upoly);
2151 isl_int_set(cst->n, n);
2152 isl_int_set(cst->d, d);
2157 static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
2159 struct isl_upoly_rec *rec;
2165 if (isl_upoly_is_cst(up))
2169 active[up->var] = 1;
2171 rec = isl_upoly_as_rec(up);
2172 for (i = 0; i < rec->n; ++i)
2173 if (up_set_active(rec->p[i], active, d) < 0)
2179 static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
2182 int d = isl_dim_total(qp->dim);
2187 for (i = 0; i < d; ++i)
2188 for (j = 0; j < qp->div->n_row; ++j) {
2189 if (isl_int_is_zero(qp->div->row[j][2 + i]))
2195 return up_set_active(qp->upoly, active, d);
2198 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2199 enum isl_dim_type type, unsigned first, unsigned n)
2210 isl_assert(qp->dim->ctx, first + n <= isl_dim_size(qp->dim, type),
2212 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2213 type == isl_dim_set, return -1);
2215 active = isl_calloc_array(set->ctx, int, isl_dim_total(qp->dim));
2216 if (set_active(qp, active) < 0)
2219 if (type == isl_dim_set)
2220 first += isl_dim_size(qp->dim, isl_dim_param);
2221 for (i = 0; i < n; ++i)
2222 if (active[first + i]) {
2235 __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
2236 unsigned first, unsigned n)
2239 struct isl_upoly_rec *rec;
2243 if (n == 0 || up->var < 0 || up->var < first)
2245 if (up->var < first + n) {
2246 up = replace_by_constant_term(up);
2247 return isl_upoly_drop(up, first, n);
2249 up = isl_upoly_cow(up);
2253 rec = isl_upoly_as_rec(up);
2257 for (i = 0; i < rec->n; ++i) {
2258 rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
2269 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2270 __isl_take isl_qpolynomial *qp,
2271 enum isl_dim_type type, unsigned pos, const char *s)
2273 qp = isl_qpolynomial_cow(qp);
2276 qp->dim = isl_dim_set_name(qp->dim, type, pos, s);
2281 isl_qpolynomial_free(qp);
2285 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2286 __isl_take isl_qpolynomial *qp,
2287 enum isl_dim_type type, unsigned first, unsigned n)
2291 if (n == 0 && !isl_dim_get_tuple_name(qp->dim, type))
2294 qp = isl_qpolynomial_cow(qp);
2298 isl_assert(qp->dim->ctx, first + n <= isl_dim_size(qp->dim, type),
2300 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2301 type == isl_dim_set, goto error);
2303 qp->dim = isl_dim_drop(qp->dim, type, first, n);
2307 if (type == isl_dim_set)
2308 first += isl_dim_size(qp->dim, isl_dim_param);
2310 qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2314 qp->upoly = isl_upoly_drop(qp->upoly, first, n);
2320 isl_qpolynomial_free(qp);
2324 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
2325 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2331 struct isl_upoly *up;
2335 if (eq->n_eq == 0) {
2336 isl_basic_set_free(eq);
2340 qp = isl_qpolynomial_cow(qp);
2343 qp->div = isl_mat_cow(qp->div);
2347 total = 1 + isl_dim_total(eq->dim);
2349 isl_int_init(denom);
2350 for (i = 0; i < eq->n_eq; ++i) {
2351 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
2352 if (j < 0 || j == 0 || j >= total)
2355 for (k = 0; k < qp->div->n_row; ++k) {
2356 if (isl_int_is_zero(qp->div->row[k][1 + j]))
2358 isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
2359 &qp->div->row[k][0]);
2360 normalize_div(qp, k);
2363 if (isl_int_is_pos(eq->eq[i][j]))
2364 isl_seq_neg(eq->eq[i], eq->eq[i], total);
2365 isl_int_abs(denom, eq->eq[i][j]);
2366 isl_int_set_si(eq->eq[i][j], 0);
2368 up = isl_upoly_from_affine(qp->dim->ctx,
2369 eq->eq[i], denom, total);
2370 qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
2373 isl_int_clear(denom);
2378 isl_basic_set_free(eq);
2380 qp = substitute_non_divs(qp);
2385 isl_basic_set_free(eq);
2386 isl_qpolynomial_free(qp);
2390 static __isl_give isl_basic_set *add_div_constraints(
2391 __isl_take isl_basic_set *bset, __isl_take isl_mat *div)
2399 bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
2402 total = isl_basic_set_total_dim(bset);
2403 for (i = 0; i < div->n_row; ++i)
2404 if (isl_basic_set_add_div_constraints_var(bset,
2405 total - div->n_row + i, div->row[i]) < 0)
2412 isl_basic_set_free(bset);
2416 /* Look for equalities among the variables shared by context and qp
2417 * and the integer divisions of qp, if any.
2418 * The equalities are then used to eliminate variables and/or integer
2419 * divisions from qp.
2421 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
2422 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2428 if (qp->div->n_row > 0) {
2429 isl_basic_set *bset;
2430 context = isl_set_add_dims(context, isl_dim_set,
2432 bset = isl_basic_set_universe(isl_set_get_dim(context));
2433 bset = add_div_constraints(bset, isl_mat_copy(qp->div));
2434 context = isl_set_intersect(context,
2435 isl_set_from_basic_set(bset));
2438 aff = isl_set_affine_hull(context);
2439 return isl_qpolynomial_substitute_equalities(qp, aff);
2441 isl_qpolynomial_free(qp);
2442 isl_set_free(context);
2447 #define PW isl_pw_qpolynomial
2449 #define EL isl_qpolynomial
2451 #define IS_ZERO is_zero
2455 #include <isl_pw_templ.c>
2458 #define UNION isl_union_pw_qpolynomial
2460 #define PART isl_pw_qpolynomial
2462 #define PARTS pw_qpolynomial
2464 #include <isl_union_templ.c>
2466 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
2474 if (!isl_set_fast_is_universe(pwqp->p[0].set))
2477 return isl_qpolynomial_is_one(pwqp->p[0].qp);
2480 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2481 __isl_take isl_pw_qpolynomial *pwqp1,
2482 __isl_take isl_pw_qpolynomial *pwqp2)
2485 struct isl_pw_qpolynomial *res;
2488 if (!pwqp1 || !pwqp2)
2491 isl_assert(pwqp1->dim->ctx, isl_dim_equal(pwqp1->dim, pwqp2->dim),
2494 if (isl_pw_qpolynomial_is_zero(pwqp1)) {
2495 isl_pw_qpolynomial_free(pwqp2);
2499 if (isl_pw_qpolynomial_is_zero(pwqp2)) {
2500 isl_pw_qpolynomial_free(pwqp1);
2504 if (isl_pw_qpolynomial_is_one(pwqp1)) {
2505 isl_pw_qpolynomial_free(pwqp1);
2509 if (isl_pw_qpolynomial_is_one(pwqp2)) {
2510 isl_pw_qpolynomial_free(pwqp2);
2514 n = pwqp1->n * pwqp2->n;
2515 res = isl_pw_qpolynomial_alloc_(isl_dim_copy(pwqp1->dim), n);
2517 for (i = 0; i < pwqp1->n; ++i) {
2518 for (j = 0; j < pwqp2->n; ++j) {
2519 struct isl_set *common;
2520 struct isl_qpolynomial *prod;
2521 common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
2522 isl_set_copy(pwqp2->p[j].set));
2523 if (isl_set_fast_is_empty(common)) {
2524 isl_set_free(common);
2528 prod = isl_qpolynomial_mul(
2529 isl_qpolynomial_copy(pwqp1->p[i].qp),
2530 isl_qpolynomial_copy(pwqp2->p[j].qp));
2532 res = isl_pw_qpolynomial_add_piece(res, common, prod);
2536 isl_pw_qpolynomial_free(pwqp1);
2537 isl_pw_qpolynomial_free(pwqp2);
2541 isl_pw_qpolynomial_free(pwqp1);
2542 isl_pw_qpolynomial_free(pwqp2);
2546 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
2547 __isl_take isl_pw_qpolynomial *pwqp)
2554 if (isl_pw_qpolynomial_is_zero(pwqp))
2557 pwqp = isl_pw_qpolynomial_cow(pwqp);
2561 for (i = 0; i < pwqp->n; ++i) {
2562 pwqp->p[i].qp = isl_qpolynomial_neg(pwqp->p[i].qp);
2569 isl_pw_qpolynomial_free(pwqp);
2573 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
2574 __isl_take isl_pw_qpolynomial *pwqp1,
2575 __isl_take isl_pw_qpolynomial *pwqp2)
2577 return isl_pw_qpolynomial_add(pwqp1, isl_pw_qpolynomial_neg(pwqp2));
2580 __isl_give struct isl_upoly *isl_upoly_eval(
2581 __isl_take struct isl_upoly *up, __isl_take isl_vec *vec)
2584 struct isl_upoly_rec *rec;
2585 struct isl_upoly *res;
2586 struct isl_upoly *base;
2588 if (isl_upoly_is_cst(up)) {
2593 rec = isl_upoly_as_rec(up);
2597 isl_assert(up->ctx, rec->n >= 1, goto error);
2599 base = isl_upoly_rat_cst(up->ctx, vec->el[1 + up->var], vec->el[0]);
2601 res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),
2604 for (i = rec->n - 2; i >= 0; --i) {
2605 res = isl_upoly_mul(res, isl_upoly_copy(base));
2606 res = isl_upoly_sum(res,
2607 isl_upoly_eval(isl_upoly_copy(rec->p[i]),
2608 isl_vec_copy(vec)));
2611 isl_upoly_free(base);
2621 __isl_give isl_qpolynomial *isl_qpolynomial_eval(
2622 __isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt)
2625 struct isl_upoly *up;
2630 isl_assert(pnt->dim->ctx, isl_dim_equal(pnt->dim, qp->dim), goto error);
2632 if (qp->div->n_row == 0)
2633 ext = isl_vec_copy(pnt->vec);
2636 unsigned dim = isl_dim_total(qp->dim);
2637 ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row);
2641 isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size);
2642 for (i = 0; i < qp->div->n_row; ++i) {
2643 isl_seq_inner_product(qp->div->row[i] + 1, ext->el,
2644 1 + dim + i, &ext->el[1+dim+i]);
2645 isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i],
2646 qp->div->row[i][0]);
2650 up = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext);
2654 dim = isl_dim_copy(qp->dim);
2655 isl_qpolynomial_free(qp);
2656 isl_point_free(pnt);
2658 return isl_qpolynomial_alloc(dim, 0, up);
2660 isl_qpolynomial_free(qp);
2661 isl_point_free(pnt);
2665 int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1,
2666 __isl_keep struct isl_upoly_cst *cst2)
2671 isl_int_mul(t, cst1->n, cst2->d);
2672 isl_int_submul(t, cst2->n, cst1->d);
2673 cmp = isl_int_sgn(t);
2678 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial *qp1,
2679 __isl_keep isl_qpolynomial *qp2)
2681 struct isl_upoly_cst *cst1, *cst2;
2685 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), return -1);
2686 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), return -1);
2687 if (isl_qpolynomial_is_nan(qp1))
2689 if (isl_qpolynomial_is_nan(qp2))
2691 cst1 = isl_upoly_as_cst(qp1->upoly);
2692 cst2 = isl_upoly_as_cst(qp2->upoly);
2694 return isl_upoly_cmp(cst1, cst2) <= 0;
2697 __isl_give isl_qpolynomial *isl_qpolynomial_min_cst(
2698 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2700 struct isl_upoly_cst *cst1, *cst2;
2705 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2706 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2707 cst1 = isl_upoly_as_cst(qp1->upoly);
2708 cst2 = isl_upoly_as_cst(qp2->upoly);
2709 cmp = isl_upoly_cmp(cst1, cst2);
2712 isl_qpolynomial_free(qp2);
2714 isl_qpolynomial_free(qp1);
2719 isl_qpolynomial_free(qp1);
2720 isl_qpolynomial_free(qp2);
2724 __isl_give isl_qpolynomial *isl_qpolynomial_max_cst(
2725 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2727 struct isl_upoly_cst *cst1, *cst2;
2732 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2733 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2734 cst1 = isl_upoly_as_cst(qp1->upoly);
2735 cst2 = isl_upoly_as_cst(qp2->upoly);
2736 cmp = isl_upoly_cmp(cst1, cst2);
2739 isl_qpolynomial_free(qp2);
2741 isl_qpolynomial_free(qp1);
2746 isl_qpolynomial_free(qp1);
2747 isl_qpolynomial_free(qp2);
2751 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
2752 __isl_take isl_qpolynomial *qp, enum isl_dim_type type,
2753 unsigned first, unsigned n)
2762 qp = isl_qpolynomial_cow(qp);
2766 isl_assert(qp->div->ctx, first <= isl_dim_size(qp->dim, type),
2769 g_pos = pos(qp->dim, type) + first;
2771 qp->div = isl_mat_insert_cols(qp->div, 2 + g_pos, n);
2775 total = qp->div->n_col - 2;
2776 if (total > g_pos) {
2778 exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
2781 for (i = 0; i < total - g_pos; ++i)
2783 qp->upoly = expand(qp->upoly, exp, g_pos);
2789 qp->dim = isl_dim_insert(qp->dim, type, first, n);
2795 isl_qpolynomial_free(qp);
2799 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
2800 __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
2804 pos = isl_qpolynomial_dim(qp, type);
2806 return isl_qpolynomial_insert_dims(qp, type, pos, n);
2809 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims(
2810 __isl_take isl_pw_qpolynomial *pwqp,
2811 enum isl_dim_type type, unsigned n)
2815 pos = isl_pw_qpolynomial_dim(pwqp, type);
2817 return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n);
2820 static int *reordering_move(isl_ctx *ctx,
2821 unsigned len, unsigned dst, unsigned src, unsigned n)
2826 reordering = isl_alloc_array(ctx, int, len);
2831 for (i = 0; i < dst; ++i)
2833 for (i = 0; i < n; ++i)
2834 reordering[src + i] = dst + i;
2835 for (i = 0; i < src - dst; ++i)
2836 reordering[dst + i] = dst + n + i;
2837 for (i = 0; i < len - src - n; ++i)
2838 reordering[src + n + i] = src + n + i;
2840 for (i = 0; i < src; ++i)
2842 for (i = 0; i < n; ++i)
2843 reordering[src + i] = dst + i;
2844 for (i = 0; i < dst - src; ++i)
2845 reordering[src + n + i] = src + i;
2846 for (i = 0; i < len - dst - n; ++i)
2847 reordering[dst + n + i] = dst + n + i;
2853 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
2854 __isl_take isl_qpolynomial *qp,
2855 enum isl_dim_type dst_type, unsigned dst_pos,
2856 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
2862 qp = isl_qpolynomial_cow(qp);
2866 isl_assert(qp->dim->ctx, src_pos + n <= isl_dim_size(qp->dim, src_type),
2869 g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
2870 g_src_pos = pos(qp->dim, src_type) + src_pos;
2871 if (dst_type > src_type)
2874 qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
2881 reordering = reordering_move(qp->dim->ctx,
2882 qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
2886 qp->upoly = reorder(qp->upoly, reordering);
2891 qp->dim = isl_dim_move(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
2897 isl_qpolynomial_free(qp);
2901 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_dim *dim,
2902 isl_int *f, isl_int denom)
2904 struct isl_upoly *up;
2909 up = isl_upoly_from_affine(dim->ctx, f, denom, 1 + isl_dim_total(dim));
2911 return isl_qpolynomial_alloc(dim, 0, up);
2914 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
2915 __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
2919 struct isl_upoly *up;
2920 isl_qpolynomial *qp;
2926 isl_int_init(denom);
2928 isl_constraint_get_coefficient(c, type, pos, &denom);
2929 isl_constraint_set_coefficient(c, type, pos, c->ctx->zero);
2930 sgn = isl_int_sgn(denom);
2931 isl_int_abs(denom, denom);
2932 up = isl_upoly_from_affine(c->ctx, c->line[0], denom,
2933 1 + isl_constraint_dim(c, isl_dim_all));
2935 isl_int_neg(denom, denom);
2936 isl_constraint_set_coefficient(c, type, pos, denom);
2938 dim = isl_dim_copy(c->bmap->dim);
2940 isl_int_clear(denom);
2941 isl_constraint_free(c);
2943 qp = isl_qpolynomial_alloc(dim, 0, up);
2945 qp = isl_qpolynomial_neg(qp);
2949 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
2950 * in "qp" by subs[i].
2952 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
2953 __isl_take isl_qpolynomial *qp,
2954 enum isl_dim_type type, unsigned first, unsigned n,
2955 __isl_keep isl_qpolynomial **subs)
2958 struct isl_upoly **ups;
2963 qp = isl_qpolynomial_cow(qp);
2966 for (i = 0; i < n; ++i)
2970 isl_assert(qp->dim->ctx, first + n <= isl_dim_size(qp->dim, type),
2973 for (i = 0; i < n; ++i)
2974 isl_assert(qp->dim->ctx, isl_dim_equal(qp->dim, subs[i]->dim),
2977 isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
2978 for (i = 0; i < n; ++i)
2979 isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
2981 first += pos(qp->dim, type);
2983 ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n);
2986 for (i = 0; i < n; ++i)
2987 ups[i] = subs[i]->upoly;
2989 qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups);
2998 isl_qpolynomial_free(qp);
3002 /* Extend "bset" with extra set dimensions for each integer division
3003 * in "qp" and then call "fn" with the extended bset and the polynomial
3004 * that results from replacing each of the integer divisions by the
3005 * corresponding extra set dimension.
3007 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3008 __isl_keep isl_basic_set *bset,
3009 int (*fn)(__isl_take isl_basic_set *bset,
3010 __isl_take isl_qpolynomial *poly, void *user), void *user)
3014 isl_qpolynomial *poly;
3018 if (qp->div->n_row == 0)
3019 return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3022 div = isl_mat_copy(qp->div);
3023 dim = isl_dim_copy(qp->dim);
3024 dim = isl_dim_add(dim, isl_dim_set, qp->div->n_row);
3025 poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly));
3026 bset = isl_basic_set_copy(bset);
3027 bset = isl_basic_set_add(bset, isl_dim_set, qp->div->n_row);
3028 bset = add_div_constraints(bset, div);
3030 return fn(bset, poly, user);
3035 /* Return total degree in variables first (inclusive) up to last (exclusive).
3037 int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last)
3041 struct isl_upoly_rec *rec;
3045 if (isl_upoly_is_zero(up))
3047 if (isl_upoly_is_cst(up) || up->var < first)
3050 rec = isl_upoly_as_rec(up);
3054 for (i = 0; i < rec->n; ++i) {
3057 if (isl_upoly_is_zero(rec->p[i]))
3059 d = isl_upoly_degree(rec->p[i], first, last);
3069 /* Return total degree in set variables.
3071 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3079 ovar = isl_dim_offset(poly->dim, isl_dim_set);
3080 nvar = isl_dim_size(poly->dim, isl_dim_set);
3081 return isl_upoly_degree(poly->upoly, ovar, ovar + nvar);
3084 __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up,
3085 unsigned pos, int deg)
3088 struct isl_upoly_rec *rec;
3093 if (isl_upoly_is_cst(up) || up->var < pos) {
3095 return isl_upoly_copy(up);
3097 return isl_upoly_zero(up->ctx);
3100 rec = isl_upoly_as_rec(up);
3104 if (up->var == pos) {
3106 return isl_upoly_copy(rec->p[deg]);
3108 return isl_upoly_zero(up->ctx);
3111 up = isl_upoly_copy(up);
3112 up = isl_upoly_cow(up);
3113 rec = isl_upoly_as_rec(up);
3117 for (i = 0; i < rec->n; ++i) {
3118 struct isl_upoly *t;
3119 t = isl_upoly_coeff(rec->p[i], pos, deg);
3122 isl_upoly_free(rec->p[i]);
3132 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3134 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3135 __isl_keep isl_qpolynomial *qp,
3136 enum isl_dim_type type, unsigned t_pos, int deg)
3139 struct isl_upoly *up;
3145 isl_assert(qp->div->ctx, t_pos < isl_dim_size(qp->dim, type),
3148 g_pos = pos(qp->dim, type) + t_pos;
3149 up = isl_upoly_coeff(qp->upoly, g_pos, deg);
3151 c = isl_qpolynomial_alloc(isl_dim_copy(qp->dim), qp->div->n_row, up);
3154 isl_mat_free(c->div);
3155 c->div = isl_mat_copy(qp->div);
3160 isl_qpolynomial_free(c);
3164 /* Homogenize the polynomial in the variables first (inclusive) up to
3165 * last (exclusive) by inserting powers of variable first.
3166 * Variable first is assumed not to appear in the input.
3168 __isl_give struct isl_upoly *isl_upoly_homogenize(
3169 __isl_take struct isl_upoly *up, int deg, int target,
3170 int first, int last)
3173 struct isl_upoly_rec *rec;
3177 if (isl_upoly_is_zero(up))
3181 if (isl_upoly_is_cst(up) || up->var < first) {
3182 struct isl_upoly *hom;
3184 hom = isl_upoly_var_pow(up->ctx, first, target - deg);
3187 rec = isl_upoly_as_rec(hom);
3188 rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up);
3193 up = isl_upoly_cow(up);
3194 rec = isl_upoly_as_rec(up);
3198 for (i = 0; i < rec->n; ++i) {
3199 if (isl_upoly_is_zero(rec->p[i]))
3201 rec->p[i] = isl_upoly_homogenize(rec->p[i],
3202 up->var < last ? deg + i : i, target,
3214 /* Homogenize the polynomial in the set variables by introducing
3215 * powers of an extra set variable at position 0.
3217 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3218 __isl_take isl_qpolynomial *poly)
3222 int deg = isl_qpolynomial_degree(poly);
3227 poly = isl_qpolynomial_insert_dims(poly, isl_dim_set, 0, 1);
3228 poly = isl_qpolynomial_cow(poly);
3232 ovar = isl_dim_offset(poly->dim, isl_dim_set);
3233 nvar = isl_dim_size(poly->dim, isl_dim_set);
3234 poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg,
3241 isl_qpolynomial_free(poly);
3245 __isl_give isl_term *isl_term_alloc(__isl_take isl_dim *dim,
3246 __isl_take isl_mat *div)
3254 n = isl_dim_total(dim) + div->n_row;
3256 term = isl_calloc(dim->ctx, struct isl_term,
3257 sizeof(struct isl_term) + (n - 1) * sizeof(int));
3264 isl_int_init(term->n);
3265 isl_int_init(term->d);
3274 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3283 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3292 total = isl_dim_total(term->dim) + term->div->n_row;
3294 dup = isl_term_alloc(isl_dim_copy(term->dim), isl_mat_copy(term->div));
3298 isl_int_set(dup->n, term->n);
3299 isl_int_set(dup->d, term->d);
3301 for (i = 0; i < total; ++i)
3302 dup->pow[i] = term->pow[i];
3307 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3315 return isl_term_dup(term);
3318 void isl_term_free(__isl_take isl_term *term)
3323 if (--term->ref > 0)
3326 isl_dim_free(term->dim);
3327 isl_mat_free(term->div);
3328 isl_int_clear(term->n);
3329 isl_int_clear(term->d);
3333 unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3341 case isl_dim_out: return isl_dim_size(term->dim, type);
3342 case isl_dim_div: return term->div->n_row;
3343 case isl_dim_all: return isl_dim_total(term->dim) + term->div->n_row;
3348 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
3350 return term ? term->dim->ctx : NULL;
3353 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
3357 isl_int_set(*n, term->n);
3360 void isl_term_get_den(__isl_keep isl_term *term, isl_int *d)
3364 isl_int_set(*d, term->d);
3367 int isl_term_get_exp(__isl_keep isl_term *term,
3368 enum isl_dim_type type, unsigned pos)
3373 isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1);
3375 if (type >= isl_dim_set)
3376 pos += isl_dim_size(term->dim, isl_dim_param);
3377 if (type >= isl_dim_div)
3378 pos += isl_dim_size(term->dim, isl_dim_set);
3380 return term->pow[pos];
3383 __isl_give isl_div *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
3385 isl_basic_map *bmap;
3392 isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div),
3395 total = term->div->n_col - term->div->n_row - 2;
3396 /* No nested divs for now */
3397 isl_assert(term->dim->ctx,
3398 isl_seq_first_non_zero(term->div->row[pos] + 2 + total,
3399 term->div->n_row) == -1,
3402 bmap = isl_basic_map_alloc_dim(isl_dim_copy(term->dim), 1, 0, 0);
3403 if ((k = isl_basic_map_alloc_div(bmap)) < 0)
3406 isl_seq_cpy(bmap->div[k], term->div->row[pos], 2 + total);
3408 return isl_basic_map_div(bmap, k);
3410 isl_basic_map_free(bmap);
3414 __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up,
3415 int (*fn)(__isl_take isl_term *term, void *user),
3416 __isl_take isl_term *term, void *user)
3419 struct isl_upoly_rec *rec;
3424 if (isl_upoly_is_zero(up))
3427 isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error);
3428 isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error);
3429 isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error);
3431 if (isl_upoly_is_cst(up)) {
3432 struct isl_upoly_cst *cst;
3433 cst = isl_upoly_as_cst(up);
3436 term = isl_term_cow(term);
3439 isl_int_set(term->n, cst->n);
3440 isl_int_set(term->d, cst->d);
3441 if (fn(isl_term_copy(term), user) < 0)
3446 rec = isl_upoly_as_rec(up);
3450 for (i = 0; i < rec->n; ++i) {
3451 term = isl_term_cow(term);
3454 term->pow[up->var] = i;
3455 term = isl_upoly_foreach_term(rec->p[i], fn, term, user);
3459 term->pow[up->var] = 0;
3463 isl_term_free(term);
3467 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
3468 int (*fn)(__isl_take isl_term *term, void *user), void *user)
3475 term = isl_term_alloc(isl_dim_copy(qp->dim), isl_mat_copy(qp->div));
3479 term = isl_upoly_foreach_term(qp->upoly, fn, term, user);
3481 isl_term_free(term);
3483 return term ? 0 : -1;
3486 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
3488 struct isl_upoly *up;
3489 isl_qpolynomial *qp;
3495 n = isl_dim_total(term->dim) + term->div->n_row;
3497 up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d);
3498 for (i = 0; i < n; ++i) {
3501 up = isl_upoly_mul(up,
3502 isl_upoly_var_pow(term->dim->ctx, i, term->pow[i]));
3505 qp = isl_qpolynomial_alloc(isl_dim_copy(term->dim), term->div->n_row, up);
3508 isl_mat_free(qp->div);
3509 qp->div = isl_mat_copy(term->div);
3513 isl_term_free(term);
3516 isl_qpolynomial_free(qp);
3517 isl_term_free(term);
3521 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
3522 __isl_take isl_dim *dim)
3531 if (isl_dim_equal(qp->dim, dim)) {
3536 qp = isl_qpolynomial_cow(qp);
3540 extra = isl_dim_size(dim, isl_dim_set) -
3541 isl_dim_size(qp->dim, isl_dim_set);
3542 total = isl_dim_total(qp->dim);
3543 if (qp->div->n_row) {
3546 exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
3549 for (i = 0; i < qp->div->n_row; ++i)
3551 qp->upoly = expand(qp->upoly, exp, total);
3556 qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
3559 for (i = 0; i < qp->div->n_row; ++i)
3560 isl_seq_clr(qp->div->row[i] + 2 + total, extra);
3562 isl_dim_free(qp->dim);
3568 isl_qpolynomial_free(qp);
3572 /* For each parameter or variable that does not appear in qp,
3573 * first eliminate the variable from all constraints and then set it to zero.
3575 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
3576 __isl_keep isl_qpolynomial *qp)
3587 d = isl_dim_total(set->dim);
3588 active = isl_calloc_array(set->ctx, int, d);
3589 if (set_active(qp, active) < 0)
3592 for (i = 0; i < d; ++i)
3601 nparam = isl_dim_size(set->dim, isl_dim_param);
3602 nvar = isl_dim_size(set->dim, isl_dim_set);
3603 for (i = 0; i < nparam; ++i) {
3606 set = isl_set_eliminate(set, isl_dim_param, i, 1);
3607 set = isl_set_fix_si(set, isl_dim_param, i, 0);
3609 for (i = 0; i < nvar; ++i) {
3610 if (active[nparam + i])
3612 set = isl_set_eliminate(set, isl_dim_set, i, 1);
3613 set = isl_set_fix_si(set, isl_dim_set, i, 0);
3625 struct isl_opt_data {
3626 isl_qpolynomial *qp;
3628 isl_qpolynomial *opt;
3632 static int opt_fn(__isl_take isl_point *pnt, void *user)
3634 struct isl_opt_data *data = (struct isl_opt_data *)user;
3635 isl_qpolynomial *val;
3637 val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
3641 } else if (data->max) {
3642 data->opt = isl_qpolynomial_max_cst(data->opt, val);
3644 data->opt = isl_qpolynomial_min_cst(data->opt, val);
3650 __isl_give isl_qpolynomial *isl_qpolynomial_opt_on_domain(
3651 __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
3653 struct isl_opt_data data = { NULL, 1, NULL, max };
3658 if (isl_upoly_is_cst(qp->upoly)) {
3663 set = fix_inactive(set, qp);
3666 if (isl_set_foreach_point(set, opt_fn, &data) < 0)
3670 data.opt = isl_qpolynomial_zero(isl_qpolynomial_get_dim(qp));
3673 isl_qpolynomial_free(qp);
3677 isl_qpolynomial_free(qp);
3678 isl_qpolynomial_free(data.opt);
3682 __isl_give isl_qpolynomial *isl_qpolynomial_morph(__isl_take isl_qpolynomial *qp,
3683 __isl_take isl_morph *morph)
3688 struct isl_upoly *up;
3690 struct isl_upoly **subs;
3693 qp = isl_qpolynomial_cow(qp);
3698 isl_assert(ctx, isl_dim_equal(qp->dim, morph->dom->dim), goto error);
3700 n_sub = morph->inv->n_row - 1;
3701 if (morph->inv->n_row != morph->inv->n_col)
3702 n_sub += qp->div->n_row;
3703 subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub);
3707 for (i = 0; 1 + i < morph->inv->n_row; ++i)
3708 subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i],
3709 morph->inv->row[0][0], morph->inv->n_col);
3710 if (morph->inv->n_row != morph->inv->n_col)
3711 for (i = 0; i < qp->div->n_row; ++i)
3712 subs[morph->inv->n_row - 1 + i] =
3713 isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
3715 qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs);
3717 for (i = 0; i < n_sub; ++i)
3718 isl_upoly_free(subs[i]);
3721 mat = isl_mat_diagonal(isl_mat_identity(ctx, 1), isl_mat_copy(morph->inv));
3722 mat = isl_mat_diagonal(mat, isl_mat_identity(ctx, qp->div->n_row));
3723 qp->div = isl_mat_product(qp->div, mat);
3724 isl_dim_free(qp->dim);
3725 qp->dim = isl_dim_copy(morph->ran->dim);
3727 if (!qp->upoly || !qp->div || !qp->dim)
3730 isl_morph_free(morph);
3734 isl_qpolynomial_free(qp);
3735 isl_morph_free(morph);
3739 static int neg_entry(void **entry, void *user)
3741 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
3743 *pwqp = isl_pw_qpolynomial_neg(*pwqp);
3745 return *pwqp ? 0 : -1;
3748 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_neg(
3749 __isl_take isl_union_pw_qpolynomial *upwqp)
3751 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
3755 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
3756 &neg_entry, NULL) < 0)
3761 isl_union_pw_qpolynomial_free(upwqp);
3765 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3766 __isl_take isl_union_pw_qpolynomial *upwqp1,
3767 __isl_take isl_union_pw_qpolynomial *upwqp2)
3769 return isl_union_pw_qpolynomial_add(upwqp1,
3770 isl_union_pw_qpolynomial_neg(upwqp2));
3773 static int mul_entry(void **entry, void *user)
3775 struct isl_union_pw_qpolynomial_match_bin_data *data = user;
3777 struct isl_hash_table_entry *entry2;
3778 isl_pw_qpolynomial *pwpq = *entry;
3781 hash = isl_dim_get_hash(pwpq->dim);
3782 entry2 = isl_hash_table_find(data->u2->dim->ctx, &data->u2->table,
3783 hash, &has_dim, pwpq->dim, 0);
3787 pwpq = isl_pw_qpolynomial_copy(pwpq);
3788 pwpq = isl_pw_qpolynomial_mul(pwpq,
3789 isl_pw_qpolynomial_copy(entry2->data));
3791 empty = isl_pw_qpolynomial_is_zero(pwpq);
3793 isl_pw_qpolynomial_free(pwpq);
3797 isl_pw_qpolynomial_free(pwpq);
3801 data->res = isl_union_pw_qpolynomial_add_pw_qpolynomial(data->res, pwpq);
3806 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3807 __isl_take isl_union_pw_qpolynomial *upwqp1,
3808 __isl_take isl_union_pw_qpolynomial *upwqp2)
3810 return match_bin_op(upwqp1, upwqp2, &mul_entry);
3813 /* Reorder the columns of the given div definitions according to the
3816 static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div,
3817 __isl_take isl_reordering *r)
3826 extra = isl_dim_total(r->dim) + div->n_row - r->len;
3827 mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra);
3831 for (i = 0; i < div->n_row; ++i) {
3832 isl_seq_cpy(mat->row[i], div->row[i], 2);
3833 isl_seq_clr(mat->row[i] + 2, mat->n_col - 2);
3834 for (j = 0; j < r->len; ++j)
3835 isl_int_set(mat->row[i][2 + r->pos[j]],
3836 div->row[i][2 + j]);
3839 isl_reordering_free(r);
3843 isl_reordering_free(r);
3848 /* Reorder the dimension of "qp" according to the given reordering.
3850 __isl_give isl_qpolynomial *isl_qpolynomial_realign(
3851 __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
3853 qp = isl_qpolynomial_cow(qp);
3857 r = isl_reordering_extend(r, qp->div->n_row);
3861 qp->div = reorder_divs(qp->div, isl_reordering_copy(r));
3865 qp->upoly = reorder(qp->upoly, r->pos);
3869 qp = isl_qpolynomial_reset_dim(qp, isl_dim_copy(r->dim));
3871 isl_reordering_free(r);
3874 isl_qpolynomial_free(qp);
3875 isl_reordering_free(r);
3879 struct isl_split_periods_data {
3881 isl_pw_qpolynomial *res;
3884 /* Create a slice where the integer division "div" has the fixed value "v".
3885 * In particular, if "div" refers to floor(f/m), then create a slice
3887 * m v <= f <= m v + (m - 1)
3892 * -f + m v + (m - 1) >= 0
3894 static __isl_give isl_set *set_div_slice(__isl_take isl_dim *dim,
3895 __isl_keep isl_qpolynomial *qp, int div, isl_int v)
3898 isl_basic_set *bset = NULL;
3904 total = isl_dim_total(dim);
3905 bset = isl_basic_set_alloc_dim(isl_dim_copy(dim), 0, 0, 2);
3907 k = isl_basic_set_alloc_inequality(bset);
3910 isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
3911 isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
3913 k = isl_basic_set_alloc_inequality(bset);
3916 isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
3917 isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
3918 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
3919 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
3922 return isl_set_from_basic_set(bset);
3924 isl_basic_set_free(bset);
3929 static int split_periods(__isl_take isl_set *set,
3930 __isl_take isl_qpolynomial *qp, void *user);
3932 /* Create a slice of the domain "set" such that integer division "div"
3933 * has the fixed value "v" and add the results to data->res,
3934 * replacing the integer division by "v" in "qp".
3936 static int set_div(__isl_take isl_set *set,
3937 __isl_take isl_qpolynomial *qp, int div, isl_int v,
3938 struct isl_split_periods_data *data)
3943 struct isl_upoly *cst;
3945 slice = set_div_slice(isl_set_get_dim(set), qp, div, v);
3946 set = isl_set_intersect(set, slice);
3951 total = isl_dim_total(qp->dim);
3953 for (i = div + 1; i < qp->div->n_row; ++i) {
3954 if (isl_int_is_zero(qp->div->row[i][2 + total + div]))
3956 isl_int_addmul(qp->div->row[i][1],
3957 qp->div->row[i][2 + total + div], v);
3958 isl_int_set_si(qp->div->row[i][2 + total + div], 0);
3961 cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
3962 qp = substitute_div(qp, div, cst);
3964 return split_periods(set, qp, data);
3967 isl_qpolynomial_free(qp);
3971 /* Split the domain "set" such that integer division "div"
3972 * has a fixed value (ranging from "min" to "max") on each slice
3973 * and add the results to data->res.
3975 static int split_div(__isl_take isl_set *set,
3976 __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
3977 struct isl_split_periods_data *data)
3979 for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
3980 isl_set *set_i = isl_set_copy(set);
3981 isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
3983 if (set_div(set_i, qp_i, div, min, data) < 0)
3987 isl_qpolynomial_free(qp);
3991 isl_qpolynomial_free(qp);
3995 /* If "qp" refers to any integer division
3996 * that can only attain "max_periods" distinct values on "set"
3997 * then split the domain along those distinct values.
3998 * Add the results (or the original if no splitting occurs)
4001 static int split_periods(__isl_take isl_set *set,
4002 __isl_take isl_qpolynomial *qp, void *user)
4005 isl_pw_qpolynomial *pwqp;
4006 struct isl_split_periods_data *data;
4011 data = (struct isl_split_periods_data *)user;
4016 if (qp->div->n_row == 0) {
4017 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4018 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4024 total = isl_dim_total(qp->dim);
4025 for (i = 0; i < qp->div->n_row; ++i) {
4026 enum isl_lp_result lp_res;
4028 if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total,
4029 qp->div->n_row) != -1)
4032 lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4033 set->ctx->one, &min, NULL, NULL);
4034 if (lp_res == isl_lp_error)
4036 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4038 isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4040 lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4041 set->ctx->one, &max, NULL, NULL);
4042 if (lp_res == isl_lp_error)
4044 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4046 isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4048 isl_int_sub(max, max, min);
4049 if (isl_int_cmp_si(max, data->max_periods) < 0) {
4050 isl_int_add(max, max, min);
4055 if (i < qp->div->n_row) {
4056 r = split_div(set, qp, i, min, max, data);
4058 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4059 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4071 isl_qpolynomial_free(qp);
4075 /* If any quasi-polynomial in pwqp refers to any integer division
4076 * that can only attain "max_periods" distinct values on its domain
4077 * then split the domain along those distinct values.
4079 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4080 __isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4082 struct isl_split_periods_data data;
4084 data.max_periods = max_periods;
4085 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp));
4087 if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4090 isl_pw_qpolynomial_free(pwqp);
4094 isl_pw_qpolynomial_free(data.res);
4095 isl_pw_qpolynomial_free(pwqp);
4099 /* Construct a piecewise quasipolynomial that is constant on the given
4100 * domain. In particular, it is
4103 * infinity if cst == -1
4105 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4106 __isl_take isl_basic_set *bset, int cst)
4109 isl_qpolynomial *qp;
4114 bset = isl_basic_map_domain(isl_basic_map_from_range(bset));
4115 dim = isl_basic_set_get_dim(bset);
4117 qp = isl_qpolynomial_infty(dim);
4119 qp = isl_qpolynomial_zero(dim);
4121 qp = isl_qpolynomial_one(dim);
4122 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4125 /* Factor bset, call fn on each of the factors and return the product.
4127 * If no factors can be found, simply call fn on the input.
4128 * Otherwise, construct the factors based on the factorizer,
4129 * call fn on each factor and compute the product.
4131 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4132 __isl_take isl_basic_set *bset,
4133 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4139 isl_qpolynomial *qp;
4140 isl_pw_qpolynomial *pwqp;
4144 f = isl_basic_set_factorizer(bset);
4147 if (f->n_group == 0) {
4148 isl_factorizer_free(f);
4152 nparam = isl_basic_set_dim(bset, isl_dim_param);
4153 nvar = isl_basic_set_dim(bset, isl_dim_set);
4155 dim = isl_basic_set_get_dim(bset);
4156 dim = isl_dim_domain(dim);
4157 set = isl_set_universe(isl_dim_copy(dim));
4158 qp = isl_qpolynomial_one(dim);
4159 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4161 bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
4163 for (i = 0, n = 0; i < f->n_group; ++i) {
4164 isl_basic_set *bset_i;
4165 isl_pw_qpolynomial *pwqp_i;
4167 bset_i = isl_basic_set_copy(bset);
4168 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4169 nparam + n + f->len[i], nvar - n - f->len[i]);
4170 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4172 bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
4173 n + f->len[i], nvar - n - f->len[i]);
4174 bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
4176 pwqp_i = fn(bset_i);
4177 pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i);
4182 isl_basic_set_free(bset);
4183 isl_factorizer_free(f);
4187 isl_basic_set_free(bset);
4191 /* Factor bset, call fn on each of the factors and return the product.
4192 * The function is assumed to evaluate to zero on empty domains,
4193 * to one on zero-dimensional domains and to infinity on unbounded domains
4194 * and will not be called explicitly on zero-dimensional or unbounded domains.
4196 * We first check for some special cases and remove all equalities.
4197 * Then we hand over control to compressed_multiplicative_call.
4199 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4200 __isl_take isl_basic_set *bset,
4201 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4205 isl_pw_qpolynomial *pwqp;
4206 unsigned orig_nvar, final_nvar;
4211 if (isl_basic_set_fast_is_empty(bset))
4212 return constant_on_domain(bset, 0);
4214 orig_nvar = isl_basic_set_dim(bset, isl_dim_set);
4217 return constant_on_domain(bset, 1);
4219 bounded = isl_basic_set_is_bounded(bset);
4223 return constant_on_domain(bset, -1);
4225 if (bset->n_eq == 0)
4226 return compressed_multiplicative_call(bset, fn);
4228 morph = isl_basic_set_full_compression(bset);
4229 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4231 final_nvar = isl_basic_set_dim(bset, isl_dim_set);
4233 pwqp = compressed_multiplicative_call(bset, fn);
4235 morph = isl_morph_remove_dom_dims(morph, isl_dim_set, 0, orig_nvar);
4236 morph = isl_morph_remove_ran_dims(morph, isl_dim_set, 0, final_nvar);
4237 morph = isl_morph_inverse(morph);
4239 pwqp = isl_pw_qpolynomial_morph(pwqp, morph);
4243 isl_basic_set_free(bset);
4247 /* Drop all floors in "qp", turning each integer division [a/m] into
4248 * a rational division a/m. If "down" is set, then the integer division
4249 * is replaces by (a-(m-1))/m instead.
4251 static __isl_give isl_qpolynomial *qp_drop_floors(
4252 __isl_take isl_qpolynomial *qp, int down)
4255 struct isl_upoly *s;
4259 if (qp->div->n_row == 0)
4262 qp = isl_qpolynomial_cow(qp);
4266 for (i = qp->div->n_row - 1; i >= 0; --i) {
4268 isl_int_sub(qp->div->row[i][1],
4269 qp->div->row[i][1], qp->div->row[i][0]);
4270 isl_int_add_ui(qp->div->row[i][1],
4271 qp->div->row[i][1], 1);
4273 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4274 qp->div->row[i][0], qp->div->n_col - 1);
4275 qp = substitute_div(qp, i, s);
4283 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4284 * a rational division a/m.
4286 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4287 __isl_take isl_pw_qpolynomial *pwqp)
4294 if (isl_pw_qpolynomial_is_zero(pwqp))
4297 pwqp = isl_pw_qpolynomial_cow(pwqp);
4301 for (i = 0; i < pwqp->n; ++i) {
4302 pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4309 isl_pw_qpolynomial_free(pwqp);
4313 /* Adjust all the integer divisions in "qp" such that they are at least
4314 * one over the given orthant (identified by "signs"). This ensures
4315 * that they will still be non-negative even after subtracting (m-1)/m.
4317 * In particular, f is replaced by f' + v, changing f = [a/m]
4318 * to f' = [(a - m v)/m].
4319 * If the constant term k in a is smaller than m,
4320 * the constant term of v is set to floor(k/m) - 1.
4321 * For any other term, if the coefficient c and the variable x have
4322 * the same sign, then no changes are needed.
4323 * Otherwise, if the variable is positive (and c is negative),
4324 * then the coefficient of x in v is set to floor(c/m).
4325 * If the variable is negative (and c is positive),
4326 * then the coefficient of x in v is set to ceil(c/m).
4328 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
4334 struct isl_upoly *s;
4336 qp = isl_qpolynomial_cow(qp);
4339 qp->div = isl_mat_cow(qp->div);
4343 total = isl_dim_total(qp->dim);
4344 v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
4346 for (i = 0; i < qp->div->n_row; ++i) {
4347 isl_int *row = qp->div->row[i];
4351 if (isl_int_lt(row[1], row[0])) {
4352 isl_int_fdiv_q(v->el[0], row[1], row[0]);
4353 isl_int_sub_ui(v->el[0], v->el[0], 1);
4354 isl_int_submul(row[1], row[0], v->el[0]);
4356 for (j = 0; j < total; ++j) {
4357 if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
4360 isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
4362 isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
4363 isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
4365 for (j = 0; j < i; ++j) {
4366 if (isl_int_sgn(row[2 + total + j]) >= 0)
4368 isl_int_fdiv_q(v->el[1 + total + j],
4369 row[2 + total + j], row[0]);
4370 isl_int_submul(row[2 + total + j],
4371 row[0], v->el[1 + total + j]);
4373 for (j = i + 1; j < qp->div->n_row; ++j) {
4374 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
4376 isl_seq_combine(qp->div->row[j] + 1,
4377 qp->div->ctx->one, qp->div->row[j] + 1,
4378 qp->div->row[j][2 + total + i], v->el, v->size);
4380 isl_int_set_si(v->el[1 + total + i], 1);
4381 s = isl_upoly_from_affine(qp->dim->ctx, v->el,
4382 qp->div->ctx->one, v->size);
4383 qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s);
4393 isl_qpolynomial_free(qp);
4397 struct isl_to_poly_data {
4399 isl_pw_qpolynomial *res;
4400 isl_qpolynomial *qp;
4403 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4404 * We first make all integer divisions positive and then split the
4405 * quasipolynomials into terms with sign data->sign (the direction
4406 * of the requested approximation) and terms with the opposite sign.
4407 * In the first set of terms, each integer division [a/m] is
4408 * overapproximated by a/m, while in the second it is underapproximated
4411 static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs,
4414 struct isl_to_poly_data *data = user;
4415 isl_pw_qpolynomial *t;
4416 isl_qpolynomial *qp, *up, *down;
4418 qp = isl_qpolynomial_copy(data->qp);
4419 qp = make_divs_pos(qp, signs);
4421 up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
4422 up = qp_drop_floors(up, 0);
4423 down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
4424 down = qp_drop_floors(down, 1);
4426 isl_qpolynomial_free(qp);
4427 qp = isl_qpolynomial_add(up, down);
4429 t = isl_pw_qpolynomial_alloc(orthant, qp);
4430 data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
4435 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4436 * the polynomial will be an overapproximation. If "sign" is negative,
4437 * it will be an underapproximation. If "sign" is zero, the approximation
4438 * will lie somewhere in between.
4440 * In particular, is sign == 0, we simply drop the floors, turning
4441 * the integer divisions into rational divisions.
4442 * Otherwise, we split the domains into orthants, make all integer divisions
4443 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4444 * depending on the requested sign and the sign of the term in which
4445 * the integer division appears.
4447 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4448 __isl_take isl_pw_qpolynomial *pwqp, int sign)
4451 struct isl_to_poly_data data;
4454 return pwqp_drop_floors(pwqp);
4460 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_dim(pwqp));
4462 for (i = 0; i < pwqp->n; ++i) {
4463 if (pwqp->p[i].qp->div->n_row == 0) {
4464 isl_pw_qpolynomial *t;
4465 t = isl_pw_qpolynomial_alloc(
4466 isl_set_copy(pwqp->p[i].set),
4467 isl_qpolynomial_copy(pwqp->p[i].qp));
4468 data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
4471 data.qp = pwqp->p[i].qp;
4472 if (isl_set_foreach_orthant(pwqp->p[i].set,
4473 &to_polynomial_on_orthant, &data) < 0)
4477 isl_pw_qpolynomial_free(pwqp);
4481 isl_pw_qpolynomial_free(pwqp);
4482 isl_pw_qpolynomial_free(data.res);
4486 static int poly_entry(void **entry, void *user)
4489 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
4491 *pwqp = isl_pw_qpolynomial_to_polynomial(*pwqp, *sign);
4493 return *pwqp ? 0 : -1;
4496 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
4497 __isl_take isl_union_pw_qpolynomial *upwqp, int sign)
4499 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
4503 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
4504 &poly_entry, &sign) < 0)
4509 isl_union_pw_qpolynomial_free(upwqp);
4513 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
4514 __isl_take isl_qpolynomial *qp)
4518 isl_vec *aff = NULL;
4519 isl_basic_map *bmap = NULL;
4525 if (!isl_upoly_is_affine(qp->upoly))
4526 isl_die(qp->dim->ctx, isl_error_invalid,
4527 "input quasi-polynomial not affine", goto error);
4528 aff = isl_qpolynomial_extract_affine(qp);
4531 dim = isl_qpolynomial_get_dim(qp);
4532 dim = isl_dim_from_domain(dim);
4533 pos = 1 + isl_dim_offset(dim, isl_dim_out);
4534 dim = isl_dim_add(dim, isl_dim_out, 1);
4535 n_div = qp->div->n_row;
4536 bmap = isl_basic_map_alloc_dim(dim, n_div, 1, 2 * n_div);
4538 for (i = 0; i < n_div; ++i) {
4539 k = isl_basic_map_alloc_div(bmap);
4542 isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
4543 isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
4544 if (isl_basic_map_add_div_constraints(bmap, k) < 0)
4547 k = isl_basic_map_alloc_equality(bmap);
4550 isl_int_neg(bmap->eq[k][pos], aff->el[0]);
4551 isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
4552 isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
4555 isl_qpolynomial_free(qp);
4556 bmap = isl_basic_map_finalize(bmap);
4560 isl_qpolynomial_free(qp);
4561 isl_basic_map_free(bmap);