2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_morph.h>
13 #include <isl_map_private.h>
14 #include <isl_dim_private.h>
15 #include <isl_equalities.h>
17 static __isl_give isl_morph *isl_morph_alloc(
18 __isl_take isl_basic_set *dom, __isl_take isl_basic_set *ran,
19 __isl_take isl_mat *map, __isl_take isl_mat *inv)
23 if (!dom || !ran || !map || !inv)
26 morph = isl_alloc_type(in_dim->ctx, struct isl_morph);
38 isl_basic_set_free(dom);
39 isl_basic_set_free(ran);
45 __isl_give isl_morph *isl_morph_copy(__isl_keep isl_morph *morph)
54 __isl_give isl_morph *isl_morph_dup(__isl_keep isl_morph *morph)
59 return isl_morph_alloc(isl_basic_set_copy(morph->dom),
60 isl_basic_set_copy(morph->ran),
61 isl_mat_copy(morph->map), isl_mat_copy(morph->inv));
64 __isl_give isl_morph *isl_morph_cow(__isl_take isl_morph *morph)
72 return isl_morph_dup(morph);
75 void isl_morph_free(__isl_take isl_morph *morph)
83 isl_basic_set_free(morph->dom);
84 isl_basic_set_free(morph->ran);
85 isl_mat_free(morph->map);
86 isl_mat_free(morph->inv);
90 __isl_give isl_dim *isl_morph_get_ran_dim(__isl_keep isl_morph *morph)
95 return isl_dim_copy(morph->ran->dim);
98 __isl_give isl_morph *isl_morph_drop_dims(__isl_take isl_morph *morph,
99 enum isl_dim_type type, unsigned first, unsigned n)
107 morph = isl_morph_cow(morph);
111 dom_offset = 1 + isl_dim_offset(morph->dom->dim, type);
112 ran_offset = 1 + isl_dim_offset(morph->ran->dim, type);
114 morph->dom = isl_basic_set_drop(morph->dom, type, first, n);
115 morph->ran = isl_basic_set_drop(morph->ran, type, first, n);
117 morph->map = isl_mat_drop_cols(morph->map, dom_offset + first, n);
118 morph->map = isl_mat_drop_rows(morph->map, ran_offset + first, n);
120 morph->inv = isl_mat_drop_cols(morph->inv, ran_offset + first, n);
121 morph->inv = isl_mat_drop_rows(morph->inv, dom_offset + first, n);
123 if (morph->dom && morph->ran && morph->map && morph->inv)
126 isl_morph_free(morph);
130 void isl_morph_dump(__isl_take isl_morph *morph, FILE *out)
135 isl_basic_set_print(morph->dom, out, 0, "", "", ISL_FORMAT_ISL);
136 isl_basic_set_print(morph->ran, out, 0, "", "", ISL_FORMAT_ISL);
137 isl_mat_dump(morph->map, out, 4);
138 isl_mat_dump(morph->inv, out, 4);
141 __isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset)
144 isl_basic_set *universe;
150 total = isl_basic_set_total_dim(bset);
151 id = isl_mat_identity(bset->ctx, 1 + total);
152 universe = isl_basic_set_universe(isl_dim_copy(bset->dim));
154 return isl_morph_alloc(universe, isl_basic_set_copy(universe),
155 id, isl_mat_copy(id));
158 /* Create a(n identity) morphism between empty sets of the same dimension
161 __isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset)
164 isl_basic_set *empty;
170 total = isl_basic_set_total_dim(bset);
171 id = isl_mat_identity(bset->ctx, 1 + total);
172 empty = isl_basic_set_empty(isl_dim_copy(bset->dim));
174 return isl_morph_alloc(empty, isl_basic_set_copy(empty),
175 id, isl_mat_copy(id));
178 /* Given a matrix that maps a (possibly) parametric domain to
179 * a parametric domain, add in rows that map the "nparam" parameters onto
182 static __isl_give isl_mat *insert_parameter_rows(__isl_take isl_mat *mat,
192 mat = isl_mat_insert_rows(mat, 1, nparam);
196 for (i = 0; i < nparam; ++i) {
197 isl_seq_clr(mat->row[1 + i], mat->n_col);
198 isl_int_set(mat->row[1 + i][1 + i], mat->row[0][0]);
204 /* Construct a basic set described by the "n" equalities of "bset" starting
207 static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset,
208 unsigned first, unsigned n)
214 isl_assert(bset->ctx, bset->n_div == 0, return NULL);
216 total = isl_basic_set_total_dim(bset);
217 eq = isl_basic_set_alloc_dim(isl_dim_copy(bset->dim), 0, n, 0);
220 for (i = 0; i < n; ++i) {
221 k = isl_basic_set_alloc_equality(eq);
224 isl_seq_cpy(eq->eq[k], bset->eq[first + k], 1 + total);
229 isl_basic_set_free(eq);
233 /* Given a basic set, exploit the equalties in the a basic set to construct
234 * a morphishm that maps the basic set to a lower-dimensional space.
235 * Specifically, the morphism reduces the number of dimensions of type "type".
237 * This function is a slight generalization of isl_mat_variable_compression
238 * in that it allows the input to be parametric and that it allows for the
239 * compression of either parameters or set variables.
241 * We first select the equalities of interest, that is those that involve
242 * variables of type "type" and no later variables.
243 * Denote those equalities as
247 * where C(p) depends on the parameters if type == isl_dim_set and
248 * is a constant if type == isl_dim_param.
250 * First compute the (left) Hermite normal form of M,
252 * M [U1 U2] = M U = H = [H1 0]
254 * M = H Q = [H1 0] [Q1]
257 * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
258 * Define the transformed variables as
260 * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
263 * The equalities then become
265 * -C(p) + H1 x1' = 0 or x1' = H1^{-1} C(p) = C'(p)
267 * If the denominator of the constant term does not divide the
268 * the common denominator of the parametric terms, then every
269 * integer point is mapped to a non-integer point and then the original set has no
270 * integer solutions (since the x' are a unimodular transformation
271 * of the x). In this case, an empty morphism is returned.
272 * Otherwise, the transformation is given by
274 * x = U1 H1^{-1} C(p) + U2 x2'
276 * The inverse transformation is simply
280 * Both matrices are extended to map the full original space to the full
283 __isl_give isl_morph *isl_basic_set_variable_compression(
284 __isl_keep isl_basic_set *bset, enum isl_dim_type type)
293 isl_mat *H, *U, *Q, *C = NULL, *H1, *U1, *U2;
294 isl_basic_set *dom, *ran;
299 if (isl_basic_set_fast_is_empty(bset))
300 return isl_morph_empty(bset);
302 isl_assert(bset->ctx, bset->n_div == 0, return NULL);
304 otype = 1 + isl_dim_offset(bset->dim, type);
305 ntype = isl_basic_set_dim(bset, type);
306 orest = otype + ntype;
307 nrest = isl_basic_set_total_dim(bset) - (orest - 1);
309 for (f_eq = 0; f_eq < bset->n_eq; ++f_eq)
310 if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1)
312 for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq)
313 if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1)
316 return isl_morph_identity(bset);
318 H = isl_mat_sub_alloc(bset->ctx, bset->eq, f_eq, n_eq, otype, ntype);
319 H = isl_mat_left_hermite(H, 0, &U, &Q);
322 Q = isl_mat_drop_rows(Q, 0, n_eq);
323 Q = isl_mat_diagonal(isl_mat_identity(bset->ctx, otype), Q);
324 Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest));
325 C = isl_mat_alloc(bset->ctx, 1 + n_eq, otype);
328 isl_int_set_si(C->row[0][0], 1);
329 isl_seq_clr(C->row[0] + 1, otype - 1);
330 isl_mat_sub_neg(C->ctx, C->row + 1, bset->eq + f_eq, n_eq, 0, 0, otype);
331 H1 = isl_mat_sub_alloc(H->ctx, H->row, 0, H->n_row, 0, H->n_row);
332 H1 = isl_mat_lin_to_aff(H1);
333 C = isl_mat_inverse_product(H1, C);
338 if (!isl_int_is_one(C->row[0][0])) {
343 for (i = 0; i < n_eq; ++i) {
344 isl_seq_gcd(C->row[1 + i] + 1, otype - 1, &g);
345 isl_int_gcd(g, g, C->row[0][0]);
346 if (!isl_int_is_divisible_by(C->row[1 + i][0], g))
355 return isl_morph_empty(bset);
358 C = isl_mat_normalize(C);
361 U1 = isl_mat_sub_alloc(U->ctx, U->row, 0, U->n_row, 0, n_eq);
362 U1 = isl_mat_lin_to_aff(U1);
363 U2 = isl_mat_sub_alloc(U->ctx, U->row, 0, U->n_row, n_eq, U->n_row - n_eq);
364 U2 = isl_mat_lin_to_aff(U2);
367 C = isl_mat_product(U1, C);
368 C = isl_mat_aff_direct_sum(C, U2);
369 C = insert_parameter_rows(C, otype - 1);
370 C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest));
372 dim = isl_dim_copy(bset->dim);
373 dim = isl_dim_drop(dim, type, 0, ntype);
374 dim = isl_dim_add(dim, type, ntype - n_eq);
375 ran = isl_basic_set_universe(dim);
376 dom = copy_equalities(bset, f_eq, n_eq);
378 return isl_morph_alloc(dom, ran, Q, C);
387 /* Construct a parameter compression for "bset".
388 * We basically just call isl_mat_parameter_compression with the right input
389 * and then extend the resulting matrix to include the variables.
391 * Let the equalities be given as
395 * and let [H 0] be the Hermite Normal Form of A, then
399 * needs to be integer, so we impose that each row is divisible by
402 __isl_give isl_morph *isl_basic_set_parameter_compression(
403 __isl_keep isl_basic_set *bset)
411 isl_basic_set *dom, *ran;
416 if (isl_basic_set_fast_is_empty(bset))
417 return isl_morph_empty(bset);
419 return isl_morph_identity(bset);
421 isl_assert(bset->ctx, bset->n_div == 0, return NULL);
424 nparam = isl_basic_set_dim(bset, isl_dim_param);
425 nvar = isl_basic_set_dim(bset, isl_dim_set);
427 isl_assert(bset->ctx, n_eq <= nvar, return NULL);
429 d = isl_vec_alloc(bset->ctx, n_eq);
430 B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam);
431 H = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, n_eq, 1 + nparam, nvar);
432 H = isl_mat_left_hermite(H, 0, NULL, NULL);
433 H = isl_mat_drop_cols(H, n_eq, nvar - n_eq);
434 H = isl_mat_lin_to_aff(H);
435 H = isl_mat_right_inverse(H);
438 isl_seq_set(d->el, H->row[0][0], d->size);
439 H = isl_mat_drop_rows(H, 0, 1);
440 H = isl_mat_drop_cols(H, 0, 1);
441 B = isl_mat_product(H, B);
442 inv = isl_mat_parameter_compression(B, d);
443 inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar));
444 map = isl_mat_right_inverse(isl_mat_copy(inv));
446 dom = isl_basic_set_universe(isl_dim_copy(bset->dim));
447 ran = isl_basic_set_universe(isl_dim_copy(bset->dim));
449 return isl_morph_alloc(dom, ran, map, inv);
457 /* Add stride constraints to "bset" based on the inverse mapping
458 * that was plugged in. In particular, if morph maps x' to x,
459 * the the constraints of the original input
463 * have been rewritten to
467 * However, this substitution may loose information on the integrality of x',
468 * so we need to impose that
472 * is integral. If inv = B/d, this means that we need to impose that
478 * exists alpha in Z^m: B x = d alpha
481 static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset,
482 __isl_keep isl_morph *morph)
487 if (isl_int_is_one(morph->inv->row[0][0]))
492 for (i = 0; 1 + i < morph->inv->n_row; ++i) {
493 isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd);
494 if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0]))
496 div = isl_basic_set_alloc_div(bset);
499 k = isl_basic_set_alloc_equality(bset);
502 isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i],
504 isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div);
505 isl_int_set(bset->eq[k][morph->inv->n_col + div],
506 morph->inv->row[0][0]);
514 isl_basic_set_free(bset);
518 /* Apply the morphism to the basic set.
519 * We basically just compute the preimage of "bset" under the inverse mapping
520 * in morph, add in stride constraints and intersect with the range
523 __isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph,
524 __isl_take isl_basic_set *bset)
526 isl_basic_set *res = NULL;
534 isl_assert(bset->ctx, isl_dim_equal(bset->dim, morph->dom->dim),
537 max_stride = morph->inv->n_row - 1;
538 if (isl_int_is_one(morph->inv->row[0][0]))
540 res = isl_basic_set_alloc_dim(isl_dim_copy(morph->ran->dim),
541 bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq);
543 for (i = 0; i < bset->n_div; ++i)
544 if (isl_basic_set_alloc_div(res) < 0)
547 mat = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq,
548 0, morph->inv->n_row);
549 mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
552 for (i = 0; i < bset->n_eq; ++i) {
553 k = isl_basic_set_alloc_equality(res);
556 isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col);
557 isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col,
558 morph->inv->row[0][0], bset->n_div);
562 mat = isl_mat_sub_alloc(bset->ctx, bset->ineq, 0, bset->n_ineq,
563 0, morph->inv->n_row);
564 mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
567 for (i = 0; i < bset->n_ineq; ++i) {
568 k = isl_basic_set_alloc_inequality(res);
571 isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col);
572 isl_seq_scale(res->ineq[k] + mat->n_col,
573 bset->ineq[i] + mat->n_col,
574 morph->inv->row[0][0], bset->n_div);
578 mat = isl_mat_sub_alloc(bset->ctx, bset->div, 0, bset->n_div,
579 1, morph->inv->n_row);
580 mat = isl_mat_product(mat, isl_mat_copy(morph->inv));
583 for (i = 0; i < bset->n_div; ++i) {
584 isl_int_mul(res->div[i][0],
585 morph->inv->row[0][0], bset->div[i][0]);
586 isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col);
587 isl_seq_scale(res->div[i] + 1 + mat->n_col,
588 bset->div[i] + 1 + mat->n_col,
589 morph->inv->row[0][0], bset->n_div);
593 res = add_strides(res, morph);
595 res = isl_basic_set_simplify(res);
596 res = isl_basic_set_finalize(res);
598 res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran));
600 isl_morph_free(morph);
601 isl_basic_set_free(bset);
605 isl_morph_free(morph);
606 isl_basic_set_free(bset);
607 isl_basic_set_free(res);
611 /* Apply the morphism to the set.
613 __isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph,
614 __isl_take isl_set *set)
621 isl_assert(set->ctx, isl_dim_equal(set->dim, morph->dom->dim), goto error);
623 set = isl_set_cow(set);
627 isl_dim_free(set->dim);
628 set->dim = isl_dim_copy(morph->ran->dim);
632 for (i = 0; i < set->n; ++i) {
633 set->p[i] = isl_morph_basic_set(isl_morph_copy(morph), set->p[i]);
638 isl_morph_free(morph);
640 ISL_F_CLR(set, ISL_SET_NORMALIZED);
645 isl_morph_free(morph);
649 /* Construct a morphism that first does morph2 and then morph1.
651 __isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1,
652 __isl_take isl_morph *morph2)
655 isl_basic_set *dom, *ran;
657 if (!morph1 || !morph2)
660 map = isl_mat_product(isl_mat_copy(morph1->map), isl_mat_copy(morph2->map));
661 inv = isl_mat_product(isl_mat_copy(morph2->inv), isl_mat_copy(morph1->inv));
662 dom = isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2)),
663 isl_basic_set_copy(morph1->dom));
664 dom = isl_basic_set_intersect(dom, isl_basic_set_copy(morph2->dom));
665 ran = isl_morph_basic_set(isl_morph_copy(morph1),
666 isl_basic_set_copy(morph2->ran));
667 ran = isl_basic_set_intersect(ran, isl_basic_set_copy(morph1->ran));
669 isl_morph_free(morph1);
670 isl_morph_free(morph2);
672 return isl_morph_alloc(dom, ran, map, inv);
674 isl_morph_free(morph1);
675 isl_morph_free(morph2);
679 __isl_give isl_morph *isl_morph_inverse(__isl_take isl_morph *morph)
684 morph = isl_morph_cow(morph);
689 morph->dom = morph->ran;
693 morph->map = morph->inv;