2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_range.h>
25 #include <isl_local_space_private.h>
26 #include <isl_aff_private.h>
27 #include <isl_config.h>
29 static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type)
32 case isl_dim_param: return 0;
33 case isl_dim_in: return dim->nparam;
34 case isl_dim_out: return dim->nparam + dim->n_in;
39 int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
47 __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
52 isl_assert(up->ctx, up->var < 0, return NULL);
54 return (struct isl_upoly_cst *)up;
57 __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
62 isl_assert(up->ctx, up->var >= 0, return NULL);
64 return (struct isl_upoly_rec *)up;
67 int isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
68 __isl_keep struct isl_upoly *up2)
71 struct isl_upoly_rec *rec1, *rec2;
77 if (up1->var != up2->var)
79 if (isl_upoly_is_cst(up1)) {
80 struct isl_upoly_cst *cst1, *cst2;
81 cst1 = isl_upoly_as_cst(up1);
82 cst2 = isl_upoly_as_cst(up2);
85 return isl_int_eq(cst1->n, cst2->n) &&
86 isl_int_eq(cst1->d, cst2->d);
89 rec1 = isl_upoly_as_rec(up1);
90 rec2 = isl_upoly_as_rec(up2);
94 if (rec1->n != rec2->n)
97 for (i = 0; i < rec1->n; ++i) {
98 int eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
106 int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
108 struct isl_upoly_cst *cst;
112 if (!isl_upoly_is_cst(up))
115 cst = isl_upoly_as_cst(up);
119 return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
122 int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
124 struct isl_upoly_cst *cst;
128 if (!isl_upoly_is_cst(up))
131 cst = isl_upoly_as_cst(up);
135 return isl_int_sgn(cst->n);
138 int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
140 struct isl_upoly_cst *cst;
144 if (!isl_upoly_is_cst(up))
147 cst = isl_upoly_as_cst(up);
151 return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
154 int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
156 struct isl_upoly_cst *cst;
160 if (!isl_upoly_is_cst(up))
163 cst = isl_upoly_as_cst(up);
167 return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
170 int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
172 struct isl_upoly_cst *cst;
176 if (!isl_upoly_is_cst(up))
179 cst = isl_upoly_as_cst(up);
183 return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
186 int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
188 struct isl_upoly_cst *cst;
192 if (!isl_upoly_is_cst(up))
195 cst = isl_upoly_as_cst(up);
199 return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
202 int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
204 struct isl_upoly_cst *cst;
208 if (!isl_upoly_is_cst(up))
211 cst = isl_upoly_as_cst(up);
215 return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
218 __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
220 struct isl_upoly_cst *cst;
222 cst = isl_alloc_type(ctx, struct isl_upoly_cst);
231 isl_int_init(cst->n);
232 isl_int_init(cst->d);
237 __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
239 struct isl_upoly_cst *cst;
241 cst = isl_upoly_cst_alloc(ctx);
245 isl_int_set_si(cst->n, 0);
246 isl_int_set_si(cst->d, 1);
251 __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
253 struct isl_upoly_cst *cst;
255 cst = isl_upoly_cst_alloc(ctx);
259 isl_int_set_si(cst->n, 1);
260 isl_int_set_si(cst->d, 1);
265 __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
267 struct isl_upoly_cst *cst;
269 cst = isl_upoly_cst_alloc(ctx);
273 isl_int_set_si(cst->n, 1);
274 isl_int_set_si(cst->d, 0);
279 __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
281 struct isl_upoly_cst *cst;
283 cst = isl_upoly_cst_alloc(ctx);
287 isl_int_set_si(cst->n, -1);
288 isl_int_set_si(cst->d, 0);
293 __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
295 struct isl_upoly_cst *cst;
297 cst = isl_upoly_cst_alloc(ctx);
301 isl_int_set_si(cst->n, 0);
302 isl_int_set_si(cst->d, 0);
307 __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
308 isl_int n, isl_int d)
310 struct isl_upoly_cst *cst;
312 cst = isl_upoly_cst_alloc(ctx);
316 isl_int_set(cst->n, n);
317 isl_int_set(cst->d, d);
322 __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
325 struct isl_upoly_rec *rec;
327 isl_assert(ctx, var >= 0, return NULL);
328 isl_assert(ctx, size >= 0, return NULL);
329 rec = isl_calloc(ctx, struct isl_upoly_rec,
330 sizeof(struct isl_upoly_rec) +
331 size * sizeof(struct isl_upoly *));
346 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
347 __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim)
349 qp = isl_qpolynomial_cow(qp);
353 isl_space_free(qp->dim);
358 isl_qpolynomial_free(qp);
363 /* Reset the space of "qp". This function is called from isl_pw_templ.c
364 * and doesn't know if the space of an element object is represented
365 * directly or through its domain. It therefore passes along both.
367 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
368 __isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
369 __isl_take isl_space *domain)
371 isl_space_free(space);
372 return isl_qpolynomial_reset_domain_space(qp, domain);
375 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
377 return qp ? qp->dim->ctx : NULL;
380 __isl_give isl_space *isl_qpolynomial_get_domain_space(
381 __isl_keep isl_qpolynomial *qp)
383 return qp ? isl_space_copy(qp->dim) : NULL;
386 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
391 space = isl_space_copy(qp->dim);
392 space = isl_space_from_domain(space);
393 space = isl_space_add_dims(space, isl_dim_out, 1);
397 /* Externally, an isl_qpolynomial has a map space, but internally, the
398 * ls field corresponds to the domain of that space.
400 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
401 enum isl_dim_type type)
405 if (type == isl_dim_out)
407 if (type == isl_dim_in)
409 return isl_space_dim(qp->dim, type);
412 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
414 return qp ? isl_upoly_is_zero(qp->upoly) : -1;
417 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
419 return qp ? isl_upoly_is_one(qp->upoly) : -1;
422 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
424 return qp ? isl_upoly_is_nan(qp->upoly) : -1;
427 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
429 return qp ? isl_upoly_is_infty(qp->upoly) : -1;
432 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
434 return qp ? isl_upoly_is_neginfty(qp->upoly) : -1;
437 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
439 return qp ? isl_upoly_sgn(qp->upoly) : 0;
442 static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
444 isl_int_clear(cst->n);
445 isl_int_clear(cst->d);
448 static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
452 for (i = 0; i < rec->n; ++i)
453 isl_upoly_free(rec->p[i]);
456 __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
465 __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
467 struct isl_upoly_cst *cst;
468 struct isl_upoly_cst *dup;
470 cst = isl_upoly_as_cst(up);
474 dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
477 isl_int_set(dup->n, cst->n);
478 isl_int_set(dup->d, cst->d);
483 __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
486 struct isl_upoly_rec *rec;
487 struct isl_upoly_rec *dup;
489 rec = isl_upoly_as_rec(up);
493 dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
497 for (i = 0; i < rec->n; ++i) {
498 dup->p[i] = isl_upoly_copy(rec->p[i]);
506 isl_upoly_free(&dup->up);
510 __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
515 if (isl_upoly_is_cst(up))
516 return isl_upoly_dup_cst(up);
518 return isl_upoly_dup_rec(up);
521 __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
529 return isl_upoly_dup(up);
532 void isl_upoly_free(__isl_take struct isl_upoly *up)
541 upoly_free_cst((struct isl_upoly_cst *)up);
543 upoly_free_rec((struct isl_upoly_rec *)up);
545 isl_ctx_deref(up->ctx);
549 static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
554 isl_int_gcd(gcd, cst->n, cst->d);
555 if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
556 isl_int_divexact(cst->n, cst->n, gcd);
557 isl_int_divexact(cst->d, cst->d, gcd);
562 __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
563 __isl_take struct isl_upoly *up2)
565 struct isl_upoly_cst *cst1;
566 struct isl_upoly_cst *cst2;
568 up1 = isl_upoly_cow(up1);
572 cst1 = isl_upoly_as_cst(up1);
573 cst2 = isl_upoly_as_cst(up2);
575 if (isl_int_eq(cst1->d, cst2->d))
576 isl_int_add(cst1->n, cst1->n, cst2->n);
578 isl_int_mul(cst1->n, cst1->n, cst2->d);
579 isl_int_addmul(cst1->n, cst2->n, cst1->d);
580 isl_int_mul(cst1->d, cst1->d, cst2->d);
583 isl_upoly_cst_reduce(cst1);
593 static __isl_give struct isl_upoly *replace_by_zero(
594 __isl_take struct isl_upoly *up)
602 return isl_upoly_zero(ctx);
605 static __isl_give struct isl_upoly *replace_by_constant_term(
606 __isl_take struct isl_upoly *up)
608 struct isl_upoly_rec *rec;
609 struct isl_upoly *cst;
614 rec = isl_upoly_as_rec(up);
617 cst = isl_upoly_copy(rec->p[0]);
625 __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
626 __isl_take struct isl_upoly *up2)
629 struct isl_upoly_rec *rec1, *rec2;
634 if (isl_upoly_is_nan(up1)) {
639 if (isl_upoly_is_nan(up2)) {
644 if (isl_upoly_is_zero(up1)) {
649 if (isl_upoly_is_zero(up2)) {
654 if (up1->var < up2->var)
655 return isl_upoly_sum(up2, up1);
657 if (up2->var < up1->var) {
658 struct isl_upoly_rec *rec;
659 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
663 up1 = isl_upoly_cow(up1);
664 rec = isl_upoly_as_rec(up1);
667 rec->p[0] = isl_upoly_sum(rec->p[0], up2);
669 up1 = replace_by_constant_term(up1);
673 if (isl_upoly_is_cst(up1))
674 return isl_upoly_sum_cst(up1, up2);
676 rec1 = isl_upoly_as_rec(up1);
677 rec2 = isl_upoly_as_rec(up2);
681 if (rec1->n < rec2->n)
682 return isl_upoly_sum(up2, up1);
684 up1 = isl_upoly_cow(up1);
685 rec1 = isl_upoly_as_rec(up1);
689 for (i = rec2->n - 1; i >= 0; --i) {
690 rec1->p[i] = isl_upoly_sum(rec1->p[i],
691 isl_upoly_copy(rec2->p[i]));
694 if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
695 isl_upoly_free(rec1->p[i]);
701 up1 = replace_by_zero(up1);
702 else if (rec1->n == 1)
703 up1 = replace_by_constant_term(up1);
714 __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
715 __isl_take struct isl_upoly *up, isl_int v)
717 struct isl_upoly_cst *cst;
719 up = isl_upoly_cow(up);
723 cst = isl_upoly_as_cst(up);
725 isl_int_addmul(cst->n, cst->d, v);
730 __isl_give struct isl_upoly *isl_upoly_add_isl_int(
731 __isl_take struct isl_upoly *up, isl_int v)
733 struct isl_upoly_rec *rec;
738 if (isl_upoly_is_cst(up))
739 return isl_upoly_cst_add_isl_int(up, v);
741 up = isl_upoly_cow(up);
742 rec = isl_upoly_as_rec(up);
746 rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
756 __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
757 __isl_take struct isl_upoly *up, isl_int v)
759 struct isl_upoly_cst *cst;
761 if (isl_upoly_is_zero(up))
764 up = isl_upoly_cow(up);
768 cst = isl_upoly_as_cst(up);
770 isl_int_mul(cst->n, cst->n, v);
775 __isl_give struct isl_upoly *isl_upoly_mul_isl_int(
776 __isl_take struct isl_upoly *up, isl_int v)
779 struct isl_upoly_rec *rec;
784 if (isl_upoly_is_cst(up))
785 return isl_upoly_cst_mul_isl_int(up, v);
787 up = isl_upoly_cow(up);
788 rec = isl_upoly_as_rec(up);
792 for (i = 0; i < rec->n; ++i) {
793 rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
804 __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
805 __isl_take struct isl_upoly *up2)
807 struct isl_upoly_cst *cst1;
808 struct isl_upoly_cst *cst2;
810 up1 = isl_upoly_cow(up1);
814 cst1 = isl_upoly_as_cst(up1);
815 cst2 = isl_upoly_as_cst(up2);
817 isl_int_mul(cst1->n, cst1->n, cst2->n);
818 isl_int_mul(cst1->d, cst1->d, cst2->d);
820 isl_upoly_cst_reduce(cst1);
830 __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
831 __isl_take struct isl_upoly *up2)
833 struct isl_upoly_rec *rec1;
834 struct isl_upoly_rec *rec2;
835 struct isl_upoly_rec *res = NULL;
839 rec1 = isl_upoly_as_rec(up1);
840 rec2 = isl_upoly_as_rec(up2);
843 size = rec1->n + rec2->n - 1;
844 res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
848 for (i = 0; i < rec1->n; ++i) {
849 res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
850 isl_upoly_copy(rec1->p[i]));
855 for (; i < size; ++i) {
856 res->p[i] = isl_upoly_zero(up1->ctx);
861 for (i = 0; i < rec1->n; ++i) {
862 for (j = 1; j < rec2->n; ++j) {
863 struct isl_upoly *up;
864 up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
865 isl_upoly_copy(rec1->p[i]));
866 res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
879 isl_upoly_free(&res->up);
883 __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
884 __isl_take struct isl_upoly *up2)
889 if (isl_upoly_is_nan(up1)) {
894 if (isl_upoly_is_nan(up2)) {
899 if (isl_upoly_is_zero(up1)) {
904 if (isl_upoly_is_zero(up2)) {
909 if (isl_upoly_is_one(up1)) {
914 if (isl_upoly_is_one(up2)) {
919 if (up1->var < up2->var)
920 return isl_upoly_mul(up2, up1);
922 if (up2->var < up1->var) {
924 struct isl_upoly_rec *rec;
925 if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
926 isl_ctx *ctx = up1->ctx;
929 return isl_upoly_nan(ctx);
931 up1 = isl_upoly_cow(up1);
932 rec = isl_upoly_as_rec(up1);
936 for (i = 0; i < rec->n; ++i) {
937 rec->p[i] = isl_upoly_mul(rec->p[i],
938 isl_upoly_copy(up2));
946 if (isl_upoly_is_cst(up1))
947 return isl_upoly_mul_cst(up1, up2);
949 return isl_upoly_mul_rec(up1, up2);
956 __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
959 struct isl_upoly *res;
967 res = isl_upoly_copy(up);
969 res = isl_upoly_one(up->ctx);
971 while (power >>= 1) {
972 up = isl_upoly_mul(up, isl_upoly_copy(up));
974 res = isl_upoly_mul(res, isl_upoly_copy(up));
981 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim,
982 unsigned n_div, __isl_take struct isl_upoly *up)
984 struct isl_qpolynomial *qp = NULL;
990 if (!isl_space_is_set(dim))
991 isl_die(isl_space_get_ctx(dim), isl_error_invalid,
992 "domain of polynomial should be a set", goto error);
994 total = isl_space_dim(dim, isl_dim_all);
996 qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial);
1001 qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div);
1010 isl_space_free(dim);
1012 isl_qpolynomial_free(qp);
1016 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1025 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1027 struct isl_qpolynomial *dup;
1032 dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1033 isl_upoly_copy(qp->upoly));
1036 isl_mat_free(dup->div);
1037 dup->div = isl_mat_copy(qp->div);
1043 isl_qpolynomial_free(dup);
1047 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1055 return isl_qpolynomial_dup(qp);
1058 void *isl_qpolynomial_free(__isl_take isl_qpolynomial *qp)
1066 isl_space_free(qp->dim);
1067 isl_mat_free(qp->div);
1068 isl_upoly_free(qp->upoly);
1074 __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
1077 struct isl_upoly_rec *rec;
1078 struct isl_upoly_cst *cst;
1080 rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
1083 for (i = 0; i < 1 + power; ++i) {
1084 rec->p[i] = isl_upoly_zero(ctx);
1089 cst = isl_upoly_as_cst(rec->p[power]);
1090 isl_int_set_si(cst->n, 1);
1094 isl_upoly_free(&rec->up);
1098 /* r array maps original positions to new positions.
1100 static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
1104 struct isl_upoly_rec *rec;
1105 struct isl_upoly *base;
1106 struct isl_upoly *res;
1108 if (isl_upoly_is_cst(up))
1111 rec = isl_upoly_as_rec(up);
1115 isl_assert(up->ctx, rec->n >= 1, goto error);
1117 base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
1118 res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
1120 for (i = rec->n - 2; i >= 0; --i) {
1121 res = isl_upoly_mul(res, isl_upoly_copy(base));
1122 res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
1125 isl_upoly_free(base);
1134 static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2)
1139 isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1140 div1->n_col >= div2->n_col, return -1);
1142 if (div1->n_row == div2->n_row)
1143 return isl_mat_is_equal(div1, div2);
1145 n_row = div1->n_row;
1146 n_col = div1->n_col;
1147 div1->n_row = div2->n_row;
1148 div1->n_col = div2->n_col;
1150 equal = isl_mat_is_equal(div1, div2);
1152 div1->n_row = n_row;
1153 div1->n_col = n_col;
1158 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1162 li = isl_seq_last_non_zero(div->row[i], div->n_col);
1163 lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1168 return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1171 struct isl_div_sort_info {
1176 static int div_sort_cmp(const void *p1, const void *p2)
1178 const struct isl_div_sort_info *i1, *i2;
1179 i1 = (const struct isl_div_sort_info *) p1;
1180 i2 = (const struct isl_div_sort_info *) p2;
1182 return cmp_row(i1->div, i1->row, i2->row);
1185 /* Sort divs and remove duplicates.
1187 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1192 struct isl_div_sort_info *array = NULL;
1193 int *pos = NULL, *at = NULL;
1194 int *reordering = NULL;
1199 if (qp->div->n_row <= 1)
1202 div_pos = isl_space_dim(qp->dim, isl_dim_all);
1204 array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1206 pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1207 at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1208 len = qp->div->n_col - 2;
1209 reordering = isl_alloc_array(qp->div->ctx, int, len);
1210 if (!array || !pos || !at || !reordering)
1213 for (i = 0; i < qp->div->n_row; ++i) {
1214 array[i].div = qp->div;
1220 qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1223 for (i = 0; i < div_pos; ++i)
1226 for (i = 0; i < qp->div->n_row; ++i) {
1227 if (pos[array[i].row] == i)
1229 qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1230 pos[at[i]] = pos[array[i].row];
1231 at[pos[array[i].row]] = at[i];
1232 at[i] = array[i].row;
1233 pos[array[i].row] = i;
1237 for (i = 0; i < len - div_pos; ++i) {
1239 isl_seq_eq(qp->div->row[i - skip - 1],
1240 qp->div->row[i - skip], qp->div->n_col)) {
1241 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1242 isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1243 2 + div_pos + i - skip);
1244 qp->div = isl_mat_drop_cols(qp->div,
1245 2 + div_pos + i - skip, 1);
1248 reordering[div_pos + array[i].row] = div_pos + i - skip;
1251 qp->upoly = reorder(qp->upoly, reordering);
1253 if (!qp->upoly || !qp->div)
1267 isl_qpolynomial_free(qp);
1271 static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
1272 int *exp, int first)
1275 struct isl_upoly_rec *rec;
1277 if (isl_upoly_is_cst(up))
1280 if (up->var < first)
1283 if (exp[up->var - first] == up->var - first)
1286 up = isl_upoly_cow(up);
1290 up->var = exp[up->var - first] + first;
1292 rec = isl_upoly_as_rec(up);
1296 for (i = 0; i < rec->n; ++i) {
1297 rec->p[i] = expand(rec->p[i], exp, first);
1308 static __isl_give isl_qpolynomial *with_merged_divs(
1309 __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1310 __isl_take isl_qpolynomial *qp2),
1311 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1315 isl_mat *div = NULL;
1317 qp1 = isl_qpolynomial_cow(qp1);
1318 qp2 = isl_qpolynomial_cow(qp2);
1323 isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1324 qp1->div->n_col >= qp2->div->n_col, goto error);
1326 exp1 = isl_alloc_array(qp1->div->ctx, int, qp1->div->n_row);
1327 exp2 = isl_alloc_array(qp2->div->ctx, int, qp2->div->n_row);
1331 div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1335 isl_mat_free(qp1->div);
1336 qp1->div = isl_mat_copy(div);
1337 isl_mat_free(qp2->div);
1338 qp2->div = isl_mat_copy(div);
1340 qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
1341 qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
1343 if (!qp1->upoly || !qp2->upoly)
1350 return fn(qp1, qp2);
1355 isl_qpolynomial_free(qp1);
1356 isl_qpolynomial_free(qp2);
1360 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1361 __isl_take isl_qpolynomial *qp2)
1363 qp1 = isl_qpolynomial_cow(qp1);
1368 if (qp1->div->n_row < qp2->div->n_row)
1369 return isl_qpolynomial_add(qp2, qp1);
1371 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1372 if (!compatible_divs(qp1->div, qp2->div))
1373 return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1375 qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
1379 isl_qpolynomial_free(qp2);
1383 isl_qpolynomial_free(qp1);
1384 isl_qpolynomial_free(qp2);
1388 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1389 __isl_keep isl_set *dom,
1390 __isl_take isl_qpolynomial *qp1,
1391 __isl_take isl_qpolynomial *qp2)
1393 qp1 = isl_qpolynomial_add(qp1, qp2);
1394 qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1398 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1399 __isl_take isl_qpolynomial *qp2)
1401 return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1404 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1405 __isl_take isl_qpolynomial *qp, isl_int v)
1407 if (isl_int_is_zero(v))
1410 qp = isl_qpolynomial_cow(qp);
1414 qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
1420 isl_qpolynomial_free(qp);
1425 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1430 return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1433 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1434 __isl_take isl_qpolynomial *qp, isl_int v)
1436 if (isl_int_is_one(v))
1439 if (qp && isl_int_is_zero(v)) {
1440 isl_qpolynomial *zero;
1441 zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1442 isl_qpolynomial_free(qp);
1446 qp = isl_qpolynomial_cow(qp);
1450 qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
1456 isl_qpolynomial_free(qp);
1460 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1461 __isl_take isl_qpolynomial *qp, isl_int v)
1463 return isl_qpolynomial_mul_isl_int(qp, v);
1466 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1467 __isl_take isl_qpolynomial *qp2)
1469 qp1 = isl_qpolynomial_cow(qp1);
1474 if (qp1->div->n_row < qp2->div->n_row)
1475 return isl_qpolynomial_mul(qp2, qp1);
1477 isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1478 if (!compatible_divs(qp1->div, qp2->div))
1479 return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1481 qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
1485 isl_qpolynomial_free(qp2);
1489 isl_qpolynomial_free(qp1);
1490 isl_qpolynomial_free(qp2);
1494 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1497 qp = isl_qpolynomial_cow(qp);
1502 qp->upoly = isl_upoly_pow(qp->upoly, power);
1508 isl_qpolynomial_free(qp);
1512 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
1513 __isl_take isl_pw_qpolynomial *pwqp, unsigned power)
1520 pwqp = isl_pw_qpolynomial_cow(pwqp);
1524 for (i = 0; i < pwqp->n; ++i) {
1525 pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
1527 return isl_pw_qpolynomial_free(pwqp);
1533 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
1534 __isl_take isl_space *dim)
1538 return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1541 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
1542 __isl_take isl_space *dim)
1546 return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx));
1549 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
1550 __isl_take isl_space *dim)
1554 return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx));
1557 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
1558 __isl_take isl_space *dim)
1562 return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx));
1565 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
1566 __isl_take isl_space *dim)
1570 return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx));
1573 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
1574 __isl_take isl_space *dim,
1577 struct isl_qpolynomial *qp;
1578 struct isl_upoly_cst *cst;
1583 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1587 cst = isl_upoly_as_cst(qp->upoly);
1588 isl_int_set(cst->n, v);
1593 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1594 isl_int *n, isl_int *d)
1596 struct isl_upoly_cst *cst;
1601 if (!isl_upoly_is_cst(qp->upoly))
1604 cst = isl_upoly_as_cst(qp->upoly);
1609 isl_int_set(*n, cst->n);
1611 isl_int_set(*d, cst->d);
1616 int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
1619 struct isl_upoly_rec *rec;
1627 rec = isl_upoly_as_rec(up);
1634 isl_assert(up->ctx, rec->n > 1, return -1);
1636 is_cst = isl_upoly_is_cst(rec->p[1]);
1642 return isl_upoly_is_affine(rec->p[0]);
1645 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
1650 if (qp->div->n_row > 0)
1653 return isl_upoly_is_affine(qp->upoly);
1656 static void update_coeff(__isl_keep isl_vec *aff,
1657 __isl_keep struct isl_upoly_cst *cst, int pos)
1662 if (isl_int_is_zero(cst->n))
1667 isl_int_gcd(gcd, cst->d, aff->el[0]);
1668 isl_int_divexact(f, cst->d, gcd);
1669 isl_int_divexact(gcd, aff->el[0], gcd);
1670 isl_seq_scale(aff->el, aff->el, f, aff->size);
1671 isl_int_mul(aff->el[1 + pos], gcd, cst->n);
1676 int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
1677 __isl_keep isl_vec *aff)
1679 struct isl_upoly_cst *cst;
1680 struct isl_upoly_rec *rec;
1686 struct isl_upoly_cst *cst;
1688 cst = isl_upoly_as_cst(up);
1691 update_coeff(aff, cst, 0);
1695 rec = isl_upoly_as_rec(up);
1698 isl_assert(up->ctx, rec->n == 2, return -1);
1700 cst = isl_upoly_as_cst(rec->p[1]);
1703 update_coeff(aff, cst, 1 + up->var);
1705 return isl_upoly_update_affine(rec->p[0], aff);
1708 __isl_give isl_vec *isl_qpolynomial_extract_affine(
1709 __isl_keep isl_qpolynomial *qp)
1717 d = isl_space_dim(qp->dim, isl_dim_all);
1718 aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
1722 isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
1723 isl_int_set_si(aff->el[0], 1);
1725 if (isl_upoly_update_affine(qp->upoly, aff) < 0)
1734 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
1735 __isl_keep isl_qpolynomial *qp2)
1742 equal = isl_space_is_equal(qp1->dim, qp2->dim);
1743 if (equal < 0 || !equal)
1746 equal = isl_mat_is_equal(qp1->div, qp2->div);
1747 if (equal < 0 || !equal)
1750 return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
1753 static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
1756 struct isl_upoly_rec *rec;
1758 if (isl_upoly_is_cst(up)) {
1759 struct isl_upoly_cst *cst;
1760 cst = isl_upoly_as_cst(up);
1763 isl_int_lcm(*d, *d, cst->d);
1767 rec = isl_upoly_as_rec(up);
1771 for (i = 0; i < rec->n; ++i)
1772 upoly_update_den(rec->p[i], d);
1775 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
1777 isl_int_set_si(*d, 1);
1780 upoly_update_den(qp->upoly, d);
1783 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
1784 __isl_take isl_space *dim, int pos, int power)
1786 struct isl_ctx *ctx;
1793 return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power));
1796 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim,
1797 enum isl_dim_type type, unsigned pos)
1802 isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error);
1803 isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error);
1805 if (type == isl_dim_set)
1806 pos += isl_space_dim(dim, isl_dim_param);
1808 return isl_qpolynomial_var_pow_on_domain(dim, pos, 1);
1810 isl_space_free(dim);
1814 __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
1815 unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
1818 struct isl_upoly_rec *rec;
1819 struct isl_upoly *base, *res;
1824 if (isl_upoly_is_cst(up))
1827 if (up->var < first)
1830 rec = isl_upoly_as_rec(up);
1834 isl_assert(up->ctx, rec->n >= 1, goto error);
1836 if (up->var >= first + n)
1837 base = isl_upoly_var_pow(up->ctx, up->var, 1);
1839 base = isl_upoly_copy(subs[up->var - first]);
1841 res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
1842 for (i = rec->n - 2; i >= 0; --i) {
1843 struct isl_upoly *t;
1844 t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
1845 res = isl_upoly_mul(res, isl_upoly_copy(base));
1846 res = isl_upoly_sum(res, t);
1849 isl_upoly_free(base);
1858 __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
1859 isl_int denom, unsigned len)
1862 struct isl_upoly *up;
1864 isl_assert(ctx, len >= 1, return NULL);
1866 up = isl_upoly_rat_cst(ctx, f[0], denom);
1867 for (i = 0; i < len - 1; ++i) {
1868 struct isl_upoly *t;
1869 struct isl_upoly *c;
1871 if (isl_int_is_zero(f[1 + i]))
1874 c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
1875 t = isl_upoly_var_pow(ctx, i, 1);
1876 t = isl_upoly_mul(c, t);
1877 up = isl_upoly_sum(up, t);
1883 /* Remove common factor of non-constant terms and denominator.
1885 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
1887 isl_ctx *ctx = qp->div->ctx;
1888 unsigned total = qp->div->n_col - 2;
1890 isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
1891 isl_int_gcd(ctx->normalize_gcd,
1892 ctx->normalize_gcd, qp->div->row[div][0]);
1893 if (isl_int_is_one(ctx->normalize_gcd))
1896 isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
1897 ctx->normalize_gcd, total);
1898 isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
1899 ctx->normalize_gcd);
1900 isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
1901 ctx->normalize_gcd);
1904 /* Replace the integer division identified by "div" by the polynomial "s".
1905 * The integer division is assumed not to appear in the definition
1906 * of any other integer divisions.
1908 static __isl_give isl_qpolynomial *substitute_div(
1909 __isl_take isl_qpolynomial *qp,
1910 int div, __isl_take struct isl_upoly *s)
1919 qp = isl_qpolynomial_cow(qp);
1923 total = isl_space_dim(qp->dim, isl_dim_all);
1924 qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
1928 reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
1931 for (i = 0; i < total + div; ++i)
1933 for (i = total + div + 1; i < total + qp->div->n_row; ++i)
1934 reordering[i] = i - 1;
1935 qp->div = isl_mat_drop_rows(qp->div, div, 1);
1936 qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
1937 qp->upoly = reorder(qp->upoly, reordering);
1940 if (!qp->upoly || !qp->div)
1946 isl_qpolynomial_free(qp);
1951 /* Replace all integer divisions [e/d] that turn out to not actually be integer
1952 * divisions because d is equal to 1 by their definition, i.e., e.
1954 static __isl_give isl_qpolynomial *substitute_non_divs(
1955 __isl_take isl_qpolynomial *qp)
1959 struct isl_upoly *s;
1964 total = isl_space_dim(qp->dim, isl_dim_all);
1965 for (i = 0; qp && i < qp->div->n_row; ++i) {
1966 if (!isl_int_is_one(qp->div->row[i][0]))
1968 for (j = i + 1; j < qp->div->n_row; ++j) {
1969 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
1971 isl_seq_combine(qp->div->row[j] + 1,
1972 qp->div->ctx->one, qp->div->row[j] + 1,
1973 qp->div->row[j][2 + total + i],
1974 qp->div->row[i] + 1, 1 + total + i);
1975 isl_int_set_si(qp->div->row[j][2 + total + i], 0);
1976 normalize_div(qp, j);
1978 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
1979 qp->div->row[i][0], qp->div->n_col - 1);
1980 qp = substitute_div(qp, i, s);
1987 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
1988 * with d the denominator. When replacing the coefficient e of x by
1989 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
1990 * inside the division, so we need to add floor(e/d) * x outside.
1991 * That is, we replace q by q' + floor(e/d) * x and we therefore need
1992 * to adjust the coefficient of x in each later div that depends on the
1993 * current div "div" and also in the affine expression "aff"
1994 * (if it too depends on "div").
1996 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
1997 __isl_keep isl_vec *aff)
2001 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2004 for (i = 0; i < 1 + total + div; ++i) {
2005 if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2006 isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2008 isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2009 isl_int_fdiv_r(qp->div->row[div][1 + i],
2010 qp->div->row[div][1 + i], qp->div->row[div][0]);
2011 if (!isl_int_is_zero(aff->el[1 + total + div]))
2012 isl_int_addmul(aff->el[i], v, aff->el[1 + total + div]);
2013 for (j = div + 1; j < qp->div->n_row; ++j) {
2014 if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2016 isl_int_addmul(qp->div->row[j][1 + i],
2017 v, qp->div->row[j][2 + total + div]);
2023 /* Check if the last non-zero coefficient is bigger that half of the
2024 * denominator. If so, we will invert the div to further reduce the number
2025 * of distinct divs that may appear.
2026 * If the last non-zero coefficient is exactly half the denominator,
2027 * then we continue looking for earlier coefficients that are bigger
2028 * than half the denominator.
2030 static int needs_invert(__isl_keep isl_mat *div, int row)
2035 for (i = div->n_col - 1; i >= 1; --i) {
2036 if (isl_int_is_zero(div->row[row][i]))
2038 isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2039 cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2040 isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2050 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2051 * We only invert the coefficients of e (and the coefficient of q in
2052 * later divs and in "aff"). After calling this function, the
2053 * coefficients of e should be reduced again.
2055 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2056 __isl_keep isl_vec *aff)
2058 unsigned total = qp->div->n_col - qp->div->n_row - 2;
2060 isl_seq_neg(qp->div->row[div] + 1,
2061 qp->div->row[div] + 1, qp->div->n_col - 1);
2062 isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2063 isl_int_add(qp->div->row[div][1],
2064 qp->div->row[div][1], qp->div->row[div][0]);
2065 if (!isl_int_is_zero(aff->el[1 + total + div]))
2066 isl_int_neg(aff->el[1 + total + div], aff->el[1 + total + div]);
2067 isl_mat_col_mul(qp->div, 2 + total + div,
2068 qp->div->ctx->negone, 2 + total + div);
2071 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2072 * in the interval [0, d-1], with d the denominator and such that the
2073 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2075 * After the reduction, some divs may have become redundant or identical,
2076 * so we call substitute_non_divs and sort_divs. If these functions
2077 * eliminate divs or merge two or more divs into one, the coefficients
2078 * of the enclosing divs may have to be reduced again, so we call
2079 * ourselves recursively if the number of divs decreases.
2081 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2084 isl_vec *aff = NULL;
2085 struct isl_upoly *s;
2091 aff = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
2092 aff = isl_vec_clr(aff);
2096 isl_int_set_si(aff->el[1 + qp->upoly->var], 1);
2098 for (i = 0; i < qp->div->n_row; ++i) {
2099 normalize_div(qp, i);
2100 reduce_div(qp, i, aff);
2101 if (needs_invert(qp->div, i)) {
2102 invert_div(qp, i, aff);
2103 reduce_div(qp, i, aff);
2107 s = isl_upoly_from_affine(qp->div->ctx, aff->el,
2108 qp->div->ctx->one, aff->size);
2109 qp->upoly = isl_upoly_subs(qp->upoly, qp->upoly->var, 1, &s);
2116 n_div = qp->div->n_row;
2117 qp = substitute_non_divs(qp);
2119 if (qp && qp->div->n_row < n_div)
2120 return reduce_divs(qp);
2124 isl_qpolynomial_free(qp);
2129 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2130 __isl_take isl_space *dim, const isl_int n, const isl_int d)
2132 struct isl_qpolynomial *qp;
2133 struct isl_upoly_cst *cst;
2138 qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
2142 cst = isl_upoly_as_cst(qp->upoly);
2143 isl_int_set(cst->n, n);
2144 isl_int_set(cst->d, d);
2149 static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
2151 struct isl_upoly_rec *rec;
2157 if (isl_upoly_is_cst(up))
2161 active[up->var] = 1;
2163 rec = isl_upoly_as_rec(up);
2164 for (i = 0; i < rec->n; ++i)
2165 if (up_set_active(rec->p[i], active, d) < 0)
2171 static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
2174 int d = isl_space_dim(qp->dim, isl_dim_all);
2179 for (i = 0; i < d; ++i)
2180 for (j = 0; j < qp->div->n_row; ++j) {
2181 if (isl_int_is_zero(qp->div->row[j][2 + i]))
2187 return up_set_active(qp->upoly, active, d);
2190 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2191 enum isl_dim_type type, unsigned first, unsigned n)
2202 isl_assert(qp->dim->ctx,
2203 first + n <= isl_qpolynomial_dim(qp, type), return -1);
2204 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2205 type == isl_dim_in, return -1);
2207 active = isl_calloc_array(qp->dim->ctx, int,
2208 isl_space_dim(qp->dim, isl_dim_all));
2209 if (set_active(qp, active) < 0)
2212 if (type == isl_dim_in)
2213 first += isl_space_dim(qp->dim, isl_dim_param);
2214 for (i = 0; i < n; ++i)
2215 if (active[first + i]) {
2228 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2229 * of the divs that do appear in the quasi-polynomial.
2231 static __isl_give isl_qpolynomial *remove_redundant_divs(
2232 __isl_take isl_qpolynomial *qp)
2239 int *reordering = NULL;
2246 if (qp->div->n_row == 0)
2249 d = isl_space_dim(qp->dim, isl_dim_all);
2250 len = qp->div->n_col - 2;
2251 ctx = isl_qpolynomial_get_ctx(qp);
2252 active = isl_calloc_array(ctx, int, len);
2256 if (up_set_active(qp->upoly, active, len) < 0)
2259 for (i = qp->div->n_row - 1; i >= 0; --i) {
2260 if (!active[d + i]) {
2264 for (j = 0; j < i; ++j) {
2265 if (isl_int_is_zero(qp->div->row[i][2 + d + j]))
2277 reordering = isl_alloc_array(qp->div->ctx, int, len);
2281 for (i = 0; i < d; ++i)
2285 n_div = qp->div->n_row;
2286 for (i = 0; i < n_div; ++i) {
2287 if (!active[d + i]) {
2288 qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2289 qp->div = isl_mat_drop_cols(qp->div,
2290 2 + d + i - skip, 1);
2293 reordering[d + i] = d + i - skip;
2296 qp->upoly = reorder(qp->upoly, reordering);
2298 if (!qp->upoly || !qp->div)
2308 isl_qpolynomial_free(qp);
2312 __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
2313 unsigned first, unsigned n)
2316 struct isl_upoly_rec *rec;
2320 if (n == 0 || up->var < 0 || up->var < first)
2322 if (up->var < first + n) {
2323 up = replace_by_constant_term(up);
2324 return isl_upoly_drop(up, first, n);
2326 up = isl_upoly_cow(up);
2330 rec = isl_upoly_as_rec(up);
2334 for (i = 0; i < rec->n; ++i) {
2335 rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
2346 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2347 __isl_take isl_qpolynomial *qp,
2348 enum isl_dim_type type, unsigned pos, const char *s)
2350 qp = isl_qpolynomial_cow(qp);
2353 qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
2358 isl_qpolynomial_free(qp);
2362 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2363 __isl_take isl_qpolynomial *qp,
2364 enum isl_dim_type type, unsigned first, unsigned n)
2368 if (type == isl_dim_out)
2369 isl_die(qp->dim->ctx, isl_error_invalid,
2370 "cannot drop output/set dimension",
2372 if (type == isl_dim_in)
2374 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2377 qp = isl_qpolynomial_cow(qp);
2381 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
2383 isl_assert(qp->dim->ctx, type == isl_dim_param ||
2384 type == isl_dim_set, goto error);
2386 qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
2390 if (type == isl_dim_set)
2391 first += isl_space_dim(qp->dim, isl_dim_param);
2393 qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2397 qp->upoly = isl_upoly_drop(qp->upoly, first, n);
2403 isl_qpolynomial_free(qp);
2407 /* Project the domain of the quasi-polynomial onto its parameter space.
2408 * The quasi-polynomial may not involve any of the domain dimensions.
2410 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
2411 __isl_take isl_qpolynomial *qp)
2417 n = isl_qpolynomial_dim(qp, isl_dim_in);
2418 involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
2420 return isl_qpolynomial_free(qp);
2422 isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2423 "polynomial involves some of the domain dimensions",
2424 return isl_qpolynomial_free(qp));
2425 qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
2426 space = isl_qpolynomial_get_domain_space(qp);
2427 space = isl_space_params(space);
2428 qp = isl_qpolynomial_reset_domain_space(qp, space);
2432 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2433 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2439 struct isl_upoly *up;
2443 if (eq->n_eq == 0) {
2444 isl_basic_set_free(eq);
2448 qp = isl_qpolynomial_cow(qp);
2451 qp->div = isl_mat_cow(qp->div);
2455 total = 1 + isl_space_dim(eq->dim, isl_dim_all);
2457 isl_int_init(denom);
2458 for (i = 0; i < eq->n_eq; ++i) {
2459 j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
2460 if (j < 0 || j == 0 || j >= total)
2463 for (k = 0; k < qp->div->n_row; ++k) {
2464 if (isl_int_is_zero(qp->div->row[k][1 + j]))
2466 isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
2467 &qp->div->row[k][0]);
2468 normalize_div(qp, k);
2471 if (isl_int_is_pos(eq->eq[i][j]))
2472 isl_seq_neg(eq->eq[i], eq->eq[i], total);
2473 isl_int_abs(denom, eq->eq[i][j]);
2474 isl_int_set_si(eq->eq[i][j], 0);
2476 up = isl_upoly_from_affine(qp->dim->ctx,
2477 eq->eq[i], denom, total);
2478 qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
2481 isl_int_clear(denom);
2486 isl_basic_set_free(eq);
2488 qp = substitute_non_divs(qp);
2493 isl_basic_set_free(eq);
2494 isl_qpolynomial_free(qp);
2498 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2500 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
2501 __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2505 if (qp->div->n_row > 0)
2506 eq = isl_basic_set_add(eq, isl_dim_set, qp->div->n_row);
2507 return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
2509 isl_basic_set_free(eq);
2510 isl_qpolynomial_free(qp);
2514 static __isl_give isl_basic_set *add_div_constraints(
2515 __isl_take isl_basic_set *bset, __isl_take isl_mat *div)
2523 bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
2526 total = isl_basic_set_total_dim(bset);
2527 for (i = 0; i < div->n_row; ++i)
2528 if (isl_basic_set_add_div_constraints_var(bset,
2529 total - div->n_row + i, div->row[i]) < 0)
2536 isl_basic_set_free(bset);
2540 /* Look for equalities among the variables shared by context and qp
2541 * and the integer divisions of qp, if any.
2542 * The equalities are then used to eliminate variables and/or integer
2543 * divisions from qp.
2545 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
2546 __isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2552 if (qp->div->n_row > 0) {
2553 isl_basic_set *bset;
2554 context = isl_set_add_dims(context, isl_dim_set,
2556 bset = isl_basic_set_universe(isl_set_get_space(context));
2557 bset = add_div_constraints(bset, isl_mat_copy(qp->div));
2558 context = isl_set_intersect(context,
2559 isl_set_from_basic_set(bset));
2562 aff = isl_set_affine_hull(context);
2563 return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
2565 isl_qpolynomial_free(qp);
2566 isl_set_free(context);
2570 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
2571 __isl_take isl_qpolynomial *qp)
2577 if (isl_qpolynomial_is_zero(qp)) {
2578 isl_space *dim = isl_qpolynomial_get_space(qp);
2579 isl_qpolynomial_free(qp);
2580 return isl_pw_qpolynomial_zero(dim);
2583 dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp));
2584 return isl_pw_qpolynomial_alloc(dom, qp);
2588 #define PW isl_pw_qpolynomial
2590 #define EL isl_qpolynomial
2592 #define EL_IS_ZERO is_zero
2596 #define IS_ZERO is_zero
2600 #include <isl_pw_templ.c>
2603 #define UNION isl_union_pw_qpolynomial
2605 #define PART isl_pw_qpolynomial
2607 #define PARTS pw_qpolynomial
2608 #define ALIGN_DOMAIN
2610 #include <isl_union_templ.c>
2612 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
2620 if (!isl_set_plain_is_universe(pwqp->p[0].set))
2623 return isl_qpolynomial_is_one(pwqp->p[0].qp);
2626 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2627 __isl_take isl_pw_qpolynomial *pwqp1,
2628 __isl_take isl_pw_qpolynomial *pwqp2)
2631 struct isl_pw_qpolynomial *res;
2633 if (!pwqp1 || !pwqp2)
2636 isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
2639 if (isl_pw_qpolynomial_is_zero(pwqp1)) {
2640 isl_pw_qpolynomial_free(pwqp2);
2644 if (isl_pw_qpolynomial_is_zero(pwqp2)) {
2645 isl_pw_qpolynomial_free(pwqp1);
2649 if (isl_pw_qpolynomial_is_one(pwqp1)) {
2650 isl_pw_qpolynomial_free(pwqp1);
2654 if (isl_pw_qpolynomial_is_one(pwqp2)) {
2655 isl_pw_qpolynomial_free(pwqp2);
2659 n = pwqp1->n * pwqp2->n;
2660 res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
2662 for (i = 0; i < pwqp1->n; ++i) {
2663 for (j = 0; j < pwqp2->n; ++j) {
2664 struct isl_set *common;
2665 struct isl_qpolynomial *prod;
2666 common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
2667 isl_set_copy(pwqp2->p[j].set));
2668 if (isl_set_plain_is_empty(common)) {
2669 isl_set_free(common);
2673 prod = isl_qpolynomial_mul(
2674 isl_qpolynomial_copy(pwqp1->p[i].qp),
2675 isl_qpolynomial_copy(pwqp2->p[j].qp));
2677 res = isl_pw_qpolynomial_add_piece(res, common, prod);
2681 isl_pw_qpolynomial_free(pwqp1);
2682 isl_pw_qpolynomial_free(pwqp2);
2686 isl_pw_qpolynomial_free(pwqp1);
2687 isl_pw_qpolynomial_free(pwqp2);
2691 __isl_give struct isl_upoly *isl_upoly_eval(
2692 __isl_take struct isl_upoly *up, __isl_take isl_vec *vec)
2695 struct isl_upoly_rec *rec;
2696 struct isl_upoly *res;
2697 struct isl_upoly *base;
2699 if (isl_upoly_is_cst(up)) {
2704 rec = isl_upoly_as_rec(up);
2708 isl_assert(up->ctx, rec->n >= 1, goto error);
2710 base = isl_upoly_rat_cst(up->ctx, vec->el[1 + up->var], vec->el[0]);
2712 res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),
2715 for (i = rec->n - 2; i >= 0; --i) {
2716 res = isl_upoly_mul(res, isl_upoly_copy(base));
2717 res = isl_upoly_sum(res,
2718 isl_upoly_eval(isl_upoly_copy(rec->p[i]),
2719 isl_vec_copy(vec)));
2722 isl_upoly_free(base);
2732 __isl_give isl_qpolynomial *isl_qpolynomial_eval(
2733 __isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt)
2736 struct isl_upoly *up;
2741 isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
2743 if (qp->div->n_row == 0)
2744 ext = isl_vec_copy(pnt->vec);
2747 unsigned dim = isl_space_dim(qp->dim, isl_dim_all);
2748 ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row);
2752 isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size);
2753 for (i = 0; i < qp->div->n_row; ++i) {
2754 isl_seq_inner_product(qp->div->row[i] + 1, ext->el,
2755 1 + dim + i, &ext->el[1+dim+i]);
2756 isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i],
2757 qp->div->row[i][0]);
2761 up = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext);
2765 dim = isl_space_copy(qp->dim);
2766 isl_qpolynomial_free(qp);
2767 isl_point_free(pnt);
2769 return isl_qpolynomial_alloc(dim, 0, up);
2771 isl_qpolynomial_free(qp);
2772 isl_point_free(pnt);
2776 int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1,
2777 __isl_keep struct isl_upoly_cst *cst2)
2782 isl_int_mul(t, cst1->n, cst2->d);
2783 isl_int_submul(t, cst2->n, cst1->d);
2784 cmp = isl_int_sgn(t);
2789 int isl_qpolynomial_le_cst(__isl_keep isl_qpolynomial *qp1,
2790 __isl_keep isl_qpolynomial *qp2)
2792 struct isl_upoly_cst *cst1, *cst2;
2796 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), return -1);
2797 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), return -1);
2798 if (isl_qpolynomial_is_nan(qp1))
2800 if (isl_qpolynomial_is_nan(qp2))
2802 cst1 = isl_upoly_as_cst(qp1->upoly);
2803 cst2 = isl_upoly_as_cst(qp2->upoly);
2805 return isl_upoly_cmp(cst1, cst2) <= 0;
2808 __isl_give isl_qpolynomial *isl_qpolynomial_min_cst(
2809 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2811 struct isl_upoly_cst *cst1, *cst2;
2816 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2817 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2818 cst1 = isl_upoly_as_cst(qp1->upoly);
2819 cst2 = isl_upoly_as_cst(qp2->upoly);
2820 cmp = isl_upoly_cmp(cst1, cst2);
2823 isl_qpolynomial_free(qp2);
2825 isl_qpolynomial_free(qp1);
2830 isl_qpolynomial_free(qp1);
2831 isl_qpolynomial_free(qp2);
2835 __isl_give isl_qpolynomial *isl_qpolynomial_max_cst(
2836 __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
2838 struct isl_upoly_cst *cst1, *cst2;
2843 isl_assert(qp1->dim->ctx, isl_upoly_is_cst(qp1->upoly), goto error);
2844 isl_assert(qp2->dim->ctx, isl_upoly_is_cst(qp2->upoly), goto error);
2845 cst1 = isl_upoly_as_cst(qp1->upoly);
2846 cst2 = isl_upoly_as_cst(qp2->upoly);
2847 cmp = isl_upoly_cmp(cst1, cst2);
2850 isl_qpolynomial_free(qp2);
2852 isl_qpolynomial_free(qp1);
2857 isl_qpolynomial_free(qp1);
2858 isl_qpolynomial_free(qp2);
2862 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
2863 __isl_take isl_qpolynomial *qp, enum isl_dim_type type,
2864 unsigned first, unsigned n)
2872 if (type == isl_dim_out)
2873 isl_die(qp->div->ctx, isl_error_invalid,
2874 "cannot insert output/set dimensions",
2876 if (type == isl_dim_in)
2878 if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2881 qp = isl_qpolynomial_cow(qp);
2885 isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type),
2888 g_pos = pos(qp->dim, type) + first;
2890 qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
2894 total = qp->div->n_col - 2;
2895 if (total > g_pos) {
2897 exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
2900 for (i = 0; i < total - g_pos; ++i)
2902 qp->upoly = expand(qp->upoly, exp, g_pos);
2908 qp->dim = isl_space_insert_dims(qp->dim, type, first, n);
2914 isl_qpolynomial_free(qp);
2918 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
2919 __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
2923 pos = isl_qpolynomial_dim(qp, type);
2925 return isl_qpolynomial_insert_dims(qp, type, pos, n);
2928 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims(
2929 __isl_take isl_pw_qpolynomial *pwqp,
2930 enum isl_dim_type type, unsigned n)
2934 pos = isl_pw_qpolynomial_dim(pwqp, type);
2936 return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n);
2939 static int *reordering_move(isl_ctx *ctx,
2940 unsigned len, unsigned dst, unsigned src, unsigned n)
2945 reordering = isl_alloc_array(ctx, int, len);
2950 for (i = 0; i < dst; ++i)
2952 for (i = 0; i < n; ++i)
2953 reordering[src + i] = dst + i;
2954 for (i = 0; i < src - dst; ++i)
2955 reordering[dst + i] = dst + n + i;
2956 for (i = 0; i < len - src - n; ++i)
2957 reordering[src + n + i] = src + n + i;
2959 for (i = 0; i < src; ++i)
2961 for (i = 0; i < n; ++i)
2962 reordering[src + i] = dst + i;
2963 for (i = 0; i < dst - src; ++i)
2964 reordering[src + n + i] = src + i;
2965 for (i = 0; i < len - dst - n; ++i)
2966 reordering[dst + n + i] = dst + n + i;
2972 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
2973 __isl_take isl_qpolynomial *qp,
2974 enum isl_dim_type dst_type, unsigned dst_pos,
2975 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
2981 qp = isl_qpolynomial_cow(qp);
2985 if (dst_type == isl_dim_out || src_type == isl_dim_out)
2986 isl_die(qp->dim->ctx, isl_error_invalid,
2987 "cannot move output/set dimension",
2989 if (dst_type == isl_dim_in)
2990 dst_type = isl_dim_set;
2991 if (src_type == isl_dim_in)
2992 src_type = isl_dim_set;
2994 isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type),
2997 g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
2998 g_src_pos = pos(qp->dim, src_type) + src_pos;
2999 if (dst_type > src_type)
3002 qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
3009 reordering = reordering_move(qp->dim->ctx,
3010 qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
3014 qp->upoly = reorder(qp->upoly, reordering);
3019 qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
3025 isl_qpolynomial_free(qp);
3029 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim,
3030 isl_int *f, isl_int denom)
3032 struct isl_upoly *up;
3034 dim = isl_space_domain(dim);
3038 up = isl_upoly_from_affine(dim->ctx, f, denom,
3039 1 + isl_space_dim(dim, isl_dim_all));
3041 return isl_qpolynomial_alloc(dim, 0, up);
3044 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3047 struct isl_upoly *up;
3048 isl_qpolynomial *qp;
3053 ctx = isl_aff_get_ctx(aff);
3054 up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3057 qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3058 aff->ls->div->n_row, up);
3062 isl_mat_free(qp->div);
3063 qp->div = isl_mat_copy(aff->ls->div);
3064 qp->div = isl_mat_cow(qp->div);
3069 qp = reduce_divs(qp);
3070 qp = remove_redundant_divs(qp);
3077 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3078 __isl_take isl_pw_aff *pwaff)
3081 isl_pw_qpolynomial *pwqp;
3086 pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3089 for (i = 0; i < pwaff->n; ++i) {
3091 isl_qpolynomial *qp;
3093 dom = isl_set_copy(pwaff->p[i].set);
3094 qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3095 pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp);
3098 isl_pw_aff_free(pwaff);
3102 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3103 __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3107 aff = isl_constraint_get_bound(c, type, pos);
3108 isl_constraint_free(c);
3109 return isl_qpolynomial_from_aff(aff);
3112 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3113 * in "qp" by subs[i].
3115 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3116 __isl_take isl_qpolynomial *qp,
3117 enum isl_dim_type type, unsigned first, unsigned n,
3118 __isl_keep isl_qpolynomial **subs)
3121 struct isl_upoly **ups;
3126 qp = isl_qpolynomial_cow(qp);
3130 if (type == isl_dim_out)
3131 isl_die(qp->dim->ctx, isl_error_invalid,
3132 "cannot substitute output/set dimension",
3134 if (type == isl_dim_in)
3137 for (i = 0; i < n; ++i)
3141 isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
3144 for (i = 0; i < n; ++i)
3145 isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim),
3148 isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3149 for (i = 0; i < n; ++i)
3150 isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3152 first += pos(qp->dim, type);
3154 ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n);
3157 for (i = 0; i < n; ++i)
3158 ups[i] = subs[i]->upoly;
3160 qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups);
3169 isl_qpolynomial_free(qp);
3173 /* Extend "bset" with extra set dimensions for each integer division
3174 * in "qp" and then call "fn" with the extended bset and the polynomial
3175 * that results from replacing each of the integer divisions by the
3176 * corresponding extra set dimension.
3178 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3179 __isl_keep isl_basic_set *bset,
3180 int (*fn)(__isl_take isl_basic_set *bset,
3181 __isl_take isl_qpolynomial *poly, void *user), void *user)
3185 isl_qpolynomial *poly;
3189 if (qp->div->n_row == 0)
3190 return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3193 div = isl_mat_copy(qp->div);
3194 dim = isl_space_copy(qp->dim);
3195 dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row);
3196 poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly));
3197 bset = isl_basic_set_copy(bset);
3198 bset = isl_basic_set_add(bset, isl_dim_set, qp->div->n_row);
3199 bset = add_div_constraints(bset, div);
3201 return fn(bset, poly, user);
3206 /* Return total degree in variables first (inclusive) up to last (exclusive).
3208 int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last)
3212 struct isl_upoly_rec *rec;
3216 if (isl_upoly_is_zero(up))
3218 if (isl_upoly_is_cst(up) || up->var < first)
3221 rec = isl_upoly_as_rec(up);
3225 for (i = 0; i < rec->n; ++i) {
3228 if (isl_upoly_is_zero(rec->p[i]))
3230 d = isl_upoly_degree(rec->p[i], first, last);
3240 /* Return total degree in set variables.
3242 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3250 ovar = isl_space_offset(poly->dim, isl_dim_set);
3251 nvar = isl_space_dim(poly->dim, isl_dim_set);
3252 return isl_upoly_degree(poly->upoly, ovar, ovar + nvar);
3255 __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up,
3256 unsigned pos, int deg)
3259 struct isl_upoly_rec *rec;
3264 if (isl_upoly_is_cst(up) || up->var < pos) {
3266 return isl_upoly_copy(up);
3268 return isl_upoly_zero(up->ctx);
3271 rec = isl_upoly_as_rec(up);
3275 if (up->var == pos) {
3277 return isl_upoly_copy(rec->p[deg]);
3279 return isl_upoly_zero(up->ctx);
3282 up = isl_upoly_copy(up);
3283 up = isl_upoly_cow(up);
3284 rec = isl_upoly_as_rec(up);
3288 for (i = 0; i < rec->n; ++i) {
3289 struct isl_upoly *t;
3290 t = isl_upoly_coeff(rec->p[i], pos, deg);
3293 isl_upoly_free(rec->p[i]);
3303 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3305 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3306 __isl_keep isl_qpolynomial *qp,
3307 enum isl_dim_type type, unsigned t_pos, int deg)
3310 struct isl_upoly *up;
3316 if (type == isl_dim_out)
3317 isl_die(qp->div->ctx, isl_error_invalid,
3318 "output/set dimension does not have a coefficient",
3320 if (type == isl_dim_in)
3323 isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type),
3326 g_pos = pos(qp->dim, type) + t_pos;
3327 up = isl_upoly_coeff(qp->upoly, g_pos, deg);
3329 c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up);
3332 isl_mat_free(c->div);
3333 c->div = isl_mat_copy(qp->div);
3338 isl_qpolynomial_free(c);
3342 /* Homogenize the polynomial in the variables first (inclusive) up to
3343 * last (exclusive) by inserting powers of variable first.
3344 * Variable first is assumed not to appear in the input.
3346 __isl_give struct isl_upoly *isl_upoly_homogenize(
3347 __isl_take struct isl_upoly *up, int deg, int target,
3348 int first, int last)
3351 struct isl_upoly_rec *rec;
3355 if (isl_upoly_is_zero(up))
3359 if (isl_upoly_is_cst(up) || up->var < first) {
3360 struct isl_upoly *hom;
3362 hom = isl_upoly_var_pow(up->ctx, first, target - deg);
3365 rec = isl_upoly_as_rec(hom);
3366 rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up);
3371 up = isl_upoly_cow(up);
3372 rec = isl_upoly_as_rec(up);
3376 for (i = 0; i < rec->n; ++i) {
3377 if (isl_upoly_is_zero(rec->p[i]))
3379 rec->p[i] = isl_upoly_homogenize(rec->p[i],
3380 up->var < last ? deg + i : i, target,
3392 /* Homogenize the polynomial in the set variables by introducing
3393 * powers of an extra set variable at position 0.
3395 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3396 __isl_take isl_qpolynomial *poly)
3400 int deg = isl_qpolynomial_degree(poly);
3405 poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
3406 poly = isl_qpolynomial_cow(poly);
3410 ovar = isl_space_offset(poly->dim, isl_dim_set);
3411 nvar = isl_space_dim(poly->dim, isl_dim_set);
3412 poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg,
3419 isl_qpolynomial_free(poly);
3423 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *dim,
3424 __isl_take isl_mat *div)
3432 n = isl_space_dim(dim, isl_dim_all) + div->n_row;
3434 term = isl_calloc(dim->ctx, struct isl_term,
3435 sizeof(struct isl_term) + (n - 1) * sizeof(int));
3442 isl_int_init(term->n);
3443 isl_int_init(term->d);
3447 isl_space_free(dim);
3452 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3461 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3470 total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3472 dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
3476 isl_int_set(dup->n, term->n);
3477 isl_int_set(dup->d, term->d);
3479 for (i = 0; i < total; ++i)
3480 dup->pow[i] = term->pow[i];
3485 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3493 return isl_term_dup(term);
3496 void isl_term_free(__isl_take isl_term *term)
3501 if (--term->ref > 0)
3504 isl_space_free(term->dim);
3505 isl_mat_free(term->div);
3506 isl_int_clear(term->n);
3507 isl_int_clear(term->d);
3511 unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3519 case isl_dim_out: return isl_space_dim(term->dim, type);
3520 case isl_dim_div: return term->div->n_row;
3521 case isl_dim_all: return isl_space_dim(term->dim, isl_dim_all) +
3527 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
3529 return term ? term->dim->ctx : NULL;
3532 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
3536 isl_int_set(*n, term->n);
3539 void isl_term_get_den(__isl_keep isl_term *term, isl_int *d)
3543 isl_int_set(*d, term->d);
3546 int isl_term_get_exp(__isl_keep isl_term *term,
3547 enum isl_dim_type type, unsigned pos)
3552 isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1);
3554 if (type >= isl_dim_set)
3555 pos += isl_space_dim(term->dim, isl_dim_param);
3556 if (type >= isl_dim_div)
3557 pos += isl_space_dim(term->dim, isl_dim_set);
3559 return term->pow[pos];
3562 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
3564 isl_local_space *ls;
3571 isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div),
3574 total = term->div->n_col - term->div->n_row - 2;
3575 /* No nested divs for now */
3576 isl_assert(term->dim->ctx,
3577 isl_seq_first_non_zero(term->div->row[pos] + 2 + total,
3578 term->div->n_row) == -1,
3581 ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
3582 isl_mat_copy(term->div));
3583 aff = isl_aff_alloc(ls);
3587 isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
3592 __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up,
3593 int (*fn)(__isl_take isl_term *term, void *user),
3594 __isl_take isl_term *term, void *user)
3597 struct isl_upoly_rec *rec;
3602 if (isl_upoly_is_zero(up))
3605 isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error);
3606 isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error);
3607 isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error);
3609 if (isl_upoly_is_cst(up)) {
3610 struct isl_upoly_cst *cst;
3611 cst = isl_upoly_as_cst(up);
3614 term = isl_term_cow(term);
3617 isl_int_set(term->n, cst->n);
3618 isl_int_set(term->d, cst->d);
3619 if (fn(isl_term_copy(term), user) < 0)
3624 rec = isl_upoly_as_rec(up);
3628 for (i = 0; i < rec->n; ++i) {
3629 term = isl_term_cow(term);
3632 term->pow[up->var] = i;
3633 term = isl_upoly_foreach_term(rec->p[i], fn, term, user);
3637 term->pow[up->var] = 0;
3641 isl_term_free(term);
3645 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
3646 int (*fn)(__isl_take isl_term *term, void *user), void *user)
3653 term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div));
3657 term = isl_upoly_foreach_term(qp->upoly, fn, term, user);
3659 isl_term_free(term);
3661 return term ? 0 : -1;
3664 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
3666 struct isl_upoly *up;
3667 isl_qpolynomial *qp;
3673 n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3675 up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d);
3676 for (i = 0; i < n; ++i) {
3679 up = isl_upoly_mul(up,
3680 isl_upoly_var_pow(term->dim->ctx, i, term->pow[i]));
3683 qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up);
3686 isl_mat_free(qp->div);
3687 qp->div = isl_mat_copy(term->div);
3691 isl_term_free(term);
3694 isl_qpolynomial_free(qp);
3695 isl_term_free(term);
3699 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
3700 __isl_take isl_space *dim)
3709 if (isl_space_is_equal(qp->dim, dim)) {
3710 isl_space_free(dim);
3714 qp = isl_qpolynomial_cow(qp);
3718 extra = isl_space_dim(dim, isl_dim_set) -
3719 isl_space_dim(qp->dim, isl_dim_set);
3720 total = isl_space_dim(qp->dim, isl_dim_all);
3721 if (qp->div->n_row) {
3724 exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
3727 for (i = 0; i < qp->div->n_row; ++i)
3729 qp->upoly = expand(qp->upoly, exp, total);
3734 qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
3737 for (i = 0; i < qp->div->n_row; ++i)
3738 isl_seq_clr(qp->div->row[i] + 2 + total, extra);
3740 isl_space_free(qp->dim);
3745 isl_space_free(dim);
3746 isl_qpolynomial_free(qp);
3750 /* For each parameter or variable that does not appear in qp,
3751 * first eliminate the variable from all constraints and then set it to zero.
3753 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
3754 __isl_keep isl_qpolynomial *qp)
3765 d = isl_space_dim(set->dim, isl_dim_all);
3766 active = isl_calloc_array(set->ctx, int, d);
3767 if (set_active(qp, active) < 0)
3770 for (i = 0; i < d; ++i)
3779 nparam = isl_space_dim(set->dim, isl_dim_param);
3780 nvar = isl_space_dim(set->dim, isl_dim_set);
3781 for (i = 0; i < nparam; ++i) {
3784 set = isl_set_eliminate(set, isl_dim_param, i, 1);
3785 set = isl_set_fix_si(set, isl_dim_param, i, 0);
3787 for (i = 0; i < nvar; ++i) {
3788 if (active[nparam + i])
3790 set = isl_set_eliminate(set, isl_dim_set, i, 1);
3791 set = isl_set_fix_si(set, isl_dim_set, i, 0);
3803 struct isl_opt_data {
3804 isl_qpolynomial *qp;
3806 isl_qpolynomial *opt;
3810 static int opt_fn(__isl_take isl_point *pnt, void *user)
3812 struct isl_opt_data *data = (struct isl_opt_data *)user;
3813 isl_qpolynomial *val;
3815 val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
3819 } else if (data->max) {
3820 data->opt = isl_qpolynomial_max_cst(data->opt, val);
3822 data->opt = isl_qpolynomial_min_cst(data->opt, val);
3828 __isl_give isl_qpolynomial *isl_qpolynomial_opt_on_domain(
3829 __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
3831 struct isl_opt_data data = { NULL, 1, NULL, max };
3836 if (isl_upoly_is_cst(qp->upoly)) {
3841 set = fix_inactive(set, qp);
3844 if (isl_set_foreach_point(set, opt_fn, &data) < 0)
3848 isl_space *space = isl_qpolynomial_get_domain_space(qp);
3849 data.opt = isl_qpolynomial_zero_on_domain(space);
3853 isl_qpolynomial_free(qp);
3857 isl_qpolynomial_free(qp);
3858 isl_qpolynomial_free(data.opt);
3862 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
3863 __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
3868 struct isl_upoly **subs;
3869 isl_mat *mat, *diag;
3871 qp = isl_qpolynomial_cow(qp);
3876 isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error);
3878 n_sub = morph->inv->n_row - 1;
3879 if (morph->inv->n_row != morph->inv->n_col)
3880 n_sub += qp->div->n_row;
3881 subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub);
3885 for (i = 0; 1 + i < morph->inv->n_row; ++i)
3886 subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i],
3887 morph->inv->row[0][0], morph->inv->n_col);
3888 if (morph->inv->n_row != morph->inv->n_col)
3889 for (i = 0; i < qp->div->n_row; ++i)
3890 subs[morph->inv->n_row - 1 + i] =
3891 isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
3893 qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs);
3895 for (i = 0; i < n_sub; ++i)
3896 isl_upoly_free(subs[i]);
3899 diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
3900 mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
3901 diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
3902 mat = isl_mat_diagonal(mat, diag);
3903 qp->div = isl_mat_product(qp->div, mat);
3904 isl_space_free(qp->dim);
3905 qp->dim = isl_space_copy(morph->ran->dim);
3907 if (!qp->upoly || !qp->div || !qp->dim)
3910 isl_morph_free(morph);
3914 isl_qpolynomial_free(qp);
3915 isl_morph_free(morph);
3919 static int neg_entry(void **entry, void *user)
3921 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
3923 *pwqp = isl_pw_qpolynomial_neg(*pwqp);
3925 return *pwqp ? 0 : -1;
3928 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_neg(
3929 __isl_take isl_union_pw_qpolynomial *upwqp)
3931 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
3935 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
3936 &neg_entry, NULL) < 0)
3941 isl_union_pw_qpolynomial_free(upwqp);
3945 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(
3946 __isl_take isl_union_pw_qpolynomial *upwqp1,
3947 __isl_take isl_union_pw_qpolynomial *upwqp2)
3949 return isl_union_pw_qpolynomial_add(upwqp1,
3950 isl_union_pw_qpolynomial_neg(upwqp2));
3953 static int mul_entry(void **entry, void *user)
3955 struct isl_union_pw_qpolynomial_match_bin_data *data = user;
3957 struct isl_hash_table_entry *entry2;
3958 isl_pw_qpolynomial *pwpq = *entry;
3961 hash = isl_space_get_hash(pwpq->dim);
3962 entry2 = isl_hash_table_find(data->u2->dim->ctx, &data->u2->table,
3963 hash, &has_dim, pwpq->dim, 0);
3967 pwpq = isl_pw_qpolynomial_copy(pwpq);
3968 pwpq = isl_pw_qpolynomial_mul(pwpq,
3969 isl_pw_qpolynomial_copy(entry2->data));
3971 empty = isl_pw_qpolynomial_is_zero(pwpq);
3973 isl_pw_qpolynomial_free(pwpq);
3977 isl_pw_qpolynomial_free(pwpq);
3981 data->res = isl_union_pw_qpolynomial_add_pw_qpolynomial(data->res, pwpq);
3986 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
3987 __isl_take isl_union_pw_qpolynomial *upwqp1,
3988 __isl_take isl_union_pw_qpolynomial *upwqp2)
3990 return match_bin_op(upwqp1, upwqp2, &mul_entry);
3993 /* Reorder the columns of the given div definitions according to the
3996 static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div,
3997 __isl_take isl_reordering *r)
4006 extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len;
4007 mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra);
4011 for (i = 0; i < div->n_row; ++i) {
4012 isl_seq_cpy(mat->row[i], div->row[i], 2);
4013 isl_seq_clr(mat->row[i] + 2, mat->n_col - 2);
4014 for (j = 0; j < r->len; ++j)
4015 isl_int_set(mat->row[i][2 + r->pos[j]],
4016 div->row[i][2 + j]);
4019 isl_reordering_free(r);
4023 isl_reordering_free(r);
4028 /* Reorder the dimension of "qp" according to the given reordering.
4030 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4031 __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4033 qp = isl_qpolynomial_cow(qp);
4037 r = isl_reordering_extend(r, qp->div->n_row);
4041 qp->div = reorder_divs(qp->div, isl_reordering_copy(r));
4045 qp->upoly = reorder(qp->upoly, r->pos);
4049 qp = isl_qpolynomial_reset_domain_space(qp, isl_space_copy(r->dim));
4051 isl_reordering_free(r);
4054 isl_qpolynomial_free(qp);
4055 isl_reordering_free(r);
4059 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4060 __isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4065 if (!isl_space_match(qp->dim, isl_dim_param, model, isl_dim_param)) {
4066 isl_reordering *exp;
4068 model = isl_space_drop_dims(model, isl_dim_in,
4069 0, isl_space_dim(model, isl_dim_in));
4070 model = isl_space_drop_dims(model, isl_dim_out,
4071 0, isl_space_dim(model, isl_dim_out));
4072 exp = isl_parameter_alignment_reordering(qp->dim, model);
4073 exp = isl_reordering_extend_space(exp,
4074 isl_qpolynomial_get_domain_space(qp));
4075 qp = isl_qpolynomial_realign_domain(qp, exp);
4078 isl_space_free(model);
4081 isl_space_free(model);
4082 isl_qpolynomial_free(qp);
4086 struct isl_split_periods_data {
4088 isl_pw_qpolynomial *res;
4091 /* Create a slice where the integer division "div" has the fixed value "v".
4092 * In particular, if "div" refers to floor(f/m), then create a slice
4094 * m v <= f <= m v + (m - 1)
4099 * -f + m v + (m - 1) >= 0
4101 static __isl_give isl_set *set_div_slice(__isl_take isl_space *dim,
4102 __isl_keep isl_qpolynomial *qp, int div, isl_int v)
4105 isl_basic_set *bset = NULL;
4111 total = isl_space_dim(dim, isl_dim_all);
4112 bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 0, 2);
4114 k = isl_basic_set_alloc_inequality(bset);
4117 isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4118 isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4120 k = isl_basic_set_alloc_inequality(bset);
4123 isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4124 isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4125 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4126 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4128 isl_space_free(dim);
4129 return isl_set_from_basic_set(bset);
4131 isl_basic_set_free(bset);
4132 isl_space_free(dim);
4136 static int split_periods(__isl_take isl_set *set,
4137 __isl_take isl_qpolynomial *qp, void *user);
4139 /* Create a slice of the domain "set" such that integer division "div"
4140 * has the fixed value "v" and add the results to data->res,
4141 * replacing the integer division by "v" in "qp".
4143 static int set_div(__isl_take isl_set *set,
4144 __isl_take isl_qpolynomial *qp, int div, isl_int v,
4145 struct isl_split_periods_data *data)
4150 struct isl_upoly *cst;
4152 slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4153 set = isl_set_intersect(set, slice);
4158 total = isl_space_dim(qp->dim, isl_dim_all);
4160 for (i = div + 1; i < qp->div->n_row; ++i) {
4161 if (isl_int_is_zero(qp->div->row[i][2 + total + div]))
4163 isl_int_addmul(qp->div->row[i][1],
4164 qp->div->row[i][2 + total + div], v);
4165 isl_int_set_si(qp->div->row[i][2 + total + div], 0);
4168 cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4169 qp = substitute_div(qp, div, cst);
4171 return split_periods(set, qp, data);
4174 isl_qpolynomial_free(qp);
4178 /* Split the domain "set" such that integer division "div"
4179 * has a fixed value (ranging from "min" to "max") on each slice
4180 * and add the results to data->res.
4182 static int split_div(__isl_take isl_set *set,
4183 __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4184 struct isl_split_periods_data *data)
4186 for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4187 isl_set *set_i = isl_set_copy(set);
4188 isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4190 if (set_div(set_i, qp_i, div, min, data) < 0)
4194 isl_qpolynomial_free(qp);
4198 isl_qpolynomial_free(qp);
4202 /* If "qp" refers to any integer division
4203 * that can only attain "max_periods" distinct values on "set"
4204 * then split the domain along those distinct values.
4205 * Add the results (or the original if no splitting occurs)
4208 static int split_periods(__isl_take isl_set *set,
4209 __isl_take isl_qpolynomial *qp, void *user)
4212 isl_pw_qpolynomial *pwqp;
4213 struct isl_split_periods_data *data;
4218 data = (struct isl_split_periods_data *)user;
4223 if (qp->div->n_row == 0) {
4224 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4225 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4231 total = isl_space_dim(qp->dim, isl_dim_all);
4232 for (i = 0; i < qp->div->n_row; ++i) {
4233 enum isl_lp_result lp_res;
4235 if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total,
4236 qp->div->n_row) != -1)
4239 lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4240 set->ctx->one, &min, NULL, NULL);
4241 if (lp_res == isl_lp_error)
4243 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4245 isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4247 lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4248 set->ctx->one, &max, NULL, NULL);
4249 if (lp_res == isl_lp_error)
4251 if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4253 isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4255 isl_int_sub(max, max, min);
4256 if (isl_int_cmp_si(max, data->max_periods) < 0) {
4257 isl_int_add(max, max, min);
4262 if (i < qp->div->n_row) {
4263 r = split_div(set, qp, i, min, max, data);
4265 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4266 data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4278 isl_qpolynomial_free(qp);
4282 /* If any quasi-polynomial in pwqp refers to any integer division
4283 * that can only attain "max_periods" distinct values on its domain
4284 * then split the domain along those distinct values.
4286 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4287 __isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4289 struct isl_split_periods_data data;
4291 data.max_periods = max_periods;
4292 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4294 if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4297 isl_pw_qpolynomial_free(pwqp);
4301 isl_pw_qpolynomial_free(data.res);
4302 isl_pw_qpolynomial_free(pwqp);
4306 /* Construct a piecewise quasipolynomial that is constant on the given
4307 * domain. In particular, it is
4310 * infinity if cst == -1
4312 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4313 __isl_take isl_basic_set *bset, int cst)
4316 isl_qpolynomial *qp;
4321 bset = isl_basic_set_params(bset);
4322 dim = isl_basic_set_get_space(bset);
4324 qp = isl_qpolynomial_infty_on_domain(dim);
4326 qp = isl_qpolynomial_zero_on_domain(dim);
4328 qp = isl_qpolynomial_one_on_domain(dim);
4329 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4332 /* Factor bset, call fn on each of the factors and return the product.
4334 * If no factors can be found, simply call fn on the input.
4335 * Otherwise, construct the factors based on the factorizer,
4336 * call fn on each factor and compute the product.
4338 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4339 __isl_take isl_basic_set *bset,
4340 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4346 isl_qpolynomial *qp;
4347 isl_pw_qpolynomial *pwqp;
4351 f = isl_basic_set_factorizer(bset);
4354 if (f->n_group == 0) {
4355 isl_factorizer_free(f);
4359 nparam = isl_basic_set_dim(bset, isl_dim_param);
4360 nvar = isl_basic_set_dim(bset, isl_dim_set);
4362 dim = isl_basic_set_get_space(bset);
4363 dim = isl_space_domain(dim);
4364 set = isl_set_universe(isl_space_copy(dim));
4365 qp = isl_qpolynomial_one_on_domain(dim);
4366 pwqp = isl_pw_qpolynomial_alloc(set, qp);
4368 bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
4370 for (i = 0, n = 0; i < f->n_group; ++i) {
4371 isl_basic_set *bset_i;
4372 isl_pw_qpolynomial *pwqp_i;
4374 bset_i = isl_basic_set_copy(bset);
4375 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4376 nparam + n + f->len[i], nvar - n - f->len[i]);
4377 bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4379 bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
4380 n + f->len[i], nvar - n - f->len[i]);
4381 bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
4383 pwqp_i = fn(bset_i);
4384 pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i);
4389 isl_basic_set_free(bset);
4390 isl_factorizer_free(f);
4394 isl_basic_set_free(bset);
4398 /* Factor bset, call fn on each of the factors and return the product.
4399 * The function is assumed to evaluate to zero on empty domains,
4400 * to one on zero-dimensional domains and to infinity on unbounded domains
4401 * and will not be called explicitly on zero-dimensional or unbounded domains.
4403 * We first check for some special cases and remove all equalities.
4404 * Then we hand over control to compressed_multiplicative_call.
4406 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4407 __isl_take isl_basic_set *bset,
4408 __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4412 isl_pw_qpolynomial *pwqp;
4417 if (isl_basic_set_plain_is_empty(bset))
4418 return constant_on_domain(bset, 0);
4420 if (isl_basic_set_dim(bset, isl_dim_set) == 0)
4421 return constant_on_domain(bset, 1);
4423 bounded = isl_basic_set_is_bounded(bset);
4427 return constant_on_domain(bset, -1);
4429 if (bset->n_eq == 0)
4430 return compressed_multiplicative_call(bset, fn);
4432 morph = isl_basic_set_full_compression(bset);
4433 bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4435 pwqp = compressed_multiplicative_call(bset, fn);
4437 morph = isl_morph_dom_params(morph);
4438 morph = isl_morph_ran_params(morph);
4439 morph = isl_morph_inverse(morph);
4441 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
4445 isl_basic_set_free(bset);
4449 /* Drop all floors in "qp", turning each integer division [a/m] into
4450 * a rational division a/m. If "down" is set, then the integer division
4451 * is replaces by (a-(m-1))/m instead.
4453 static __isl_give isl_qpolynomial *qp_drop_floors(
4454 __isl_take isl_qpolynomial *qp, int down)
4457 struct isl_upoly *s;
4461 if (qp->div->n_row == 0)
4464 qp = isl_qpolynomial_cow(qp);
4468 for (i = qp->div->n_row - 1; i >= 0; --i) {
4470 isl_int_sub(qp->div->row[i][1],
4471 qp->div->row[i][1], qp->div->row[i][0]);
4472 isl_int_add_ui(qp->div->row[i][1],
4473 qp->div->row[i][1], 1);
4475 s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4476 qp->div->row[i][0], qp->div->n_col - 1);
4477 qp = substitute_div(qp, i, s);
4485 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4486 * a rational division a/m.
4488 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4489 __isl_take isl_pw_qpolynomial *pwqp)
4496 if (isl_pw_qpolynomial_is_zero(pwqp))
4499 pwqp = isl_pw_qpolynomial_cow(pwqp);
4503 for (i = 0; i < pwqp->n; ++i) {
4504 pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4511 isl_pw_qpolynomial_free(pwqp);
4515 /* Adjust all the integer divisions in "qp" such that they are at least
4516 * one over the given orthant (identified by "signs"). This ensures
4517 * that they will still be non-negative even after subtracting (m-1)/m.
4519 * In particular, f is replaced by f' + v, changing f = [a/m]
4520 * to f' = [(a - m v)/m].
4521 * If the constant term k in a is smaller than m,
4522 * the constant term of v is set to floor(k/m) - 1.
4523 * For any other term, if the coefficient c and the variable x have
4524 * the same sign, then no changes are needed.
4525 * Otherwise, if the variable is positive (and c is negative),
4526 * then the coefficient of x in v is set to floor(c/m).
4527 * If the variable is negative (and c is positive),
4528 * then the coefficient of x in v is set to ceil(c/m).
4530 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
4536 struct isl_upoly *s;
4538 qp = isl_qpolynomial_cow(qp);
4541 qp->div = isl_mat_cow(qp->div);
4545 total = isl_space_dim(qp->dim, isl_dim_all);
4546 v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
4548 for (i = 0; i < qp->div->n_row; ++i) {
4549 isl_int *row = qp->div->row[i];
4553 if (isl_int_lt(row[1], row[0])) {
4554 isl_int_fdiv_q(v->el[0], row[1], row[0]);
4555 isl_int_sub_ui(v->el[0], v->el[0], 1);
4556 isl_int_submul(row[1], row[0], v->el[0]);
4558 for (j = 0; j < total; ++j) {
4559 if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
4562 isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
4564 isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
4565 isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
4567 for (j = 0; j < i; ++j) {
4568 if (isl_int_sgn(row[2 + total + j]) >= 0)
4570 isl_int_fdiv_q(v->el[1 + total + j],
4571 row[2 + total + j], row[0]);
4572 isl_int_submul(row[2 + total + j],
4573 row[0], v->el[1 + total + j]);
4575 for (j = i + 1; j < qp->div->n_row; ++j) {
4576 if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
4578 isl_seq_combine(qp->div->row[j] + 1,
4579 qp->div->ctx->one, qp->div->row[j] + 1,
4580 qp->div->row[j][2 + total + i], v->el, v->size);
4582 isl_int_set_si(v->el[1 + total + i], 1);
4583 s = isl_upoly_from_affine(qp->dim->ctx, v->el,
4584 qp->div->ctx->one, v->size);
4585 qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s);
4595 isl_qpolynomial_free(qp);
4599 struct isl_to_poly_data {
4601 isl_pw_qpolynomial *res;
4602 isl_qpolynomial *qp;
4605 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4606 * We first make all integer divisions positive and then split the
4607 * quasipolynomials into terms with sign data->sign (the direction
4608 * of the requested approximation) and terms with the opposite sign.
4609 * In the first set of terms, each integer division [a/m] is
4610 * overapproximated by a/m, while in the second it is underapproximated
4613 static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs,
4616 struct isl_to_poly_data *data = user;
4617 isl_pw_qpolynomial *t;
4618 isl_qpolynomial *qp, *up, *down;
4620 qp = isl_qpolynomial_copy(data->qp);
4621 qp = make_divs_pos(qp, signs);
4623 up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
4624 up = qp_drop_floors(up, 0);
4625 down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
4626 down = qp_drop_floors(down, 1);
4628 isl_qpolynomial_free(qp);
4629 qp = isl_qpolynomial_add(up, down);
4631 t = isl_pw_qpolynomial_alloc(orthant, qp);
4632 data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
4637 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4638 * the polynomial will be an overapproximation. If "sign" is negative,
4639 * it will be an underapproximation. If "sign" is zero, the approximation
4640 * will lie somewhere in between.
4642 * In particular, is sign == 0, we simply drop the floors, turning
4643 * the integer divisions into rational divisions.
4644 * Otherwise, we split the domains into orthants, make all integer divisions
4645 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4646 * depending on the requested sign and the sign of the term in which
4647 * the integer division appears.
4649 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4650 __isl_take isl_pw_qpolynomial *pwqp, int sign)
4653 struct isl_to_poly_data data;
4656 return pwqp_drop_floors(pwqp);
4662 data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4664 for (i = 0; i < pwqp->n; ++i) {
4665 if (pwqp->p[i].qp->div->n_row == 0) {
4666 isl_pw_qpolynomial *t;
4667 t = isl_pw_qpolynomial_alloc(
4668 isl_set_copy(pwqp->p[i].set),
4669 isl_qpolynomial_copy(pwqp->p[i].qp));
4670 data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
4673 data.qp = pwqp->p[i].qp;
4674 if (isl_set_foreach_orthant(pwqp->p[i].set,
4675 &to_polynomial_on_orthant, &data) < 0)
4679 isl_pw_qpolynomial_free(pwqp);
4683 isl_pw_qpolynomial_free(pwqp);
4684 isl_pw_qpolynomial_free(data.res);
4688 static int poly_entry(void **entry, void *user)
4691 isl_pw_qpolynomial **pwqp = (isl_pw_qpolynomial **)entry;
4693 *pwqp = isl_pw_qpolynomial_to_polynomial(*pwqp, *sign);
4695 return *pwqp ? 0 : -1;
4698 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
4699 __isl_take isl_union_pw_qpolynomial *upwqp, int sign)
4701 upwqp = isl_union_pw_qpolynomial_cow(upwqp);
4705 if (isl_hash_table_foreach(upwqp->dim->ctx, &upwqp->table,
4706 &poly_entry, &sign) < 0)
4711 isl_union_pw_qpolynomial_free(upwqp);
4715 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
4716 __isl_take isl_qpolynomial *qp)
4720 isl_vec *aff = NULL;
4721 isl_basic_map *bmap = NULL;
4727 if (!isl_upoly_is_affine(qp->upoly))
4728 isl_die(qp->dim->ctx, isl_error_invalid,
4729 "input quasi-polynomial not affine", goto error);
4730 aff = isl_qpolynomial_extract_affine(qp);
4733 dim = isl_qpolynomial_get_space(qp);
4734 pos = 1 + isl_space_offset(dim, isl_dim_out);
4735 n_div = qp->div->n_row;
4736 bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div);
4738 for (i = 0; i < n_div; ++i) {
4739 k = isl_basic_map_alloc_div(bmap);
4742 isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
4743 isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
4744 if (isl_basic_map_add_div_constraints(bmap, k) < 0)
4747 k = isl_basic_map_alloc_equality(bmap);
4750 isl_int_neg(bmap->eq[k][pos], aff->el[0]);
4751 isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
4752 isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
4755 isl_qpolynomial_free(qp);
4756 bmap = isl_basic_map_finalize(bmap);
4760 isl_qpolynomial_free(qp);
4761 isl_basic_map_free(bmap);