add packaging
[platform/upstream/isl.git] / isl_map_simplify.c
1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  * Copyright 2012      Ecole Normale Superieure
4  *
5  * Use of this software is governed by the MIT license
6  *
7  * Written by Sven Verdoolaege, K.U.Leuven, Departement
8  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9  * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
10  */
11
12 #include <strings.h>
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include "isl_equalities.h"
16 #include <isl/map.h>
17 #include <isl/seq.h>
18 #include "isl_tab.h"
19 #include <isl_space_private.h>
20 #include <isl_mat_private.h>
21
22 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
23 {
24         isl_int *t = bmap->eq[a];
25         bmap->eq[a] = bmap->eq[b];
26         bmap->eq[b] = t;
27 }
28
29 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
30 {
31         if (a != b) {
32                 isl_int *t = bmap->ineq[a];
33                 bmap->ineq[a] = bmap->ineq[b];
34                 bmap->ineq[b] = t;
35         }
36 }
37
38 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
39 {
40         isl_seq_cpy(c, c + n, rem);
41         isl_seq_clr(c + rem, n);
42 }
43
44 /* Drop n dimensions starting at first.
45  *
46  * In principle, this frees up some extra variables as the number
47  * of columns remains constant, but we would have to extend
48  * the div array too as the number of rows in this array is assumed
49  * to be equal to extra.
50  */
51 struct isl_basic_set *isl_basic_set_drop_dims(
52                 struct isl_basic_set *bset, unsigned first, unsigned n)
53 {
54         int i;
55
56         if (!bset)
57                 goto error;
58
59         isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
60
61         if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
62                 return bset;
63
64         bset = isl_basic_set_cow(bset);
65         if (!bset)
66                 return NULL;
67
68         for (i = 0; i < bset->n_eq; ++i)
69                 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
70                                      (bset->dim->n_out-first-n)+bset->extra);
71
72         for (i = 0; i < bset->n_ineq; ++i)
73                 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
74                                      (bset->dim->n_out-first-n)+bset->extra);
75
76         for (i = 0; i < bset->n_div; ++i)
77                 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
78                                      (bset->dim->n_out-first-n)+bset->extra);
79
80         bset->dim = isl_space_drop_outputs(bset->dim, first, n);
81         if (!bset->dim)
82                 goto error;
83
84         ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
85         bset = isl_basic_set_simplify(bset);
86         return isl_basic_set_finalize(bset);
87 error:
88         isl_basic_set_free(bset);
89         return NULL;
90 }
91
92 struct isl_set *isl_set_drop_dims(
93                 struct isl_set *set, unsigned first, unsigned n)
94 {
95         int i;
96
97         if (!set)
98                 goto error;
99
100         isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
101
102         if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
103                 return set;
104         set = isl_set_cow(set);
105         if (!set)
106                 goto error;
107         set->dim = isl_space_drop_outputs(set->dim, first, n);
108         if (!set->dim)
109                 goto error;
110
111         for (i = 0; i < set->n; ++i) {
112                 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
113                 if (!set->p[i])
114                         goto error;
115         }
116
117         ISL_F_CLR(set, ISL_SET_NORMALIZED);
118         return set;
119 error:
120         isl_set_free(set);
121         return NULL;
122 }
123
124 /* Move "n" divs starting at "first" to the end of the list of divs.
125  */
126 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
127         unsigned first, unsigned n)
128 {
129         isl_int **div;
130         int i;
131
132         if (first + n == bmap->n_div)
133                 return bmap;
134
135         div = isl_alloc_array(bmap->ctx, isl_int *, n);
136         if (!div)
137                 goto error;
138         for (i = 0; i < n; ++i)
139                 div[i] = bmap->div[first + i];
140         for (i = 0; i < bmap->n_div - first - n; ++i)
141                 bmap->div[first + i] = bmap->div[first + n + i];
142         for (i = 0; i < n; ++i)
143                 bmap->div[bmap->n_div - n + i] = div[i];
144         free(div);
145         return bmap;
146 error:
147         isl_basic_map_free(bmap);
148         return NULL;
149 }
150
151 /* Drop "n" dimensions of type "type" starting at "first".
152  *
153  * In principle, this frees up some extra variables as the number
154  * of columns remains constant, but we would have to extend
155  * the div array too as the number of rows in this array is assumed
156  * to be equal to extra.
157  */
158 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
159         enum isl_dim_type type, unsigned first, unsigned n)
160 {
161         int i;
162         unsigned dim;
163         unsigned offset;
164         unsigned left;
165
166         if (!bmap)
167                 goto error;
168
169         dim = isl_basic_map_dim(bmap, type);
170         isl_assert(bmap->ctx, first + n <= dim, goto error);
171
172         if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
173                 return bmap;
174
175         bmap = isl_basic_map_cow(bmap);
176         if (!bmap)
177                 return NULL;
178
179         offset = isl_basic_map_offset(bmap, type) + first;
180         left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
181         for (i = 0; i < bmap->n_eq; ++i)
182                 constraint_drop_vars(bmap->eq[i]+offset, n, left);
183
184         for (i = 0; i < bmap->n_ineq; ++i)
185                 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
186
187         for (i = 0; i < bmap->n_div; ++i)
188                 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
189
190         if (type == isl_dim_div) {
191                 bmap = move_divs_last(bmap, first, n);
192                 if (!bmap)
193                         goto error;
194                 isl_basic_map_free_div(bmap, n);
195         } else
196                 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
197         if (!bmap->dim)
198                 goto error;
199
200         ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
201         bmap = isl_basic_map_simplify(bmap);
202         return isl_basic_map_finalize(bmap);
203 error:
204         isl_basic_map_free(bmap);
205         return NULL;
206 }
207
208 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
209         enum isl_dim_type type, unsigned first, unsigned n)
210 {
211         return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
212                                                         type, first, n);
213 }
214
215 struct isl_basic_map *isl_basic_map_drop_inputs(
216                 struct isl_basic_map *bmap, unsigned first, unsigned n)
217 {
218         return isl_basic_map_drop(bmap, isl_dim_in, first, n);
219 }
220
221 struct isl_map *isl_map_drop(struct isl_map *map,
222         enum isl_dim_type type, unsigned first, unsigned n)
223 {
224         int i;
225
226         if (!map)
227                 goto error;
228
229         isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
230
231         if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
232                 return map;
233         map = isl_map_cow(map);
234         if (!map)
235                 goto error;
236         map->dim = isl_space_drop_dims(map->dim, type, first, n);
237         if (!map->dim)
238                 goto error;
239
240         for (i = 0; i < map->n; ++i) {
241                 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
242                 if (!map->p[i])
243                         goto error;
244         }
245         ISL_F_CLR(map, ISL_MAP_NORMALIZED);
246
247         return map;
248 error:
249         isl_map_free(map);
250         return NULL;
251 }
252
253 struct isl_set *isl_set_drop(struct isl_set *set,
254         enum isl_dim_type type, unsigned first, unsigned n)
255 {
256         return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
257 }
258
259 struct isl_map *isl_map_drop_inputs(
260                 struct isl_map *map, unsigned first, unsigned n)
261 {
262         return isl_map_drop(map, isl_dim_in, first, n);
263 }
264
265 /*
266  * We don't cow, as the div is assumed to be redundant.
267  */
268 static struct isl_basic_map *isl_basic_map_drop_div(
269                 struct isl_basic_map *bmap, unsigned div)
270 {
271         int i;
272         unsigned pos;
273
274         if (!bmap)
275                 goto error;
276
277         pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
278
279         isl_assert(bmap->ctx, div < bmap->n_div, goto error);
280
281         for (i = 0; i < bmap->n_eq; ++i)
282                 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
283
284         for (i = 0; i < bmap->n_ineq; ++i) {
285                 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
286                         isl_basic_map_drop_inequality(bmap, i);
287                         --i;
288                         continue;
289                 }
290                 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
291         }
292
293         for (i = 0; i < bmap->n_div; ++i)
294                 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
295
296         if (div != bmap->n_div - 1) {
297                 int j;
298                 isl_int *t = bmap->div[div];
299
300                 for (j = div; j < bmap->n_div - 1; ++j)
301                         bmap->div[j] = bmap->div[j+1];
302
303                 bmap->div[bmap->n_div - 1] = t;
304         }
305         ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
306         isl_basic_map_free_div(bmap, 1);
307
308         return bmap;
309 error:
310         isl_basic_map_free(bmap);
311         return NULL;
312 }
313
314 struct isl_basic_map *isl_basic_map_normalize_constraints(
315         struct isl_basic_map *bmap)
316 {
317         int i;
318         isl_int gcd;
319         unsigned total = isl_basic_map_total_dim(bmap);
320
321         if (!bmap)
322                 return NULL;
323
324         isl_int_init(gcd);
325         for (i = bmap->n_eq - 1; i >= 0; --i) {
326                 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
327                 if (isl_int_is_zero(gcd)) {
328                         if (!isl_int_is_zero(bmap->eq[i][0])) {
329                                 bmap = isl_basic_map_set_to_empty(bmap);
330                                 break;
331                         }
332                         isl_basic_map_drop_equality(bmap, i);
333                         continue;
334                 }
335                 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
336                         isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
337                 if (isl_int_is_one(gcd))
338                         continue;
339                 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
340                         bmap = isl_basic_map_set_to_empty(bmap);
341                         break;
342                 }
343                 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
344         }
345
346         for (i = bmap->n_ineq - 1; i >= 0; --i) {
347                 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
348                 if (isl_int_is_zero(gcd)) {
349                         if (isl_int_is_neg(bmap->ineq[i][0])) {
350                                 bmap = isl_basic_map_set_to_empty(bmap);
351                                 break;
352                         }
353                         isl_basic_map_drop_inequality(bmap, i);
354                         continue;
355                 }
356                 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
357                         isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
358                 if (isl_int_is_one(gcd))
359                         continue;
360                 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
361                 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
362         }
363         isl_int_clear(gcd);
364
365         return bmap;
366 }
367
368 struct isl_basic_set *isl_basic_set_normalize_constraints(
369         struct isl_basic_set *bset)
370 {
371         return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
372                 (struct isl_basic_map *)bset);
373 }
374
375 /* Remove any common factor in numerator and denominator of the div expression,
376  * not taking into account the constant term.
377  * That is, if the div is of the form
378  *
379  *      floor((a + m f(x))/(m d))
380  *
381  * then replace it by
382  *
383  *      floor((floor(a/m) + f(x))/d)
384  *
385  * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
386  * and can therefore not influence the result of the floor.
387  */
388 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
389 {
390         unsigned total = isl_basic_map_total_dim(bmap);
391         isl_ctx *ctx = bmap->ctx;
392
393         if (isl_int_is_zero(bmap->div[div][0]))
394                 return;
395         isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
396         isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
397         if (isl_int_is_one(ctx->normalize_gcd))
398                 return;
399         isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
400                         ctx->normalize_gcd);
401         isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
402                         ctx->normalize_gcd);
403         isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
404                         ctx->normalize_gcd, total);
405 }
406
407 /* Remove any common factor in numerator and denominator of a div expression,
408  * not taking into account the constant term.
409  * That is, look for any div of the form
410  *
411  *      floor((a + m f(x))/(m d))
412  *
413  * and replace it by
414  *
415  *      floor((floor(a/m) + f(x))/d)
416  *
417  * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
418  * and can therefore not influence the result of the floor.
419  */
420 static __isl_give isl_basic_map *normalize_div_expressions(
421         __isl_take isl_basic_map *bmap)
422 {
423         int i;
424
425         if (!bmap)
426                 return NULL;
427         if (bmap->n_div == 0)
428                 return bmap;
429
430         for (i = 0; i < bmap->n_div; ++i)
431                 normalize_div_expression(bmap, i);
432
433         return bmap;
434 }
435
436 /* Assumes divs have been ordered if keep_divs is set.
437  */
438 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
439         unsigned pos, isl_int *eq, int keep_divs, int *progress)
440 {
441         unsigned total;
442         unsigned space_total;
443         int k;
444         int last_div;
445
446         total = isl_basic_map_total_dim(bmap);
447         space_total = isl_space_dim(bmap->dim, isl_dim_all);
448         last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
449         for (k = 0; k < bmap->n_eq; ++k) {
450                 if (bmap->eq[k] == eq)
451                         continue;
452                 if (isl_int_is_zero(bmap->eq[k][1+pos]))
453                         continue;
454                 if (progress)
455                         *progress = 1;
456                 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
457                 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
458         }
459
460         for (k = 0; k < bmap->n_ineq; ++k) {
461                 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
462                         continue;
463                 if (progress)
464                         *progress = 1;
465                 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
466                 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
467                 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
468         }
469
470         for (k = 0; k < bmap->n_div; ++k) {
471                 if (isl_int_is_zero(bmap->div[k][0]))
472                         continue;
473                 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
474                         continue;
475                 if (progress)
476                         *progress = 1;
477                 /* We need to be careful about circular definitions,
478                  * so for now we just remove the definition of div k
479                  * if the equality contains any divs.
480                  * If keep_divs is set, then the divs have been ordered
481                  * and we can keep the definition as long as the result
482                  * is still ordered.
483                  */
484                 if (last_div == -1 || (keep_divs && last_div < k)) {
485                         isl_seq_elim(bmap->div[k]+1, eq,
486                                         1+pos, 1+total, &bmap->div[k][0]);
487                         normalize_div_expression(bmap, k);
488                 } else
489                         isl_seq_clr(bmap->div[k], 1 + total);
490                 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
491         }
492 }
493
494 /* Assumes divs have been ordered if keep_divs is set.
495  */
496 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
497         unsigned div, int keep_divs)
498 {
499         unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
500
501         eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
502
503         isl_basic_map_drop_div(bmap, div);
504 }
505
506 /* Check if elimination of div "div" using equality "eq" would not
507  * result in a div depending on a later div.
508  */
509 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
510         unsigned div)
511 {
512         int k;
513         int last_div;
514         unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
515         unsigned pos = space_total + div;
516
517         last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
518         if (last_div < 0 || last_div <= div)
519                 return 1;
520
521         for (k = 0; k <= last_div; ++k) {
522                 if (isl_int_is_zero(bmap->div[k][0]))
523                         return 1;
524                 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
525                         return 0;
526         }
527
528         return 1;
529 }
530
531 /* Elimininate divs based on equalities
532  */
533 static struct isl_basic_map *eliminate_divs_eq(
534                 struct isl_basic_map *bmap, int *progress)
535 {
536         int d;
537         int i;
538         int modified = 0;
539         unsigned off;
540
541         bmap = isl_basic_map_order_divs(bmap);
542
543         if (!bmap)
544                 return NULL;
545
546         off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
547
548         for (d = bmap->n_div - 1; d >= 0 ; --d) {
549                 for (i = 0; i < bmap->n_eq; ++i) {
550                         if (!isl_int_is_one(bmap->eq[i][off + d]) &&
551                             !isl_int_is_negone(bmap->eq[i][off + d]))
552                                 continue;
553                         if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
554                                 continue;
555                         modified = 1;
556                         *progress = 1;
557                         eliminate_div(bmap, bmap->eq[i], d, 1);
558                         isl_basic_map_drop_equality(bmap, i);
559                         break;
560                 }
561         }
562         if (modified)
563                 return eliminate_divs_eq(bmap, progress);
564         return bmap;
565 }
566
567 /* Elimininate divs based on inequalities
568  */
569 static struct isl_basic_map *eliminate_divs_ineq(
570                 struct isl_basic_map *bmap, int *progress)
571 {
572         int d;
573         int i;
574         unsigned off;
575         struct isl_ctx *ctx;
576
577         if (!bmap)
578                 return NULL;
579
580         ctx = bmap->ctx;
581         off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
582
583         for (d = bmap->n_div - 1; d >= 0 ; --d) {
584                 for (i = 0; i < bmap->n_eq; ++i)
585                         if (!isl_int_is_zero(bmap->eq[i][off + d]))
586                                 break;
587                 if (i < bmap->n_eq)
588                         continue;
589                 for (i = 0; i < bmap->n_ineq; ++i)
590                         if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
591                                 break;
592                 if (i < bmap->n_ineq)
593                         continue;
594                 *progress = 1;
595                 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
596                 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
597                         break;
598                 bmap = isl_basic_map_drop_div(bmap, d);
599                 if (!bmap)
600                         break;
601         }
602         return bmap;
603 }
604
605 struct isl_basic_map *isl_basic_map_gauss(
606         struct isl_basic_map *bmap, int *progress)
607 {
608         int k;
609         int done;
610         int last_var;
611         unsigned total_var;
612         unsigned total;
613
614         bmap = isl_basic_map_order_divs(bmap);
615
616         if (!bmap)
617                 return NULL;
618
619         total = isl_basic_map_total_dim(bmap);
620         total_var = total - bmap->n_div;
621
622         last_var = total - 1;
623         for (done = 0; done < bmap->n_eq; ++done) {
624                 for (; last_var >= 0; --last_var) {
625                         for (k = done; k < bmap->n_eq; ++k)
626                                 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
627                                         break;
628                         if (k < bmap->n_eq)
629                                 break;
630                 }
631                 if (last_var < 0)
632                         break;
633                 if (k != done)
634                         swap_equality(bmap, k, done);
635                 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
636                         isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
637
638                 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
639                                                 progress);
640
641                 if (last_var >= total_var &&
642                     isl_int_is_zero(bmap->div[last_var - total_var][0])) {
643                         unsigned div = last_var - total_var;
644                         isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
645                         isl_int_set_si(bmap->div[div][1+1+last_var], 0);
646                         isl_int_set(bmap->div[div][0],
647                                     bmap->eq[done][1+last_var]);
648                         if (progress)
649                                 *progress = 1;
650                         ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
651                 }
652         }
653         if (done == bmap->n_eq)
654                 return bmap;
655         for (k = done; k < bmap->n_eq; ++k) {
656                 if (isl_int_is_zero(bmap->eq[k][0]))
657                         continue;
658                 return isl_basic_map_set_to_empty(bmap);
659         }
660         isl_basic_map_free_equality(bmap, bmap->n_eq-done);
661         return bmap;
662 }
663
664 struct isl_basic_set *isl_basic_set_gauss(
665         struct isl_basic_set *bset, int *progress)
666 {
667         return (struct isl_basic_set*)isl_basic_map_gauss(
668                         (struct isl_basic_map *)bset, progress);
669 }
670
671
672 static unsigned int round_up(unsigned int v)
673 {
674         int old_v = v;
675
676         while (v) {
677                 old_v = v;
678                 v ^= v & -v;
679         }
680         return old_v << 1;
681 }
682
683 static int hash_index(isl_int ***index, unsigned int size, int bits,
684                         struct isl_basic_map *bmap, int k)
685 {
686         int h;
687         unsigned total = isl_basic_map_total_dim(bmap);
688         uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
689         for (h = hash; index[h]; h = (h+1) % size)
690                 if (&bmap->ineq[k] != index[h] &&
691                     isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
692                         break;
693         return h;
694 }
695
696 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
697                           struct isl_basic_set *bset, int k)
698 {
699         return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
700 }
701
702 /* If we can eliminate more than one div, then we need to make
703  * sure we do it from last div to first div, in order not to
704  * change the position of the other divs that still need to
705  * be removed.
706  */
707 static struct isl_basic_map *remove_duplicate_divs(
708         struct isl_basic_map *bmap, int *progress)
709 {
710         unsigned int size;
711         int *index;
712         int *elim_for;
713         int k, l, h;
714         int bits;
715         struct isl_blk eq;
716         unsigned total_var;
717         unsigned total;
718         struct isl_ctx *ctx;
719
720         bmap = isl_basic_map_order_divs(bmap);
721         if (!bmap || bmap->n_div <= 1)
722                 return bmap;
723
724         total_var = isl_space_dim(bmap->dim, isl_dim_all);
725         total = total_var + bmap->n_div;
726
727         ctx = bmap->ctx;
728         for (k = bmap->n_div - 1; k >= 0; --k)
729                 if (!isl_int_is_zero(bmap->div[k][0]))
730                         break;
731         if (k <= 0)
732                 return bmap;
733
734         elim_for = isl_calloc_array(ctx, int, bmap->n_div);
735         size = round_up(4 * bmap->n_div / 3 - 1);
736         bits = ffs(size) - 1;
737         index = isl_calloc_array(ctx, int, size);
738         if (!index)
739                 return bmap;
740         eq = isl_blk_alloc(ctx, 1+total);
741         if (isl_blk_is_error(eq))
742                 goto out;
743
744         isl_seq_clr(eq.data, 1+total);
745         index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
746         for (--k; k >= 0; --k) {
747                 uint32_t hash;
748
749                 if (isl_int_is_zero(bmap->div[k][0]))
750                         continue;
751
752                 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
753                 for (h = hash; index[h]; h = (h+1) % size)
754                         if (isl_seq_eq(bmap->div[k],
755                                        bmap->div[index[h]-1], 2+total))
756                                 break;
757                 if (index[h]) {
758                         *progress = 1;
759                         l = index[h] - 1;
760                         elim_for[l] = k + 1;
761                 }
762                 index[h] = k+1;
763         }
764         for (l = bmap->n_div - 1; l >= 0; --l) {
765                 if (!elim_for[l])
766                         continue;
767                 k = elim_for[l] - 1;
768                 isl_int_set_si(eq.data[1+total_var+k], -1);
769                 isl_int_set_si(eq.data[1+total_var+l], 1);
770                 eliminate_div(bmap, eq.data, l, 1);
771                 isl_int_set_si(eq.data[1+total_var+k], 0);
772                 isl_int_set_si(eq.data[1+total_var+l], 0);
773         }
774
775         isl_blk_free(ctx, eq);
776 out:
777         free(index);
778         free(elim_for);
779         return bmap;
780 }
781
782 static int n_pure_div_eq(struct isl_basic_map *bmap)
783 {
784         int i, j;
785         unsigned total;
786
787         total = isl_space_dim(bmap->dim, isl_dim_all);
788         for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
789                 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
790                         --j;
791                 if (j < 0)
792                         break;
793                 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
794                         return 0;
795         }
796         return i;
797 }
798
799 /* Normalize divs that appear in equalities.
800  *
801  * In particular, we assume that bmap contains some equalities
802  * of the form
803  *
804  *      a x = m * e_i
805  *
806  * and we want to replace the set of e_i by a minimal set and
807  * such that the new e_i have a canonical representation in terms
808  * of the vector x.
809  * If any of the equalities involves more than one divs, then
810  * we currently simply bail out.
811  *
812  * Let us first additionally assume that all equalities involve
813  * a div.  The equalities then express modulo constraints on the
814  * remaining variables and we can use "parameter compression"
815  * to find a minimal set of constraints.  The result is a transformation
816  *
817  *      x = T(x') = x_0 + G x'
818  *
819  * with G a lower-triangular matrix with all elements below the diagonal
820  * non-negative and smaller than the diagonal element on the same row.
821  * We first normalize x_0 by making the same property hold in the affine
822  * T matrix.
823  * The rows i of G with a 1 on the diagonal do not impose any modulo
824  * constraint and simply express x_i = x'_i.
825  * For each of the remaining rows i, we introduce a div and a corresponding
826  * equality.  In particular
827  *
828  *      g_ii e_j = x_i - g_i(x')
829  *
830  * where each x'_k is replaced either by x_k (if g_kk = 1) or the
831  * corresponding div (if g_kk != 1).
832  *
833  * If there are any equalities not involving any div, then we
834  * first apply a variable compression on the variables x:
835  *
836  *      x = C x''       x'' = C_2 x
837  *
838  * and perform the above parameter compression on A C instead of on A.
839  * The resulting compression is then of the form
840  *
841  *      x'' = T(x') = x_0 + G x'
842  *
843  * and in constructing the new divs and the corresponding equalities,
844  * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
845  * by the corresponding row from C_2.
846  */
847 static struct isl_basic_map *normalize_divs(
848         struct isl_basic_map *bmap, int *progress)
849 {
850         int i, j, k;
851         int total;
852         int div_eq;
853         struct isl_mat *B;
854         struct isl_vec *d;
855         struct isl_mat *T = NULL;
856         struct isl_mat *C = NULL;
857         struct isl_mat *C2 = NULL;
858         isl_int v;
859         int *pos;
860         int dropped, needed;
861
862         if (!bmap)
863                 return NULL;
864
865         if (bmap->n_div == 0)
866                 return bmap;
867
868         if (bmap->n_eq == 0)
869                 return bmap;
870
871         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
872                 return bmap;
873
874         total = isl_space_dim(bmap->dim, isl_dim_all);
875         div_eq = n_pure_div_eq(bmap);
876         if (div_eq == 0)
877                 return bmap;
878
879         if (div_eq < bmap->n_eq) {
880                 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
881                                         bmap->n_eq - div_eq, 0, 1 + total);
882                 C = isl_mat_variable_compression(B, &C2);
883                 if (!C || !C2)
884                         goto error;
885                 if (C->n_col == 0) {
886                         bmap = isl_basic_map_set_to_empty(bmap);
887                         isl_mat_free(C);
888                         isl_mat_free(C2);
889                         goto done;
890                 }
891         }
892
893         d = isl_vec_alloc(bmap->ctx, div_eq);
894         if (!d)
895                 goto error;
896         for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
897                 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
898                         --j;
899                 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
900         }
901         B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
902
903         if (C) {
904                 B = isl_mat_product(B, C);
905                 C = NULL;
906         }
907
908         T = isl_mat_parameter_compression(B, d);
909         if (!T)
910                 goto error;
911         if (T->n_col == 0) {
912                 bmap = isl_basic_map_set_to_empty(bmap);
913                 isl_mat_free(C2);
914                 isl_mat_free(T);
915                 goto done;
916         }
917         isl_int_init(v);
918         for (i = 0; i < T->n_row - 1; ++i) {
919                 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
920                 if (isl_int_is_zero(v))
921                         continue;
922                 isl_mat_col_submul(T, 0, v, 1 + i);
923         }
924         isl_int_clear(v);
925         pos = isl_alloc_array(bmap->ctx, int, T->n_row);
926         if (!pos)
927                 goto error;
928         /* We have to be careful because dropping equalities may reorder them */
929         dropped = 0;
930         for (j = bmap->n_div - 1; j >= 0; --j) {
931                 for (i = 0; i < bmap->n_eq; ++i)
932                         if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
933                                 break;
934                 if (i < bmap->n_eq) {
935                         bmap = isl_basic_map_drop_div(bmap, j);
936                         isl_basic_map_drop_equality(bmap, i);
937                         ++dropped;
938                 }
939         }
940         pos[0] = 0;
941         needed = 0;
942         for (i = 1; i < T->n_row; ++i) {
943                 if (isl_int_is_one(T->row[i][i]))
944                         pos[i] = i;
945                 else
946                         needed++;
947         }
948         if (needed > dropped) {
949                 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
950                                 needed, needed, 0);
951                 if (!bmap)
952                         goto error;
953         }
954         for (i = 1; i < T->n_row; ++i) {
955                 if (isl_int_is_one(T->row[i][i]))
956                         continue;
957                 k = isl_basic_map_alloc_div(bmap);
958                 pos[i] = 1 + total + k;
959                 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
960                 isl_int_set(bmap->div[k][0], T->row[i][i]);
961                 if (C2)
962                         isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
963                 else
964                         isl_int_set_si(bmap->div[k][1 + i], 1);
965                 for (j = 0; j < i; ++j) {
966                         if (isl_int_is_zero(T->row[i][j]))
967                                 continue;
968                         if (pos[j] < T->n_row && C2)
969                                 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
970                                                 C2->row[pos[j]], 1 + total);
971                         else
972                                 isl_int_neg(bmap->div[k][1 + pos[j]],
973                                                                 T->row[i][j]);
974                 }
975                 j = isl_basic_map_alloc_equality(bmap);
976                 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
977                 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
978         }
979         free(pos);
980         isl_mat_free(C2);
981         isl_mat_free(T);
982
983         if (progress)
984                 *progress = 1;
985 done:
986         ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
987
988         return bmap;
989 error:
990         isl_mat_free(C);
991         isl_mat_free(C2);
992         isl_mat_free(T);
993         return bmap;
994 }
995
996 static struct isl_basic_map *set_div_from_lower_bound(
997         struct isl_basic_map *bmap, int div, int ineq)
998 {
999         unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1000
1001         isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1002         isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1003         isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1004         isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1005         isl_int_set_si(bmap->div[div][1 + total + div], 0);
1006
1007         return bmap;
1008 }
1009
1010 /* Check whether it is ok to define a div based on an inequality.
1011  * To avoid the introduction of circular definitions of divs, we
1012  * do not allow such a definition if the resulting expression would refer to
1013  * any other undefined divs or if any known div is defined in
1014  * terms of the unknown div.
1015  */
1016 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1017         int div, int ineq)
1018 {
1019         int j;
1020         unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1021
1022         /* Not defined in terms of unknown divs */
1023         for (j = 0; j < bmap->n_div; ++j) {
1024                 if (div == j)
1025                         continue;
1026                 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1027                         continue;
1028                 if (isl_int_is_zero(bmap->div[j][0]))
1029                         return 0;
1030         }
1031
1032         /* No other div defined in terms of this one => avoid loops */
1033         for (j = 0; j < bmap->n_div; ++j) {
1034                 if (div == j)
1035                         continue;
1036                 if (isl_int_is_zero(bmap->div[j][0]))
1037                         continue;
1038                 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1039                         return 0;
1040         }
1041
1042         return 1;
1043 }
1044
1045 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1046  * be a better expression than the current one?
1047  *
1048  * If we do not have any expression yet, then any expression would be better.
1049  * Otherwise we check if the last variable involved in the inequality
1050  * (disregarding the div that it would define) is in an earlier position
1051  * than the last variable involved in the current div expression.
1052  */
1053 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1054         int div, int ineq)
1055 {
1056         unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1057         int last_div;
1058         int last_ineq;
1059
1060         if (isl_int_is_zero(bmap->div[div][0]))
1061                 return 1;
1062
1063         if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1064                                   bmap->n_div - (div + 1)) >= 0)
1065                 return 0;
1066
1067         last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1068         last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1069                                          total + bmap->n_div);
1070
1071         return last_ineq < last_div;
1072 }
1073
1074 /* Given two constraints "k" and "l" that are opposite to each other,
1075  * except for the constant term, check if we can use them
1076  * to obtain an expression for one of the hitherto unknown divs or
1077  * a "better" expression for a div for which we already have an expression.
1078  * "sum" is the sum of the constant terms of the constraints.
1079  * If this sum is strictly smaller than the coefficient of one
1080  * of the divs, then this pair can be used define the div.
1081  * To avoid the introduction of circular definitions of divs, we
1082  * do not use the pair if the resulting expression would refer to
1083  * any other undefined divs or if any known div is defined in
1084  * terms of the unknown div.
1085  */
1086 static struct isl_basic_map *check_for_div_constraints(
1087         struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1088 {
1089         int i;
1090         unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1091
1092         for (i = 0; i < bmap->n_div; ++i) {
1093                 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1094                         continue;
1095                 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1096                         continue;
1097                 if (!better_div_constraint(bmap, i, k))
1098                         continue;
1099                 if (!ok_to_set_div_from_bound(bmap, i, k))
1100                         break;
1101                 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1102                         bmap = set_div_from_lower_bound(bmap, i, k);
1103                 else
1104                         bmap = set_div_from_lower_bound(bmap, i, l);
1105                 if (progress)
1106                         *progress = 1;
1107                 break;
1108         }
1109         return bmap;
1110 }
1111
1112 static struct isl_basic_map *remove_duplicate_constraints(
1113         struct isl_basic_map *bmap, int *progress, int detect_divs)
1114 {
1115         unsigned int size;
1116         isl_int ***index;
1117         int k, l, h;
1118         int bits;
1119         unsigned total = isl_basic_map_total_dim(bmap);
1120         isl_int sum;
1121         isl_ctx *ctx;
1122
1123         if (!bmap || bmap->n_ineq <= 1)
1124                 return bmap;
1125
1126         size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1127         bits = ffs(size) - 1;
1128         ctx = isl_basic_map_get_ctx(bmap);
1129         index = isl_calloc_array(ctx, isl_int **, size);
1130         if (!index)
1131                 return bmap;
1132
1133         index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1134         for (k = 1; k < bmap->n_ineq; ++k) {
1135                 h = hash_index(index, size, bits, bmap, k);
1136                 if (!index[h]) {
1137                         index[h] = &bmap->ineq[k];
1138                         continue;
1139                 }
1140                 if (progress)
1141                         *progress = 1;
1142                 l = index[h] - &bmap->ineq[0];
1143                 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1144                         swap_inequality(bmap, k, l);
1145                 isl_basic_map_drop_inequality(bmap, k);
1146                 --k;
1147         }
1148         isl_int_init(sum);
1149         for (k = 0; k < bmap->n_ineq-1; ++k) {
1150                 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1151                 h = hash_index(index, size, bits, bmap, k);
1152                 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1153                 if (!index[h])
1154                         continue;
1155                 l = index[h] - &bmap->ineq[0];
1156                 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1157                 if (isl_int_is_pos(sum)) {
1158                         if (detect_divs)
1159                                 bmap = check_for_div_constraints(bmap, k, l,
1160                                                                  sum, progress);
1161                         continue;
1162                 }
1163                 if (isl_int_is_zero(sum)) {
1164                         /* We need to break out of the loop after these
1165                          * changes since the contents of the hash
1166                          * will no longer be valid.
1167                          * Plus, we probably we want to regauss first.
1168                          */
1169                         if (progress)
1170                                 *progress = 1;
1171                         isl_basic_map_drop_inequality(bmap, l);
1172                         isl_basic_map_inequality_to_equality(bmap, k);
1173                 } else
1174                         bmap = isl_basic_map_set_to_empty(bmap);
1175                 break;
1176         }
1177         isl_int_clear(sum);
1178
1179         free(index);
1180         return bmap;
1181 }
1182
1183
1184 /* Eliminate knowns divs from constraints where they appear with
1185  * a (positive or negative) unit coefficient.
1186  *
1187  * That is, replace
1188  *
1189  *      floor(e/m) + f >= 0
1190  *
1191  * by
1192  *
1193  *      e + m f >= 0
1194  *
1195  * and
1196  *
1197  *      -floor(e/m) + f >= 0
1198  *
1199  * by
1200  *
1201  *      -e + m f + m - 1 >= 0
1202  *
1203  * The first conversion is valid because floor(e/m) >= -f is equivalent
1204  * to e/m >= -f because -f is an integral expression.
1205  * The second conversion follows from the fact that
1206  *
1207  *      -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1208  *
1209  *
1210  * We skip integral divs, i.e., those with denominator 1, as we would
1211  * risk eliminating the div from the div constraints.  We do not need
1212  * to handle those divs here anyway since the div constraints will turn
1213  * out to form an equality and this equality can then be use to eliminate
1214  * the div from all constraints.
1215  */
1216 static __isl_give isl_basic_map *eliminate_unit_divs(
1217         __isl_take isl_basic_map *bmap, int *progress)
1218 {
1219         int i, j;
1220         isl_ctx *ctx;
1221         unsigned total;
1222
1223         if (!bmap)
1224                 return NULL;
1225
1226         ctx = isl_basic_map_get_ctx(bmap);
1227         total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1228
1229         for (i = 0; i < bmap->n_div; ++i) {
1230                 if (isl_int_is_zero(bmap->div[i][0]))
1231                         continue;
1232                 if (isl_int_is_one(bmap->div[i][0]))
1233                         continue;
1234                 for (j = 0; j < bmap->n_ineq; ++j) {
1235                         int s;
1236
1237                         if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1238                             !isl_int_is_negone(bmap->ineq[j][total + i]))
1239                                 continue;
1240
1241                         *progress = 1;
1242
1243                         s = isl_int_sgn(bmap->ineq[j][total + i]);
1244                         isl_int_set_si(bmap->ineq[j][total + i], 0);
1245                         if (s < 0)
1246                                 isl_seq_combine(bmap->ineq[j],
1247                                         ctx->negone, bmap->div[i] + 1,
1248                                         bmap->div[i][0], bmap->ineq[j],
1249                                         total + bmap->n_div);
1250                         else
1251                                 isl_seq_combine(bmap->ineq[j],
1252                                         ctx->one, bmap->div[i] + 1,
1253                                         bmap->div[i][0], bmap->ineq[j],
1254                                         total + bmap->n_div);
1255                         if (s < 0) {
1256                                 isl_int_add(bmap->ineq[j][0],
1257                                         bmap->ineq[j][0], bmap->div[i][0]);
1258                                 isl_int_sub_ui(bmap->ineq[j][0],
1259                                         bmap->ineq[j][0], 1);
1260                         }
1261                 }
1262         }
1263
1264         return bmap;
1265 }
1266
1267 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1268 {
1269         int progress = 1;
1270         if (!bmap)
1271                 return NULL;
1272         while (progress) {
1273                 progress = 0;
1274                 if (!bmap)
1275                         break;
1276                 if (isl_basic_map_plain_is_empty(bmap))
1277                         break;
1278                 bmap = isl_basic_map_normalize_constraints(bmap);
1279                 bmap = normalize_div_expressions(bmap);
1280                 bmap = remove_duplicate_divs(bmap, &progress);
1281                 bmap = eliminate_unit_divs(bmap, &progress);
1282                 bmap = eliminate_divs_eq(bmap, &progress);
1283                 bmap = eliminate_divs_ineq(bmap, &progress);
1284                 bmap = isl_basic_map_gauss(bmap, &progress);
1285                 /* requires equalities in normal form */
1286                 bmap = normalize_divs(bmap, &progress);
1287                 bmap = remove_duplicate_constraints(bmap, &progress, 1);
1288         }
1289         return bmap;
1290 }
1291
1292 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1293 {
1294         return (struct isl_basic_set *)
1295                 isl_basic_map_simplify((struct isl_basic_map *)bset);
1296 }
1297
1298
1299 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1300         isl_int *constraint, unsigned div)
1301 {
1302         unsigned pos;
1303
1304         if (!bmap)
1305                 return -1;
1306
1307         pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1308
1309         if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1310                 int neg;
1311                 isl_int_sub(bmap->div[div][1],
1312                                 bmap->div[div][1], bmap->div[div][0]);
1313                 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1314                 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1315                 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1316                 isl_int_add(bmap->div[div][1],
1317                                 bmap->div[div][1], bmap->div[div][0]);
1318                 if (!neg)
1319                         return 0;
1320                 if (isl_seq_first_non_zero(constraint+pos+1,
1321                                             bmap->n_div-div-1) != -1)
1322                         return 0;
1323         } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1324                 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1325                         return 0;
1326                 if (isl_seq_first_non_zero(constraint+pos+1,
1327                                             bmap->n_div-div-1) != -1)
1328                         return 0;
1329         } else
1330                 return 0;
1331
1332         return 1;
1333 }
1334
1335 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1336         isl_int *constraint, unsigned div)
1337 {
1338         return isl_basic_map_is_div_constraint(bset, constraint, div);
1339 }
1340
1341
1342 /* If the only constraints a div d=floor(f/m)
1343  * appears in are its two defining constraints
1344  *
1345  *      f - m d >=0
1346  *      -(f - (m - 1)) + m d >= 0
1347  *
1348  * then it can safely be removed.
1349  */
1350 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1351 {
1352         int i;
1353         unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1354
1355         for (i = 0; i < bmap->n_eq; ++i)
1356                 if (!isl_int_is_zero(bmap->eq[i][pos]))
1357                         return 0;
1358
1359         for (i = 0; i < bmap->n_ineq; ++i) {
1360                 if (isl_int_is_zero(bmap->ineq[i][pos]))
1361                         continue;
1362                 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1363                         return 0;
1364         }
1365
1366         for (i = 0; i < bmap->n_div; ++i) {
1367                 if (isl_int_is_zero(bmap->div[i][0]))
1368                         continue;
1369                 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1370                         return 0;
1371         }
1372
1373         return 1;
1374 }
1375
1376 /*
1377  * Remove divs that don't occur in any of the constraints or other divs.
1378  * These can arise when dropping some of the variables in a quast
1379  * returned by piplib.
1380  */
1381 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1382 {
1383         int i;
1384
1385         if (!bmap)
1386                 return NULL;
1387
1388         for (i = bmap->n_div-1; i >= 0; --i) {
1389                 if (!div_is_redundant(bmap, i))
1390                         continue;
1391                 bmap = isl_basic_map_drop_div(bmap, i);
1392         }
1393         return bmap;
1394 }
1395
1396 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1397 {
1398         bmap = remove_redundant_divs(bmap);
1399         if (!bmap)
1400                 return NULL;
1401         ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1402         return bmap;
1403 }
1404
1405 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1406 {
1407         return (struct isl_basic_set *)
1408                 isl_basic_map_finalize((struct isl_basic_map *)bset);
1409 }
1410
1411 struct isl_set *isl_set_finalize(struct isl_set *set)
1412 {
1413         int i;
1414
1415         if (!set)
1416                 return NULL;
1417         for (i = 0; i < set->n; ++i) {
1418                 set->p[i] = isl_basic_set_finalize(set->p[i]);
1419                 if (!set->p[i])
1420                         goto error;
1421         }
1422         return set;
1423 error:
1424         isl_set_free(set);
1425         return NULL;
1426 }
1427
1428 struct isl_map *isl_map_finalize(struct isl_map *map)
1429 {
1430         int i;
1431
1432         if (!map)
1433                 return NULL;
1434         for (i = 0; i < map->n; ++i) {
1435                 map->p[i] = isl_basic_map_finalize(map->p[i]);
1436                 if (!map->p[i])
1437                         goto error;
1438         }
1439         ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1440         return map;
1441 error:
1442         isl_map_free(map);
1443         return NULL;
1444 }
1445
1446
1447 /* Remove definition of any div that is defined in terms of the given variable.
1448  * The div itself is not removed.  Functions such as
1449  * eliminate_divs_ineq depend on the other divs remaining in place.
1450  */
1451 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1452                                                                         int pos)
1453 {
1454         int i;
1455
1456         if (!bmap)
1457                 return NULL;
1458
1459         for (i = 0; i < bmap->n_div; ++i) {
1460                 if (isl_int_is_zero(bmap->div[i][0]))
1461                         continue;
1462                 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1463                         continue;
1464                 isl_int_set_si(bmap->div[i][0], 0);
1465         }
1466         return bmap;
1467 }
1468
1469 /* Eliminate the specified variables from the constraints using
1470  * Fourier-Motzkin.  The variables themselves are not removed.
1471  */
1472 struct isl_basic_map *isl_basic_map_eliminate_vars(
1473         struct isl_basic_map *bmap, unsigned pos, unsigned n)
1474 {
1475         int d;
1476         int i, j, k;
1477         unsigned total;
1478         int need_gauss = 0;
1479
1480         if (n == 0)
1481                 return bmap;
1482         if (!bmap)
1483                 return NULL;
1484         total = isl_basic_map_total_dim(bmap);
1485
1486         bmap = isl_basic_map_cow(bmap);
1487         for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1488                 bmap = remove_dependent_vars(bmap, d);
1489         if (!bmap)
1490                 return NULL;
1491
1492         for (d = pos + n - 1;
1493              d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1494                 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1495         for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1496                 int n_lower, n_upper;
1497                 if (!bmap)
1498                         return NULL;
1499                 for (i = 0; i < bmap->n_eq; ++i) {
1500                         if (isl_int_is_zero(bmap->eq[i][1+d]))
1501                                 continue;
1502                         eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1503                         isl_basic_map_drop_equality(bmap, i);
1504                         need_gauss = 1;
1505                         break;
1506                 }
1507                 if (i < bmap->n_eq)
1508                         continue;
1509                 n_lower = 0;
1510                 n_upper = 0;
1511                 for (i = 0; i < bmap->n_ineq; ++i) {
1512                         if (isl_int_is_pos(bmap->ineq[i][1+d]))
1513                                 n_lower++;
1514                         else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1515                                 n_upper++;
1516                 }
1517                 bmap = isl_basic_map_extend_constraints(bmap,
1518                                 0, n_lower * n_upper);
1519                 if (!bmap)
1520                         goto error;
1521                 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1522                         int last;
1523                         if (isl_int_is_zero(bmap->ineq[i][1+d]))
1524                                 continue;
1525                         last = -1;
1526                         for (j = 0; j < i; ++j) {
1527                                 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1528                                         continue;
1529                                 last = j;
1530                                 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1531                                     isl_int_sgn(bmap->ineq[j][1+d]))
1532                                         continue;
1533                                 k = isl_basic_map_alloc_inequality(bmap);
1534                                 if (k < 0)
1535                                         goto error;
1536                                 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1537                                                 1+total);
1538                                 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1539                                                 1+d, 1+total, NULL);
1540                         }
1541                         isl_basic_map_drop_inequality(bmap, i);
1542                         i = last + 1;
1543                 }
1544                 if (n_lower > 0 && n_upper > 0) {
1545                         bmap = isl_basic_map_normalize_constraints(bmap);
1546                         bmap = remove_duplicate_constraints(bmap, NULL, 0);
1547                         bmap = isl_basic_map_gauss(bmap, NULL);
1548                         bmap = isl_basic_map_remove_redundancies(bmap);
1549                         need_gauss = 0;
1550                         if (!bmap)
1551                                 goto error;
1552                         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1553                                 break;
1554                 }
1555         }
1556         ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1557         if (need_gauss)
1558                 bmap = isl_basic_map_gauss(bmap, NULL);
1559         return bmap;
1560 error:
1561         isl_basic_map_free(bmap);
1562         return NULL;
1563 }
1564
1565 struct isl_basic_set *isl_basic_set_eliminate_vars(
1566         struct isl_basic_set *bset, unsigned pos, unsigned n)
1567 {
1568         return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1569                         (struct isl_basic_map *)bset, pos, n);
1570 }
1571
1572 /* Eliminate the specified n dimensions starting at first from the
1573  * constraints, without removing the dimensions from the space.
1574  * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1575  * Otherwise, they are projected out and the original space is restored.
1576  */
1577 __isl_give isl_basic_map *isl_basic_map_eliminate(
1578         __isl_take isl_basic_map *bmap,
1579         enum isl_dim_type type, unsigned first, unsigned n)
1580 {
1581         isl_space *space;
1582
1583         if (!bmap)
1584                 return NULL;
1585         if (n == 0)
1586                 return bmap;
1587
1588         if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1589                 isl_die(bmap->ctx, isl_error_invalid,
1590                         "index out of bounds", goto error);
1591
1592         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1593                 first += isl_basic_map_offset(bmap, type) - 1;
1594                 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1595                 return isl_basic_map_finalize(bmap);
1596         }
1597
1598         space = isl_basic_map_get_space(bmap);
1599         bmap = isl_basic_map_project_out(bmap, type, first, n);
1600         bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1601         bmap = isl_basic_map_reset_space(bmap, space);
1602         return bmap;
1603 error:
1604         isl_basic_map_free(bmap);
1605         return NULL;
1606 }
1607
1608 __isl_give isl_basic_set *isl_basic_set_eliminate(
1609         __isl_take isl_basic_set *bset,
1610         enum isl_dim_type type, unsigned first, unsigned n)
1611 {
1612         return isl_basic_map_eliminate(bset, type, first, n);
1613 }
1614
1615 /* Don't assume equalities are in order, because align_divs
1616  * may have changed the order of the divs.
1617  */
1618 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1619 {
1620         int d, i;
1621         unsigned total;
1622
1623         total = isl_space_dim(bmap->dim, isl_dim_all);
1624         for (d = 0; d < total; ++d)
1625                 elim[d] = -1;
1626         for (i = 0; i < bmap->n_eq; ++i) {
1627                 for (d = total - 1; d >= 0; --d) {
1628                         if (isl_int_is_zero(bmap->eq[i][1+d]))
1629                                 continue;
1630                         elim[d] = i;
1631                         break;
1632                 }
1633         }
1634 }
1635
1636 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1637 {
1638         compute_elimination_index((struct isl_basic_map *)bset, elim);
1639 }
1640
1641 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1642         struct isl_basic_map *bmap, int *elim)
1643 {
1644         int d;
1645         int copied = 0;
1646         unsigned total;
1647
1648         total = isl_space_dim(bmap->dim, isl_dim_all);
1649         for (d = total - 1; d >= 0; --d) {
1650                 if (isl_int_is_zero(src[1+d]))
1651                         continue;
1652                 if (elim[d] == -1)
1653                         continue;
1654                 if (!copied) {
1655                         isl_seq_cpy(dst, src, 1 + total);
1656                         copied = 1;
1657                 }
1658                 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1659         }
1660         return copied;
1661 }
1662
1663 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1664         struct isl_basic_set *bset, int *elim)
1665 {
1666         return reduced_using_equalities(dst, src,
1667                                         (struct isl_basic_map *)bset, elim);
1668 }
1669
1670 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1671         struct isl_basic_set *bset, struct isl_basic_set *context)
1672 {
1673         int i;
1674         int *elim;
1675
1676         if (!bset || !context)
1677                 goto error;
1678
1679         if (context->n_eq == 0) {
1680                 isl_basic_set_free(context);
1681                 return bset;
1682         }
1683
1684         bset = isl_basic_set_cow(bset);
1685         if (!bset)
1686                 goto error;
1687
1688         elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1689         if (!elim)
1690                 goto error;
1691         set_compute_elimination_index(context, elim);
1692         for (i = 0; i < bset->n_eq; ++i)
1693                 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1694                                                         context, elim);
1695         for (i = 0; i < bset->n_ineq; ++i)
1696                 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1697                                                         context, elim);
1698         isl_basic_set_free(context);
1699         free(elim);
1700         bset = isl_basic_set_simplify(bset);
1701         bset = isl_basic_set_finalize(bset);
1702         return bset;
1703 error:
1704         isl_basic_set_free(bset);
1705         isl_basic_set_free(context);
1706         return NULL;
1707 }
1708
1709 static struct isl_basic_set *remove_shifted_constraints(
1710         struct isl_basic_set *bset, struct isl_basic_set *context)
1711 {
1712         unsigned int size;
1713         isl_int ***index;
1714         int bits;
1715         int k, h, l;
1716         isl_ctx *ctx;
1717
1718         if (!bset)
1719                 return NULL;
1720
1721         size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1722         bits = ffs(size) - 1;
1723         ctx = isl_basic_set_get_ctx(bset);
1724         index = isl_calloc_array(ctx, isl_int **, size);
1725         if (!index)
1726                 return bset;
1727
1728         for (k = 0; k < context->n_ineq; ++k) {
1729                 h = set_hash_index(index, size, bits, context, k);
1730                 index[h] = &context->ineq[k];
1731         }
1732         for (k = 0; k < bset->n_ineq; ++k) {
1733                 h = set_hash_index(index, size, bits, bset, k);
1734                 if (!index[h])
1735                         continue;
1736                 l = index[h] - &context->ineq[0];
1737                 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1738                         continue;
1739                 bset = isl_basic_set_cow(bset);
1740                 if (!bset)
1741                         goto error;
1742                 isl_basic_set_drop_inequality(bset, k);
1743                 --k;
1744         }
1745         free(index);
1746         return bset;
1747 error:
1748         free(index);
1749         return bset;
1750 }
1751
1752 /* Does the (linear part of a) constraint "c" involve any of the "len"
1753  * "relevant" dimensions?
1754  */
1755 static int is_related(isl_int *c, int len, int *relevant)
1756 {
1757         int i;
1758
1759         for (i = 0; i < len; ++i) {
1760                 if (!relevant[i])
1761                         continue;
1762                 if (!isl_int_is_zero(c[i]))
1763                         return 1;
1764         }
1765
1766         return 0;
1767 }
1768
1769 /* Drop constraints from "bset" that do not involve any of
1770  * the dimensions marked "relevant".
1771  */
1772 static __isl_give isl_basic_set *drop_unrelated_constraints(
1773         __isl_take isl_basic_set *bset, int *relevant)
1774 {
1775         int i, dim;
1776
1777         dim = isl_basic_set_dim(bset, isl_dim_set);
1778         for (i = 0; i < dim; ++i)
1779                 if (!relevant[i])
1780                         break;
1781         if (i >= dim)
1782                 return bset;
1783
1784         for (i = bset->n_eq - 1; i >= 0; --i)
1785                 if (!is_related(bset->eq[i] + 1, dim, relevant))
1786                         isl_basic_set_drop_equality(bset, i);
1787
1788         for (i = bset->n_ineq - 1; i >= 0; --i)
1789                 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1790                         isl_basic_set_drop_inequality(bset, i);
1791
1792         return bset;
1793 }
1794
1795 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1796  *
1797  * In particular, for any variable involved in the constraint,
1798  * find the actual group id from before and replace the group
1799  * of the corresponding variable by the minimal group of all
1800  * the variables involved in the constraint considered so far
1801  * (if this minimum is smaller) or replace the minimum by this group
1802  * (if the minimum is larger).
1803  *
1804  * At the end, all the variables in "c" will (indirectly) point
1805  * to the minimal of the groups that they referred to originally.
1806  */
1807 static void update_groups(int dim, int *group, isl_int *c)
1808 {
1809         int j;
1810         int min = dim;
1811
1812         for (j = 0; j < dim; ++j) {
1813                 if (isl_int_is_zero(c[j]))
1814                         continue;
1815                 while (group[j] >= 0 && group[group[j]] != group[j])
1816                         group[j] = group[group[j]];
1817                 if (group[j] == min)
1818                         continue;
1819                 if (group[j] < min) {
1820                         if (min >= 0 && min < dim)
1821                                 group[min] = group[j];
1822                         min = group[j];
1823                 } else
1824                         group[group[j]] = min;
1825         }
1826 }
1827
1828 /* Drop constraints from "context" that are irrelevant for computing
1829  * the gist of "bset".
1830  *
1831  * In particular, drop constraints in variables that are not related
1832  * to any of the variables involved in the constraints of "bset"
1833  * in the sense that there is no sequence of constraints that connects them.
1834  *
1835  * We construct groups of variables that collect variables that
1836  * (indirectly) appear in some common constraint of "context".
1837  * Each group is identified by the first variable in the group,
1838  * except for the special group of variables that appear in "bset"
1839  * (or are related to those variables), which is identified by -1.
1840  * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1841  * otherwise the group of i is the group of group[i].
1842  *
1843  * We first initialize the -1 group with the variables that appear in "bset".
1844  * Then we initialize groups for the remaining variables.
1845  * Then we iterate over the constraints of "context" and update the
1846  * group of the variables in the constraint by the smallest group.
1847  * Finally, we resolve indirect references to groups by running over
1848  * the variables.
1849  *
1850  * After computing the groups, we drop constraints that do not involve
1851  * any variables in the -1 group.
1852  */
1853 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1854         __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1855 {
1856         isl_ctx *ctx;
1857         int *group;
1858         int dim;
1859         int i, j;
1860         int last;
1861
1862         if (!context || !bset)
1863                 return isl_basic_set_free(context);
1864
1865         dim = isl_basic_set_dim(bset, isl_dim_set);
1866         ctx = isl_basic_set_get_ctx(bset);
1867         group = isl_calloc_array(ctx, int, dim);
1868
1869         if (!group)
1870                 goto error;
1871
1872         for (i = 0; i < dim; ++i) {
1873                 for (j = 0; j < bset->n_eq; ++j)
1874                         if (!isl_int_is_zero(bset->eq[j][1 + i]))
1875                                 break;
1876                 if (j < bset->n_eq) {
1877                         group[i] = -1;
1878                         continue;
1879                 }
1880                 for (j = 0; j < bset->n_ineq; ++j)
1881                         if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1882                                 break;
1883                 if (j < bset->n_ineq)
1884                         group[i] = -1;
1885         }
1886
1887         last = -1;
1888         for (i = 0; i < dim; ++i)
1889                 if (group[i] >= 0)
1890                         last = group[i] = i;
1891         if (last < 0) {
1892                 free(group);
1893                 return context;
1894         }
1895
1896         for (i = 0; i < context->n_eq; ++i)
1897                 update_groups(dim, group, context->eq[i] + 1);
1898         for (i = 0; i < context->n_ineq; ++i)
1899                 update_groups(dim, group, context->ineq[i] + 1);
1900
1901         for (i = 0; i < dim; ++i)
1902                 if (group[i] >= 0)
1903                         group[i] = group[group[i]];
1904
1905         for (i = 0; i < dim; ++i)
1906                 group[i] = group[i] == -1;
1907
1908         context = drop_unrelated_constraints(context, group);
1909
1910         free(group);
1911         return context;
1912 error:
1913         free(group);
1914         return isl_basic_set_free(context);
1915 }
1916
1917 /* Remove all information from bset that is redundant in the context
1918  * of context.  Both bset and context are assumed to be full-dimensional.
1919  *
1920  * We first remove the inequalities from "bset"
1921  * that are obviously redundant with respect to some inequality in "context".
1922  * Then we remove those constraints from "context" that have become
1923  * irrelevant for computing the gist of "bset".
1924  * Note that this removal of constraints cannot be replaced by
1925  * a factorization because factors in "bset" may still be connected
1926  * to each other through constraints in "context".
1927  *
1928  * If there are any inequalities left, we construct a tableau for
1929  * the context and then add the inequalities of "bset".
1930  * Before adding these inequalities, we freeze all constraints such that
1931  * they won't be considered redundant in terms of the constraints of "bset".
1932  * Then we detect all redundant constraints (among the
1933  * constraints that weren't frozen), first by checking for redundancy in the
1934  * the tableau and then by checking if replacing a constraint by its negation
1935  * would lead to an empty set.  This last step is fairly expensive
1936  * and could be optimized by more reuse of the tableau.
1937  * Finally, we update bset according to the results.
1938  */
1939 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1940         __isl_take isl_basic_set *context)
1941 {
1942         int i, k;
1943         isl_basic_set *combined = NULL;
1944         struct isl_tab *tab = NULL;
1945         unsigned context_ineq;
1946         unsigned total;
1947
1948         if (!bset || !context)
1949                 goto error;
1950
1951         if (isl_basic_set_is_universe(bset)) {
1952                 isl_basic_set_free(context);
1953                 return bset;
1954         }
1955
1956         if (isl_basic_set_is_universe(context)) {
1957                 isl_basic_set_free(context);
1958                 return bset;
1959         }
1960
1961         bset = remove_shifted_constraints(bset, context);
1962         if (!bset)
1963                 goto error;
1964         if (bset->n_ineq == 0)
1965                 goto done;
1966
1967         context = drop_irrelevant_constraints(context, bset);
1968         if (!context)
1969                 goto error;
1970         if (isl_basic_set_is_universe(context)) {
1971                 isl_basic_set_free(context);
1972                 return bset;
1973         }
1974
1975         context_ineq = context->n_ineq;
1976         combined = isl_basic_set_cow(isl_basic_set_copy(context));
1977         combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1978         tab = isl_tab_from_basic_set(combined, 0);
1979         for (i = 0; i < context_ineq; ++i)
1980                 if (isl_tab_freeze_constraint(tab, i) < 0)
1981                         goto error;
1982         tab = isl_tab_extend(tab, bset->n_ineq);
1983         for (i = 0; i < bset->n_ineq; ++i)
1984                 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1985                         goto error;
1986         bset = isl_basic_set_add_constraints(combined, bset, 0);
1987         combined = NULL;
1988         if (!bset)
1989                 goto error;
1990         if (isl_tab_detect_redundant(tab) < 0)
1991                 goto error;
1992         total = isl_basic_set_total_dim(bset);
1993         for (i = context_ineq; i < bset->n_ineq; ++i) {
1994                 int is_empty;
1995                 if (tab->con[i].is_redundant)
1996                         continue;
1997                 tab->con[i].is_redundant = 1;
1998                 combined = isl_basic_set_dup(bset);
1999                 combined = isl_basic_set_update_from_tab(combined, tab);
2000                 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2001                 k = isl_basic_set_alloc_inequality(combined);
2002                 if (k < 0)
2003                         goto error;
2004                 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2005                 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2006                 is_empty = isl_basic_set_is_empty(combined);
2007                 if (is_empty < 0)
2008                         goto error;
2009                 isl_basic_set_free(combined);
2010                 combined = NULL;
2011                 if (!is_empty)
2012                         tab->con[i].is_redundant = 0;
2013         }
2014         for (i = 0; i < context_ineq; ++i)
2015                 tab->con[i].is_redundant = 1;
2016         bset = isl_basic_set_update_from_tab(bset, tab);
2017         if (bset) {
2018                 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2019                 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2020         }
2021
2022         isl_tab_free(tab);
2023 done:
2024         bset = isl_basic_set_simplify(bset);
2025         bset = isl_basic_set_finalize(bset);
2026         isl_basic_set_free(context);
2027         return bset;
2028 error:
2029         isl_tab_free(tab);
2030         isl_basic_set_free(combined);
2031         isl_basic_set_free(context);
2032         isl_basic_set_free(bset);
2033         return NULL;
2034 }
2035
2036 /* Remove all information from bset that is redundant in the context
2037  * of context.  In particular, equalities that are linear combinations
2038  * of those in context are removed.  Then the inequalities that are
2039  * redundant in the context of the equalities and inequalities of
2040  * context are removed.
2041  *
2042  * First of all, we drop those constraints from "context"
2043  * that are irrelevant for computing the gist of "bset".
2044  * Alternatively, we could factorize the intersection of "context" and "bset".
2045  *
2046  * We first compute the integer affine hull of the intersection,
2047  * compute the gist inside this affine hull and then add back
2048  * those equalities that are not implied by the context.
2049  *
2050  * If two constraints are mutually redundant, then uset_gist_full
2051  * will remove the second of those constraints.  We therefore first
2052  * sort the constraints so that constraints not involving existentially
2053  * quantified variables are given precedence over those that do.
2054  * We have to perform this sorting before the variable compression,
2055  * because that may effect the order of the variables.
2056  */
2057 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2058         __isl_take isl_basic_set *context)
2059 {
2060         isl_mat *eq;
2061         isl_mat *T, *T2;
2062         isl_basic_set *aff;
2063         isl_basic_set *aff_context;
2064         unsigned total;
2065
2066         if (!bset || !context)
2067                 goto error;
2068
2069         context = drop_irrelevant_constraints(context, bset);
2070
2071         bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
2072         if (isl_basic_set_plain_is_empty(bset)) {
2073                 isl_basic_set_free(context);
2074                 return bset;
2075         }
2076         bset = isl_basic_set_sort_constraints(bset);
2077         aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
2078         if (!aff)
2079                 goto error;
2080         if (isl_basic_set_plain_is_empty(aff)) {
2081                 isl_basic_set_free(aff);
2082                 isl_basic_set_free(context);
2083                 return bset;
2084         }
2085         if (aff->n_eq == 0) {
2086                 isl_basic_set_free(aff);
2087                 return uset_gist_full(bset, context);
2088         }
2089         total = isl_basic_set_total_dim(bset);
2090         eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2091         eq = isl_mat_cow(eq);
2092         T = isl_mat_variable_compression(eq, &T2);
2093         if (T && T->n_col == 0) {
2094                 isl_mat_free(T);
2095                 isl_mat_free(T2);
2096                 isl_basic_set_free(context);
2097                 isl_basic_set_free(aff);
2098                 return isl_basic_set_set_to_empty(bset);
2099         }
2100
2101         aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2102
2103         bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2104         context = isl_basic_set_preimage(context, T);
2105
2106         bset = uset_gist_full(bset, context);
2107         bset = isl_basic_set_preimage(bset, T2);
2108         bset = isl_basic_set_intersect(bset, aff);
2109         bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2110
2111         if (bset) {
2112                 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2113                 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2114         }
2115
2116         return bset;
2117 error:
2118         isl_basic_set_free(bset);
2119         isl_basic_set_free(context);
2120         return NULL;
2121 }
2122
2123 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2124  * We simply add the equalities in context to bmap and then do a regular
2125  * div normalizations.  Better results can be obtained by normalizing
2126  * only the divs in bmap than do not also appear in context.
2127  * We need to be careful to reduce the divs using the equalities
2128  * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2129  * spurious constraints.
2130  */
2131 static struct isl_basic_map *normalize_divs_in_context(
2132         struct isl_basic_map *bmap, struct isl_basic_map *context)
2133 {
2134         int i;
2135         unsigned total_context;
2136         int div_eq;
2137
2138         div_eq = n_pure_div_eq(bmap);
2139         if (div_eq == 0)
2140                 return bmap;
2141
2142         if (context->n_div > 0)
2143                 bmap = isl_basic_map_align_divs(bmap, context);
2144
2145         total_context = isl_basic_map_total_dim(context);
2146         bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2147         for (i = 0; i < context->n_eq; ++i) {
2148                 int k;
2149                 k = isl_basic_map_alloc_equality(bmap);
2150                 if (k < 0)
2151                         return isl_basic_map_free(bmap);
2152                 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2153                 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2154                                 isl_basic_map_total_dim(bmap) - total_context);
2155         }
2156         bmap = isl_basic_map_gauss(bmap, NULL);
2157         bmap = normalize_divs(bmap, NULL);
2158         bmap = isl_basic_map_gauss(bmap, NULL);
2159         return bmap;
2160 }
2161
2162 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2163         struct isl_basic_map *context)
2164 {
2165         struct isl_basic_set *bset;
2166
2167         if (!bmap || !context)
2168                 goto error;
2169
2170         if (isl_basic_map_is_universe(bmap)) {
2171                 isl_basic_map_free(context);
2172                 return bmap;
2173         }
2174         if (isl_basic_map_plain_is_empty(context)) {
2175                 isl_basic_map_free(bmap);
2176                 return context;
2177         }
2178         if (isl_basic_map_plain_is_empty(bmap)) {
2179                 isl_basic_map_free(context);
2180                 return bmap;
2181         }
2182
2183         bmap = isl_basic_map_remove_redundancies(bmap);
2184         context = isl_basic_map_remove_redundancies(context);
2185         if (!context)
2186                 goto error;
2187
2188         if (context->n_eq)
2189                 bmap = normalize_divs_in_context(bmap, context);
2190
2191         context = isl_basic_map_align_divs(context, bmap);
2192         bmap = isl_basic_map_align_divs(bmap, context);
2193
2194         bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2195                          isl_basic_map_underlying_set(context));
2196
2197         return isl_basic_map_overlying_set(bset, bmap);
2198 error:
2199         isl_basic_map_free(bmap);
2200         isl_basic_map_free(context);
2201         return NULL;
2202 }
2203
2204 /*
2205  * Assumes context has no implicit divs.
2206  */
2207 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2208         __isl_take isl_basic_map *context)
2209 {
2210         int i;
2211
2212         if (!map || !context)
2213                 goto error;;
2214
2215         if (isl_basic_map_plain_is_empty(context)) {
2216                 isl_map_free(map);
2217                 return isl_map_from_basic_map(context);
2218         }
2219
2220         context = isl_basic_map_remove_redundancies(context);
2221         map = isl_map_cow(map);
2222         if (!map || !context)
2223                 goto error;;
2224         isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2225         map = isl_map_compute_divs(map);
2226         if (!map)
2227                 goto error;
2228         for (i = map->n - 1; i >= 0; --i) {
2229                 map->p[i] = isl_basic_map_gist(map->p[i],
2230                                                 isl_basic_map_copy(context));
2231                 if (!map->p[i])
2232                         goto error;
2233                 if (isl_basic_map_plain_is_empty(map->p[i])) {
2234                         isl_basic_map_free(map->p[i]);
2235                         if (i != map->n - 1)
2236                                 map->p[i] = map->p[map->n - 1];
2237                         map->n--;
2238                 }
2239         }
2240         isl_basic_map_free(context);
2241         ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2242         return map;
2243 error:
2244         isl_map_free(map);
2245         isl_basic_map_free(context);
2246         return NULL;
2247 }
2248
2249 /* Return a map that has the same intersection with "context" as "map"
2250  * and that as "simple" as possible.
2251  *
2252  * If "map" is already the universe, then we cannot make it any simpler.
2253  * Similarly, if "context" is the universe, then we cannot exploit it
2254  * to simplify "map"
2255  * If "map" and "context" are identical to each other, then we can
2256  * return the corresponding universe.
2257  *
2258  * If none of these cases apply, we have to work a bit harder.
2259  */
2260 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2261         __isl_take isl_map *context)
2262 {
2263         int equal;
2264         int is_universe;
2265
2266         is_universe = isl_map_plain_is_universe(map);
2267         if (is_universe >= 0 && !is_universe)
2268                 is_universe = isl_map_plain_is_universe(context);
2269         if (is_universe < 0)
2270                 goto error;
2271         if (is_universe) {
2272                 isl_map_free(context);
2273                 return map;
2274         }
2275
2276         equal = isl_map_plain_is_equal(map, context);
2277         if (equal < 0)
2278                 goto error;
2279         if (equal) {
2280                 isl_map *res = isl_map_universe(isl_map_get_space(map));
2281                 isl_map_free(map);
2282                 isl_map_free(context);
2283                 return res;
2284         }
2285
2286         context = isl_map_compute_divs(context);
2287         return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
2288 error:
2289         isl_map_free(map);
2290         isl_map_free(context);
2291         return NULL;
2292 }
2293
2294 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2295         __isl_take isl_map *context)
2296 {
2297         return isl_map_align_params_map_map_and(map, context, &map_gist);
2298 }
2299
2300 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2301                                                 struct isl_basic_set *context)
2302 {
2303         return (struct isl_basic_set *)isl_basic_map_gist(
2304                 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2305 }
2306
2307 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2308         __isl_take isl_basic_set *context)
2309 {
2310         return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2311                                         (struct isl_basic_map *)context);
2312 }
2313
2314 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2315         __isl_take isl_basic_set *context)
2316 {
2317         isl_space *space = isl_set_get_space(set);
2318         isl_basic_set *dom_context = isl_basic_set_universe(space);
2319         dom_context = isl_basic_set_intersect_params(dom_context, context);
2320         return isl_set_gist_basic_set(set, dom_context);
2321 }
2322
2323 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2324         __isl_take isl_set *context)
2325 {
2326         return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2327                                         (struct isl_map *)context);
2328 }
2329
2330 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2331         __isl_take isl_set *context)
2332 {
2333         isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2334         map_context = isl_map_intersect_domain(map_context, context);
2335         return isl_map_gist(map, map_context);
2336 }
2337
2338 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2339         __isl_take isl_set *context)
2340 {
2341         isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2342         map_context = isl_map_intersect_range(map_context, context);
2343         return isl_map_gist(map, map_context);
2344 }
2345
2346 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2347         __isl_take isl_set *context)
2348 {
2349         isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2350         map_context = isl_map_intersect_params(map_context, context);
2351         return isl_map_gist(map, map_context);
2352 }
2353
2354 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2355         __isl_take isl_set *context)
2356 {
2357         return isl_map_gist_params(set, context);
2358 }
2359
2360 /* Quick check to see if two basic maps are disjoint.
2361  * In particular, we reduce the equalities and inequalities of
2362  * one basic map in the context of the equalities of the other
2363  * basic map and check if we get a contradiction.
2364  */
2365 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2366         __isl_keep isl_basic_map *bmap2)
2367 {
2368         struct isl_vec *v = NULL;
2369         int *elim = NULL;
2370         unsigned total;
2371         int i;
2372
2373         if (!bmap1 || !bmap2)
2374                 return -1;
2375         isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2376                         return -1);
2377         if (bmap1->n_div || bmap2->n_div)
2378                 return 0;
2379         if (!bmap1->n_eq && !bmap2->n_eq)
2380                 return 0;
2381
2382         total = isl_space_dim(bmap1->dim, isl_dim_all);
2383         if (total == 0)
2384                 return 0;
2385         v = isl_vec_alloc(bmap1->ctx, 1 + total);
2386         if (!v)
2387                 goto error;
2388         elim = isl_alloc_array(bmap1->ctx, int, total);
2389         if (!elim)
2390                 goto error;
2391         compute_elimination_index(bmap1, elim);
2392         for (i = 0; i < bmap2->n_eq; ++i) {
2393                 int reduced;
2394                 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2395                                                         bmap1, elim);
2396                 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2397                     isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2398                         goto disjoint;
2399         }
2400         for (i = 0; i < bmap2->n_ineq; ++i) {
2401                 int reduced;
2402                 reduced = reduced_using_equalities(v->block.data,
2403                                                 bmap2->ineq[i], bmap1, elim);
2404                 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2405                     isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2406                         goto disjoint;
2407         }
2408         compute_elimination_index(bmap2, elim);
2409         for (i = 0; i < bmap1->n_ineq; ++i) {
2410                 int reduced;
2411                 reduced = reduced_using_equalities(v->block.data,
2412                                                 bmap1->ineq[i], bmap2, elim);
2413                 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2414                     isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2415                         goto disjoint;
2416         }
2417         isl_vec_free(v);
2418         free(elim);
2419         return 0;
2420 disjoint:
2421         isl_vec_free(v);
2422         free(elim);
2423         return 1;
2424 error:
2425         isl_vec_free(v);
2426         free(elim);
2427         return -1;
2428 }
2429
2430 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2431         __isl_keep isl_basic_set *bset2)
2432 {
2433         return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2434                                               (struct isl_basic_map *)bset2);
2435 }
2436
2437 /* Are "map1" and "map2" obviously disjoint?
2438  *
2439  * If one of them is empty or if they live in different spaces (ignoring
2440  * parameters), then they are clearly disjoint.
2441  *
2442  * If they have different parameters, then we skip any further tests.
2443  *
2444  * If they are obviously equal, but not obviously empty, then we will
2445  * not be able to detect if they are disjoint.
2446  *
2447  * Otherwise we check if each basic map in "map1" is obviously disjoint
2448  * from each basic map in "map2".
2449  */
2450 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2451         __isl_keep isl_map *map2)
2452 {
2453         int i, j;
2454         int disjoint;
2455         int intersect;
2456         int match;
2457
2458         if (!map1 || !map2)
2459                 return -1;
2460
2461         disjoint = isl_map_plain_is_empty(map1);
2462         if (disjoint < 0 || disjoint)
2463                 return disjoint;
2464
2465         disjoint = isl_map_plain_is_empty(map2);
2466         if (disjoint < 0 || disjoint)
2467                 return disjoint;
2468
2469         match = isl_space_tuple_match(map1->dim, isl_dim_in,
2470                                 map2->dim, isl_dim_in);
2471         if (match < 0 || !match)
2472                 return match < 0 ? -1 : 1;
2473
2474         match = isl_space_tuple_match(map1->dim, isl_dim_out,
2475                                 map2->dim, isl_dim_out);
2476         if (match < 0 || !match)
2477                 return match < 0 ? -1 : 1;
2478
2479         match = isl_space_match(map1->dim, isl_dim_param,
2480                                 map2->dim, isl_dim_param);
2481         if (match < 0 || !match)
2482                 return match < 0 ? -1 : 0;
2483
2484         intersect = isl_map_plain_is_equal(map1, map2);
2485         if (intersect < 0 || intersect)
2486                 return intersect < 0 ? -1 : 0;
2487
2488         for (i = 0; i < map1->n; ++i) {
2489                 for (j = 0; j < map2->n; ++j) {
2490                         int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2491                                                                map2->p[j]);
2492                         if (d != 1)
2493                                 return d;
2494                 }
2495         }
2496         return 1;
2497 }
2498
2499 /* Are "map1" and "map2" disjoint?
2500  *
2501  * They are disjoint if they are "obviously disjoint" or if one of them
2502  * is empty.  Otherwise, they are not disjoint if one of them is universal.
2503  * If none of these cases apply, we compute the intersection and see if
2504  * the result is empty.
2505  */
2506 int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2507 {
2508         int disjoint;
2509         int intersect;
2510         isl_map *test;
2511
2512         disjoint = isl_map_plain_is_disjoint(map1, map2);
2513         if (disjoint < 0 || disjoint)
2514                 return disjoint;
2515
2516         disjoint = isl_map_is_empty(map1);
2517         if (disjoint < 0 || disjoint)
2518                 return disjoint;
2519
2520         disjoint = isl_map_is_empty(map2);
2521         if (disjoint < 0 || disjoint)
2522                 return disjoint;
2523
2524         intersect = isl_map_plain_is_universe(map1);
2525         if (intersect < 0 || intersect)
2526                 return intersect < 0 ? -1 : 0;
2527
2528         intersect = isl_map_plain_is_universe(map2);
2529         if (intersect < 0 || intersect)
2530                 return intersect < 0 ? -1 : 0;
2531
2532         test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2533         disjoint = isl_map_is_empty(test);
2534         isl_map_free(test);
2535
2536         return disjoint;
2537 }
2538
2539 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2540         __isl_keep isl_set *set2)
2541 {
2542         return isl_map_plain_is_disjoint((struct isl_map *)set1,
2543                                         (struct isl_map *)set2);
2544 }
2545
2546 /* Are "set1" and "set2" disjoint?
2547  */
2548 int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2549 {
2550         return isl_map_is_disjoint(set1, set2);
2551 }
2552
2553 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2554 {
2555         return isl_set_plain_is_disjoint(set1, set2);
2556 }
2557
2558 /* Check if we can combine a given div with lower bound l and upper
2559  * bound u with some other div and if so return that other div.
2560  * Otherwise return -1.
2561  *
2562  * We first check that
2563  *      - the bounds are opposites of each other (except for the constant
2564  *        term)
2565  *      - the bounds do not reference any other div
2566  *      - no div is defined in terms of this div
2567  *
2568  * Let m be the size of the range allowed on the div by the bounds.
2569  * That is, the bounds are of the form
2570  *
2571  *      e <= a <= e + m - 1
2572  *
2573  * with e some expression in the other variables.
2574  * We look for another div b such that no third div is defined in terms
2575  * of this second div b and such that in any constraint that contains
2576  * a (except for the given lower and upper bound), also contains b
2577  * with a coefficient that is m times that of b.
2578  * That is, all constraints (execpt for the lower and upper bound)
2579  * are of the form
2580  *
2581  *      e + f (a + m b) >= 0
2582  *
2583  * If so, we return b so that "a + m b" can be replaced by
2584  * a single div "c = a + m b".
2585  */
2586 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2587         unsigned div, unsigned l, unsigned u)
2588 {
2589         int i, j;
2590         unsigned dim;
2591         int coalesce = -1;
2592
2593         if (bmap->n_div <= 1)
2594                 return -1;
2595         dim = isl_space_dim(bmap->dim, isl_dim_all);
2596         if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2597                 return -1;
2598         if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2599                                    bmap->n_div - div - 1) != -1)
2600                 return -1;
2601         if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2602                             dim + bmap->n_div))
2603                 return -1;
2604
2605         for (i = 0; i < bmap->n_div; ++i) {
2606                 if (isl_int_is_zero(bmap->div[i][0]))
2607                         continue;
2608                 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2609                         return -1;
2610         }
2611
2612         isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2613         if (isl_int_is_neg(bmap->ineq[l][0])) {
2614                 isl_int_sub(bmap->ineq[l][0],
2615                             bmap->ineq[l][0], bmap->ineq[u][0]);
2616                 bmap = isl_basic_map_copy(bmap);
2617                 bmap = isl_basic_map_set_to_empty(bmap);
2618                 isl_basic_map_free(bmap);
2619                 return -1;
2620         }
2621         isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2622         for (i = 0; i < bmap->n_div; ++i) {
2623                 if (i == div)
2624                         continue;
2625                 if (!pairs[i])
2626                         continue;
2627                 for (j = 0; j < bmap->n_div; ++j) {
2628                         if (isl_int_is_zero(bmap->div[j][0]))
2629                                 continue;
2630                         if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2631                                 break;
2632                 }
2633                 if (j < bmap->n_div)
2634                         continue;
2635                 for (j = 0; j < bmap->n_ineq; ++j) {
2636                         int valid;
2637                         if (j == l || j == u)
2638                                 continue;
2639                         if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2640                                 continue;
2641                         if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2642                                 break;
2643                         isl_int_mul(bmap->ineq[j][1 + dim + div],
2644                                     bmap->ineq[j][1 + dim + div],
2645                                     bmap->ineq[l][0]);
2646                         valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2647                                            bmap->ineq[j][1 + dim + i]);
2648                         isl_int_divexact(bmap->ineq[j][1 + dim + div],
2649                                          bmap->ineq[j][1 + dim + div],
2650                                          bmap->ineq[l][0]);
2651                         if (!valid)
2652                                 break;
2653                 }
2654                 if (j < bmap->n_ineq)
2655                         continue;
2656                 coalesce = i;
2657                 break;
2658         }
2659         isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2660         isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2661         return coalesce;
2662 }
2663
2664 /* Given a lower and an upper bound on div i, construct an inequality
2665  * that when nonnegative ensures that this pair of bounds always allows
2666  * for an integer value of the given div.
2667  * The lower bound is inequality l, while the upper bound is inequality u.
2668  * The constructed inequality is stored in ineq.
2669  * g, fl, fu are temporary scalars.
2670  *
2671  * Let the upper bound be
2672  *
2673  *      -n_u a + e_u >= 0
2674  *
2675  * and the lower bound
2676  *
2677  *      n_l a + e_l >= 0
2678  *
2679  * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2680  * We have
2681  *
2682  *      - f_u e_l <= f_u f_l g a <= f_l e_u
2683  *
2684  * Since all variables are integer valued, this is equivalent to
2685  *
2686  *      - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2687  *
2688  * If this interval is at least f_u f_l g, then it contains at least
2689  * one integer value for a.
2690  * That is, the test constraint is
2691  *
2692  *      f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2693  */
2694 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2695         int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2696 {
2697         unsigned dim;
2698         dim = isl_space_dim(bmap->dim, isl_dim_all);
2699
2700         isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2701         isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2702         isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2703         isl_int_neg(fu, fu);
2704         isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2705                         1 + dim + bmap->n_div);
2706         isl_int_add(ineq[0], ineq[0], fl);
2707         isl_int_add(ineq[0], ineq[0], fu);
2708         isl_int_sub_ui(ineq[0], ineq[0], 1);
2709         isl_int_mul(g, g, fl);
2710         isl_int_mul(g, g, fu);
2711         isl_int_sub(ineq[0], ineq[0], g);
2712 }
2713
2714 /* Remove more kinds of divs that are not strictly needed.
2715  * In particular, if all pairs of lower and upper bounds on a div
2716  * are such that they allow at least one integer value of the div,
2717  * the we can eliminate the div using Fourier-Motzkin without
2718  * introducing any spurious solutions.
2719  */
2720 static struct isl_basic_map *drop_more_redundant_divs(
2721         struct isl_basic_map *bmap, int *pairs, int n)
2722 {
2723         struct isl_tab *tab = NULL;
2724         struct isl_vec *vec = NULL;
2725         unsigned dim;
2726         int remove = -1;
2727         isl_int g, fl, fu;
2728
2729         isl_int_init(g);
2730         isl_int_init(fl);
2731         isl_int_init(fu);
2732
2733         if (!bmap)
2734                 goto error;
2735
2736         dim = isl_space_dim(bmap->dim, isl_dim_all);
2737         vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2738         if (!vec)
2739                 goto error;
2740
2741         tab = isl_tab_from_basic_map(bmap, 0);
2742
2743         while (n > 0) {
2744                 int i, l, u;
2745                 int best = -1;
2746                 enum isl_lp_result res;
2747
2748                 for (i = 0; i < bmap->n_div; ++i) {
2749                         if (!pairs[i])
2750                                 continue;
2751                         if (best >= 0 && pairs[best] <= pairs[i])
2752                                 continue;
2753                         best = i;
2754                 }
2755
2756                 i = best;
2757                 for (l = 0; l < bmap->n_ineq; ++l) {
2758                         if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2759                                 continue;
2760                         for (u = 0; u < bmap->n_ineq; ++u) {
2761                                 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2762                                         continue;
2763                                 construct_test_ineq(bmap, i, l, u,
2764                                                     vec->el, g, fl, fu);
2765                                 res = isl_tab_min(tab, vec->el,
2766                                                   bmap->ctx->one, &g, NULL, 0);
2767                                 if (res == isl_lp_error)
2768                                         goto error;
2769                                 if (res == isl_lp_empty) {
2770                                         bmap = isl_basic_map_set_to_empty(bmap);
2771                                         break;
2772                                 }
2773                                 if (res != isl_lp_ok || isl_int_is_neg(g))
2774                                         break;
2775                         }
2776                         if (u < bmap->n_ineq)
2777                                 break;
2778                 }
2779                 if (l == bmap->n_ineq) {
2780                         remove = i;
2781                         break;
2782                 }
2783                 pairs[i] = 0;
2784                 --n;
2785         }
2786
2787         isl_tab_free(tab);
2788         isl_vec_free(vec);
2789
2790         isl_int_clear(g);
2791         isl_int_clear(fl);
2792         isl_int_clear(fu);
2793
2794         free(pairs);
2795
2796         if (remove < 0)
2797                 return bmap;
2798
2799         bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2800         return isl_basic_map_drop_redundant_divs(bmap);
2801 error:
2802         free(pairs);
2803         isl_basic_map_free(bmap);
2804         isl_tab_free(tab);
2805         isl_vec_free(vec);
2806         isl_int_clear(g);
2807         isl_int_clear(fl);
2808         isl_int_clear(fu);
2809         return NULL;
2810 }
2811
2812 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2813  * and the upper bound u, div1 always occurs together with div2 in the form 
2814  * (div1 + m div2), where m is the constant range on the variable div1
2815  * allowed by l and u, replace the pair div1 and div2 by a single
2816  * div that is equal to div1 + m div2.
2817  *
2818  * The new div will appear in the location that contains div2.
2819  * We need to modify all constraints that contain
2820  * div2 = (div - div1) / m
2821  * (If a constraint does not contain div2, it will also not contain div1.)
2822  * If the constraint also contains div1, then we know they appear
2823  * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2824  * i.e., the coefficient of div is f.
2825  *
2826  * Otherwise, we first need to introduce div1 into the constraint.
2827  * Let the l be
2828  *
2829  *      div1 + f >=0
2830  *
2831  * and u
2832  *
2833  *      -div1 + f' >= 0
2834  *
2835  * A lower bound on div2
2836  *
2837  *      n div2 + t >= 0
2838  *
2839  * can be replaced by
2840  *
2841  *      (n * (m div 2 + div1) + m t + n f)/g >= 0
2842  *
2843  * with g = gcd(m,n).
2844  * An upper bound
2845  *
2846  *      -n div2 + t >= 0
2847  *
2848  * can be replaced by
2849  *
2850  *      (-n * (m div2 + div1) + m t + n f')/g >= 0
2851  *
2852  * These constraint are those that we would obtain from eliminating
2853  * div1 using Fourier-Motzkin.
2854  *
2855  * After all constraints have been modified, we drop the lower and upper
2856  * bound and then drop div1.
2857  */
2858 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2859         unsigned div1, unsigned div2, unsigned l, unsigned u)
2860 {
2861         isl_int a;
2862         isl_int b;
2863         isl_int m;
2864         unsigned dim, total;
2865         int i;
2866
2867         dim = isl_space_dim(bmap->dim, isl_dim_all);
2868         total = 1 + dim + bmap->n_div;
2869
2870         isl_int_init(a);
2871         isl_int_init(b);
2872         isl_int_init(m);
2873         isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2874         isl_int_add_ui(m, m, 1);
2875
2876         for (i = 0; i < bmap->n_ineq; ++i) {
2877                 if (i == l || i == u)
2878                         continue;
2879                 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2880                         continue;
2881                 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2882                         isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2883                         isl_int_divexact(a, m, b);
2884                         isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2885                         if (isl_int_is_pos(b)) {
2886                                 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2887                                                 b, bmap->ineq[l], total);
2888                         } else {
2889                                 isl_int_neg(b, b);
2890                                 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2891                                                 b, bmap->ineq[u], total);
2892                         }
2893                 }
2894                 isl_int_set(bmap->ineq[i][1 + dim + div2],
2895                             bmap->ineq[i][1 + dim + div1]);
2896                 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2897         }
2898
2899         isl_int_clear(a);
2900         isl_int_clear(b);
2901         isl_int_clear(m);
2902         if (l > u) {
2903                 isl_basic_map_drop_inequality(bmap, l);
2904                 isl_basic_map_drop_inequality(bmap, u);
2905         } else {
2906                 isl_basic_map_drop_inequality(bmap, u);
2907                 isl_basic_map_drop_inequality(bmap, l);
2908         }
2909         bmap = isl_basic_map_drop_div(bmap, div1);
2910         return bmap;
2911 }
2912
2913 /* First check if we can coalesce any pair of divs and
2914  * then continue with dropping more redundant divs.
2915  *
2916  * We loop over all pairs of lower and upper bounds on a div
2917  * with coefficient 1 and -1, respectively, check if there
2918  * is any other div "c" with which we can coalesce the div
2919  * and if so, perform the coalescing.
2920  */
2921 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2922         struct isl_basic_map *bmap, int *pairs, int n)
2923 {
2924         int i, l, u;
2925         unsigned dim;
2926
2927         dim = isl_space_dim(bmap->dim, isl_dim_all);
2928
2929         for (i = 0; i < bmap->n_div; ++i) {
2930                 if (!pairs[i])
2931                         continue;
2932                 for (l = 0; l < bmap->n_ineq; ++l) {
2933                         if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2934                                 continue;
2935                         for (u = 0; u < bmap->n_ineq; ++u) {
2936                                 int c;
2937
2938                                 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2939                                         continue;
2940                                 c = div_find_coalesce(bmap, pairs, i, l, u);
2941                                 if (c < 0)
2942                                         continue;
2943                                 free(pairs);
2944                                 bmap = coalesce_divs(bmap, i, c, l, u);
2945                                 return isl_basic_map_drop_redundant_divs(bmap);
2946                         }
2947                 }
2948         }
2949
2950         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2951                 return bmap;
2952
2953         return drop_more_redundant_divs(bmap, pairs, n);
2954 }
2955
2956 /* Remove divs that are not strictly needed.
2957  * In particular, if a div only occurs positively (or negatively)
2958  * in constraints, then it can simply be dropped.
2959  * Also, if a div occurs in only two constraints and if moreover
2960  * those two constraints are opposite to each other, except for the constant
2961  * term and if the sum of the constant terms is such that for any value
2962  * of the other values, there is always at least one integer value of the
2963  * div, i.e., if one plus this sum is greater than or equal to
2964  * the (absolute value) of the coefficent of the div in the constraints,
2965  * then we can also simply drop the div.
2966  *
2967  * We skip divs that appear in equalities or in the definition of other divs.
2968  * Divs that appear in the definition of other divs usually occur in at least
2969  * 4 constraints, but the constraints may have been simplified.
2970  *
2971  * If any divs are left after these simple checks then we move on
2972  * to more complicated cases in drop_more_redundant_divs.
2973  */
2974 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2975         struct isl_basic_map *bmap)
2976 {
2977         int i, j;
2978         unsigned off;
2979         int *pairs = NULL;
2980         int n = 0;
2981
2982         if (!bmap)
2983                 goto error;
2984
2985         off = isl_space_dim(bmap->dim, isl_dim_all);
2986         pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2987         if (!pairs)
2988                 goto error;
2989
2990         for (i = 0; i < bmap->n_div; ++i) {
2991                 int pos, neg;
2992                 int last_pos, last_neg;
2993                 int redundant;
2994                 int defined;
2995
2996                 defined = !isl_int_is_zero(bmap->div[i][0]);
2997                 for (j = i; j < bmap->n_div; ++j)
2998                         if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
2999                                 break;
3000                 if (j < bmap->n_div)
3001                         continue;
3002                 for (j = 0; j < bmap->n_eq; ++j)
3003                         if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3004                                 break;
3005                 if (j < bmap->n_eq)
3006                         continue;
3007                 ++n;
3008                 pos = neg = 0;
3009                 for (j = 0; j < bmap->n_ineq; ++j) {
3010                         if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3011                                 last_pos = j;
3012                                 ++pos;
3013                         }
3014                         if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3015                                 last_neg = j;
3016                                 ++neg;
3017                         }
3018                 }
3019                 pairs[i] = pos * neg;
3020                 if (pairs[i] == 0) {
3021                         for (j = bmap->n_ineq - 1; j >= 0; --j)
3022                                 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3023                                         isl_basic_map_drop_inequality(bmap, j);
3024                         bmap = isl_basic_map_drop_div(bmap, i);
3025                         free(pairs);
3026                         return isl_basic_map_drop_redundant_divs(bmap);
3027                 }
3028                 if (pairs[i] != 1)
3029                         continue;
3030                 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3031                                     bmap->ineq[last_neg] + 1,
3032                                     off + bmap->n_div))
3033                         continue;
3034
3035                 isl_int_add(bmap->ineq[last_pos][0],
3036                             bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3037                 isl_int_add_ui(bmap->ineq[last_pos][0],
3038                                bmap->ineq[last_pos][0], 1);
3039                 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3040                                 bmap->ineq[last_pos][1+off+i]);
3041                 isl_int_sub_ui(bmap->ineq[last_pos][0],
3042                                bmap->ineq[last_pos][0], 1);
3043                 isl_int_sub(bmap->ineq[last_pos][0],
3044                             bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3045                 if (!redundant) {
3046                         if (defined ||
3047                             !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3048                                 pairs[i] = 0;
3049                                 --n;
3050                                 continue;
3051                         }
3052                         bmap = set_div_from_lower_bound(bmap, i, last_pos);
3053                         bmap = isl_basic_map_simplify(bmap);
3054                         free(pairs);
3055                         return isl_basic_map_drop_redundant_divs(bmap);
3056                 }
3057                 if (last_pos > last_neg) {
3058                         isl_basic_map_drop_inequality(bmap, last_pos);
3059                         isl_basic_map_drop_inequality(bmap, last_neg);
3060                 } else {
3061                         isl_basic_map_drop_inequality(bmap, last_neg);
3062                         isl_basic_map_drop_inequality(bmap, last_pos);
3063                 }
3064                 bmap = isl_basic_map_drop_div(bmap, i);
3065                 free(pairs);
3066                 return isl_basic_map_drop_redundant_divs(bmap);
3067         }
3068
3069         if (n > 0)
3070                 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3071
3072         free(pairs);
3073         return bmap;
3074 error:
3075         free(pairs);
3076         isl_basic_map_free(bmap);
3077         return NULL;
3078 }
3079
3080 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3081         struct isl_basic_set *bset)
3082 {
3083         return (struct isl_basic_set *)
3084             isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3085 }
3086
3087 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3088 {
3089         int i;
3090
3091         if (!map)
3092                 return NULL;
3093         for (i = 0; i < map->n; ++i) {
3094                 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3095                 if (!map->p[i])
3096                         goto error;
3097         }
3098         ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3099         return map;
3100 error:
3101         isl_map_free(map);
3102         return NULL;
3103 }
3104
3105 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3106 {
3107         return (struct isl_set *)
3108             isl_map_drop_redundant_divs((struct isl_map *)set);
3109 }