2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_equalities.h"
12 #include "isl_map_private.h"
16 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
18 isl_int *t = bmap->eq[a];
19 bmap->eq[a] = bmap->eq[b];
23 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
26 isl_int *t = bmap->ineq[a];
27 bmap->ineq[a] = bmap->ineq[b];
32 static void set_swap_inequality(struct isl_basic_set *bset, int a, int b)
34 swap_inequality((struct isl_basic_map *)bset, a, b);
37 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
39 isl_seq_cpy(c, c + n, rem);
40 isl_seq_clr(c + rem, n);
43 /* Drop n dimensions starting at first.
45 * In principle, this frees up some extra variables as the number
46 * of columns remains constant, but we would have to extend
47 * the div array too as the number of rows in this array is assumed
48 * to be equal to extra.
50 struct isl_basic_set *isl_basic_set_drop_dims(
51 struct isl_basic_set *bset, unsigned first, unsigned n)
58 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
63 bset = isl_basic_set_cow(bset);
67 for (i = 0; i < bset->n_eq; ++i)
68 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
69 (bset->dim->n_out-first-n)+bset->extra);
71 for (i = 0; i < bset->n_ineq; ++i)
72 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
73 (bset->dim->n_out-first-n)+bset->extra);
75 for (i = 0; i < bset->n_div; ++i)
76 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
77 (bset->dim->n_out-first-n)+bset->extra);
79 bset->dim = isl_dim_drop_outputs(bset->dim, first, n);
83 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
84 bset = isl_basic_set_simplify(bset);
85 return isl_basic_set_finalize(bset);
87 isl_basic_set_free(bset);
91 struct isl_set *isl_set_drop_dims(
92 struct isl_set *set, unsigned first, unsigned n)
99 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
103 set = isl_set_cow(set);
106 set->dim = isl_dim_drop_outputs(set->dim, first, n);
110 for (i = 0; i < set->n; ++i) {
111 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
116 ISL_F_CLR(set, ISL_SET_NORMALIZED);
123 /* Move "n" divs starting at "first" to the end of the list of divs.
125 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
126 unsigned first, unsigned n)
131 if (first + n == bmap->n_div)
134 div = isl_alloc_array(bmap->ctx, isl_int *, n);
137 for (i = 0; i < n; ++i)
138 div[i] = bmap->div[first + i];
139 for (i = 0; i < bmap->n_div - first - n; ++i)
140 bmap->div[first + i] = bmap->div[first + n + i];
141 for (i = 0; i < n; ++i)
142 bmap->div[bmap->n_div - n + i] = div[i];
146 isl_basic_map_free(bmap);
150 /* Drop "n" dimensions of type "type" starting at "first".
152 * In principle, this frees up some extra variables as the number
153 * of columns remains constant, but we would have to extend
154 * the div array too as the number of rows in this array is assumed
155 * to be equal to extra.
157 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
158 enum isl_dim_type type, unsigned first, unsigned n)
168 dim = isl_basic_map_dim(bmap, type);
169 isl_assert(bmap->ctx, first + n <= dim, goto error);
174 bmap = isl_basic_map_cow(bmap);
178 offset = isl_basic_map_offset(bmap, type) + first;
179 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
180 for (i = 0; i < bmap->n_eq; ++i)
181 constraint_drop_vars(bmap->eq[i]+offset, n, left);
183 for (i = 0; i < bmap->n_ineq; ++i)
184 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
186 for (i = 0; i < bmap->n_div; ++i)
187 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
189 if (type == isl_dim_div) {
190 bmap = move_divs_last(bmap, first, n);
193 isl_basic_map_free_div(bmap, n);
195 bmap->dim = isl_dim_drop(bmap->dim, type, first, n);
199 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
200 bmap = isl_basic_map_simplify(bmap);
201 return isl_basic_map_finalize(bmap);
203 isl_basic_map_free(bmap);
207 struct isl_basic_map *isl_basic_map_drop_inputs(
208 struct isl_basic_map *bmap, unsigned first, unsigned n)
210 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
213 struct isl_map *isl_map_drop(struct isl_map *map,
214 enum isl_dim_type type, unsigned first, unsigned n)
221 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
225 map = isl_map_cow(map);
228 map->dim = isl_dim_drop(map->dim, type, first, n);
232 for (i = 0; i < map->n; ++i) {
233 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
237 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
245 struct isl_set *isl_set_drop(struct isl_set *set,
246 enum isl_dim_type type, unsigned first, unsigned n)
248 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
251 struct isl_map *isl_map_drop_inputs(
252 struct isl_map *map, unsigned first, unsigned n)
254 return isl_map_drop(map, isl_dim_in, first, n);
258 * We don't cow, as the div is assumed to be redundant.
260 static struct isl_basic_map *isl_basic_map_drop_div(
261 struct isl_basic_map *bmap, unsigned div)
269 pos = 1 + isl_dim_total(bmap->dim) + div;
271 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
273 for (i = 0; i < bmap->n_eq; ++i)
274 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
276 for (i = 0; i < bmap->n_ineq; ++i) {
277 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
278 isl_basic_map_drop_inequality(bmap, i);
282 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
285 for (i = 0; i < bmap->n_div; ++i)
286 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
288 if (div != bmap->n_div - 1) {
290 isl_int *t = bmap->div[div];
292 for (j = div; j < bmap->n_div - 1; ++j)
293 bmap->div[j] = bmap->div[j+1];
295 bmap->div[bmap->n_div - 1] = t;
297 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
298 isl_basic_map_free_div(bmap, 1);
302 isl_basic_map_free(bmap);
306 struct isl_basic_map *isl_basic_map_normalize_constraints(
307 struct isl_basic_map *bmap)
311 unsigned total = isl_basic_map_total_dim(bmap);
314 for (i = bmap->n_eq - 1; i >= 0; --i) {
315 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
316 if (isl_int_is_zero(gcd)) {
317 if (!isl_int_is_zero(bmap->eq[i][0])) {
318 bmap = isl_basic_map_set_to_empty(bmap);
321 isl_basic_map_drop_equality(bmap, i);
324 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
325 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
326 if (isl_int_is_one(gcd))
328 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
329 bmap = isl_basic_map_set_to_empty(bmap);
332 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
335 for (i = bmap->n_ineq - 1; i >= 0; --i) {
336 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
337 if (isl_int_is_zero(gcd)) {
338 if (isl_int_is_neg(bmap->ineq[i][0])) {
339 bmap = isl_basic_map_set_to_empty(bmap);
342 isl_basic_map_drop_inequality(bmap, i);
345 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
346 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
347 if (isl_int_is_one(gcd))
349 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
350 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
357 struct isl_basic_set *isl_basic_set_normalize_constraints(
358 struct isl_basic_set *bset)
360 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
361 (struct isl_basic_map *)bset);
364 /* Assumes divs have been ordered if keep_divs is set.
366 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
367 unsigned pos, isl_int *eq, int keep_divs, int *progress)
373 total = isl_basic_map_total_dim(bmap);
374 last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
376 for (k = 0; k < bmap->n_eq; ++k) {
377 if (bmap->eq[k] == eq)
379 if (isl_int_is_zero(bmap->eq[k][1+pos]))
383 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
386 for (k = 0; k < bmap->n_ineq; ++k) {
387 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
391 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
392 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
395 for (k = 0; k < bmap->n_div; ++k) {
396 if (isl_int_is_zero(bmap->div[k][0]))
398 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
402 /* We need to be careful about circular definitions,
403 * so for now we just remove the definition of div k
404 * if the equality contains any divs.
405 * If keep_divs is set, then the divs have been ordered
406 * and we can keep the definition as long as the result
409 if (last_div == -1 || (keep_divs && last_div < k))
410 isl_seq_elim(bmap->div[k]+1, eq,
411 1+pos, 1+total, &bmap->div[k][0]);
413 isl_seq_clr(bmap->div[k], 1 + total);
414 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
418 /* Assumes divs have been ordered if keep_divs is set.
420 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
421 unsigned div, int keep_divs)
423 unsigned pos = isl_dim_total(bmap->dim) + div;
425 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
427 isl_basic_map_drop_div(bmap, div);
430 /* Check if elimination of div "div" using equality "eq" would not
431 * result in a div depending on a later div.
433 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
438 unsigned pos = isl_dim_total(bmap->dim) + div;
440 last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
442 if (last_div < 0 || last_div <= div)
445 for (k = 0; k <= last_div; ++k) {
446 if (isl_int_is_zero(bmap->div[k][0]))
448 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
455 /* Elimininate divs based on equalities
457 static struct isl_basic_map *eliminate_divs_eq(
458 struct isl_basic_map *bmap, int *progress)
465 bmap = isl_basic_map_order_divs(bmap);
470 off = 1 + isl_dim_total(bmap->dim);
472 for (d = bmap->n_div - 1; d >= 0 ; --d) {
473 for (i = 0; i < bmap->n_eq; ++i) {
474 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
475 !isl_int_is_negone(bmap->eq[i][off + d]))
477 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
481 eliminate_div(bmap, bmap->eq[i], d, 1);
482 isl_basic_map_drop_equality(bmap, i);
487 return eliminate_divs_eq(bmap, progress);
491 /* Elimininate divs based on inequalities
493 static struct isl_basic_map *eliminate_divs_ineq(
494 struct isl_basic_map *bmap, int *progress)
505 off = 1 + isl_dim_total(bmap->dim);
507 for (d = bmap->n_div - 1; d >= 0 ; --d) {
508 for (i = 0; i < bmap->n_eq; ++i)
509 if (!isl_int_is_zero(bmap->eq[i][off + d]))
513 for (i = 0; i < bmap->n_ineq; ++i)
514 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
516 if (i < bmap->n_ineq)
519 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
520 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
522 bmap = isl_basic_map_drop_div(bmap, d);
529 struct isl_basic_map *isl_basic_map_gauss(
530 struct isl_basic_map *bmap, int *progress)
538 bmap = isl_basic_map_order_divs(bmap);
543 total = isl_basic_map_total_dim(bmap);
544 total_var = total - bmap->n_div;
546 last_var = total - 1;
547 for (done = 0; done < bmap->n_eq; ++done) {
548 for (; last_var >= 0; --last_var) {
549 for (k = done; k < bmap->n_eq; ++k)
550 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
558 swap_equality(bmap, k, done);
559 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
560 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
562 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
565 if (last_var >= total_var &&
566 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
567 unsigned div = last_var - total_var;
568 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
569 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
570 isl_int_set(bmap->div[div][0],
571 bmap->eq[done][1+last_var]);
572 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
575 if (done == bmap->n_eq)
577 for (k = done; k < bmap->n_eq; ++k) {
578 if (isl_int_is_zero(bmap->eq[k][0]))
580 return isl_basic_map_set_to_empty(bmap);
582 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
586 struct isl_basic_set *isl_basic_set_gauss(
587 struct isl_basic_set *bset, int *progress)
589 return (struct isl_basic_set*)isl_basic_map_gauss(
590 (struct isl_basic_map *)bset, progress);
594 static unsigned int round_up(unsigned int v)
605 static int hash_index(isl_int ***index, unsigned int size, int bits,
606 struct isl_basic_map *bmap, int k)
609 unsigned total = isl_basic_map_total_dim(bmap);
610 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
611 for (h = hash; index[h]; h = (h+1) % size)
612 if (&bmap->ineq[k] != index[h] &&
613 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
618 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
619 struct isl_basic_set *bset, int k)
621 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
624 /* If we can eliminate more than one div, then we need to make
625 * sure we do it from last div to first div, in order not to
626 * change the position of the other divs that still need to
629 static struct isl_basic_map *remove_duplicate_divs(
630 struct isl_basic_map *bmap, int *progress)
638 unsigned total_var = isl_dim_total(bmap->dim);
639 unsigned total = total_var + bmap->n_div;
642 if (bmap->n_div <= 1)
646 for (k = bmap->n_div - 1; k >= 0; --k)
647 if (!isl_int_is_zero(bmap->div[k][0]))
652 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
653 size = round_up(4 * bmap->n_div / 3 - 1);
654 bits = ffs(size) - 1;
655 index = isl_calloc_array(ctx, int, size);
658 eq = isl_blk_alloc(ctx, 1+total);
659 if (isl_blk_is_error(eq))
662 isl_seq_clr(eq.data, 1+total);
663 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
664 for (--k; k >= 0; --k) {
667 if (isl_int_is_zero(bmap->div[k][0]))
670 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
671 for (h = hash; index[h]; h = (h+1) % size)
672 if (isl_seq_eq(bmap->div[k],
673 bmap->div[index[h]-1], 2+total))
682 for (l = bmap->n_div - 1; l >= 0; --l) {
686 isl_int_set_si(eq.data[1+total_var+k], -1);
687 isl_int_set_si(eq.data[1+total_var+l], 1);
688 eliminate_div(bmap, eq.data, l, 0);
689 isl_int_set_si(eq.data[1+total_var+k], 0);
690 isl_int_set_si(eq.data[1+total_var+l], 0);
693 isl_blk_free(ctx, eq);
700 static int n_pure_div_eq(struct isl_basic_map *bmap)
705 total = isl_dim_total(bmap->dim);
706 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
707 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
711 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
717 /* Normalize divs that appear in equalities.
719 * In particular, we assume that bmap contains some equalities
724 * and we want to replace the set of e_i by a minimal set and
725 * such that the new e_i have a canonical representation in terms
727 * If any of the equalities involves more than one divs, then
728 * we currently simply bail out.
730 * Let us first additionally assume that all equalities involve
731 * a div. The equalities then express modulo constraints on the
732 * remaining variables and we can use "parameter compression"
733 * to find a minimal set of constraints. The result is a transformation
735 * x = T(x') = x_0 + G x'
737 * with G a lower-triangular matrix with all elements below the diagonal
738 * non-negative and smaller than the diagonal element on the same row.
739 * We first normalize x_0 by making the same property hold in the affine
741 * The rows i of G with a 1 on the diagonal do not impose any modulo
742 * constraint and simply express x_i = x'_i.
743 * For each of the remaining rows i, we introduce a div and a corresponding
744 * equality. In particular
746 * g_ii e_j = x_i - g_i(x')
748 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
749 * corresponding div (if g_kk != 1).
751 * If there are any equalities not involving any div, then we
752 * first apply a variable compression on the variables x:
754 * x = C x'' x'' = C_2 x
756 * and perform the above parameter compression on A C instead of on A.
757 * The resulting compression is then of the form
759 * x'' = T(x') = x_0 + G x'
761 * and in constructing the new divs and the corresponding equalities,
762 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
763 * by the corresponding row from C_2.
765 static struct isl_basic_map *normalize_divs(
766 struct isl_basic_map *bmap, int *progress)
773 struct isl_mat *T = NULL;
774 struct isl_mat *C = NULL;
775 struct isl_mat *C2 = NULL;
783 if (bmap->n_div == 0)
789 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
792 total = isl_dim_total(bmap->dim);
793 div_eq = n_pure_div_eq(bmap);
797 if (div_eq < bmap->n_eq) {
798 B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, div_eq,
799 bmap->n_eq - div_eq, 0, 1 + total);
800 C = isl_mat_variable_compression(B, &C2);
804 bmap = isl_basic_map_set_to_empty(bmap);
811 d = isl_vec_alloc(bmap->ctx, div_eq);
814 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
815 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
817 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
819 B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
822 B = isl_mat_product(B, C);
826 T = isl_mat_parameter_compression(B, d);
830 bmap = isl_basic_map_set_to_empty(bmap);
836 for (i = 0; i < T->n_row - 1; ++i) {
837 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
838 if (isl_int_is_zero(v))
840 isl_mat_col_submul(T, 0, v, 1 + i);
843 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
844 /* We have to be careful because dropping equalities may reorder them */
846 for (j = bmap->n_div - 1; j >= 0; --j) {
847 for (i = 0; i < bmap->n_eq; ++i)
848 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
850 if (i < bmap->n_eq) {
851 bmap = isl_basic_map_drop_div(bmap, j);
852 isl_basic_map_drop_equality(bmap, i);
858 for (i = 1; i < T->n_row; ++i) {
859 if (isl_int_is_one(T->row[i][i]))
864 if (needed > dropped) {
865 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
870 for (i = 1; i < T->n_row; ++i) {
871 if (isl_int_is_one(T->row[i][i]))
873 k = isl_basic_map_alloc_div(bmap);
874 pos[i] = 1 + total + k;
875 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
876 isl_int_set(bmap->div[k][0], T->row[i][i]);
878 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
880 isl_int_set_si(bmap->div[k][1 + i], 1);
881 for (j = 0; j < i; ++j) {
882 if (isl_int_is_zero(T->row[i][j]))
884 if (pos[j] < T->n_row && C2)
885 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
886 C2->row[pos[j]], 1 + total);
888 isl_int_neg(bmap->div[k][1 + pos[j]],
891 j = isl_basic_map_alloc_equality(bmap);
892 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
893 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
902 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
912 static struct isl_basic_map *set_div_from_lower_bound(
913 struct isl_basic_map *bmap, int div, int ineq)
915 unsigned total = 1 + isl_dim_total(bmap->dim);
917 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
918 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
919 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
920 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
921 isl_int_set_si(bmap->div[div][1 + total + div], 0);
926 /* Check whether it is ok to define a div based on an inequality.
927 * To avoid the introduction of circular definitions of divs, we
928 * do not allow such a definition if the resulting expression would refer to
929 * any other undefined divs or if any known div is defined in
930 * terms of the unknown div.
932 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
936 unsigned total = 1 + isl_dim_total(bmap->dim);
938 /* Not defined in terms of unknown divs */
939 for (j = 0; j < bmap->n_div; ++j) {
942 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
944 if (isl_int_is_zero(bmap->div[j][0]))
948 /* No other div defined in terms of this one => avoid loops */
949 for (j = 0; j < bmap->n_div; ++j) {
952 if (isl_int_is_zero(bmap->div[j][0]))
954 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
961 /* Given two constraints "k" and "l" that are opposite to each other,
962 * except for the constant term, check if we can use them
963 * to obtain an expression for one of the hitherto unknown divs.
964 * "sum" is the sum of the constant terms of the constraints.
965 * If this sum is strictly smaller than the coefficient of one
966 * of the divs, then this pair can be used define the div.
967 * To avoid the introduction of circular definitions of divs, we
968 * do not use the pair if the resulting expression would refer to
969 * any other undefined divs or if any known div is defined in
970 * terms of the unknown div.
972 static struct isl_basic_map *check_for_div_constraints(
973 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
976 unsigned total = 1 + isl_dim_total(bmap->dim);
978 for (i = 0; i < bmap->n_div; ++i) {
979 if (!isl_int_is_zero(bmap->div[i][0]))
981 if (isl_int_is_zero(bmap->ineq[k][total + i]))
983 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
985 if (!ok_to_set_div_from_bound(bmap, i, k))
987 if (isl_int_is_pos(bmap->ineq[k][total + i]))
988 bmap = set_div_from_lower_bound(bmap, i, k);
990 bmap = set_div_from_lower_bound(bmap, i, l);
998 static struct isl_basic_map *remove_duplicate_constraints(
999 struct isl_basic_map *bmap, int *progress)
1005 unsigned total = isl_basic_map_total_dim(bmap);
1008 if (bmap->n_ineq <= 1)
1011 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1012 bits = ffs(size) - 1;
1013 index = isl_calloc_array(ctx, isl_int **, size);
1017 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1018 for (k = 1; k < bmap->n_ineq; ++k) {
1019 h = hash_index(index, size, bits, bmap, k);
1021 index[h] = &bmap->ineq[k];
1026 l = index[h] - &bmap->ineq[0];
1027 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1028 swap_inequality(bmap, k, l);
1029 isl_basic_map_drop_inequality(bmap, k);
1033 for (k = 0; k < bmap->n_ineq-1; ++k) {
1034 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1035 h = hash_index(index, size, bits, bmap, k);
1036 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1039 l = index[h] - &bmap->ineq[0];
1040 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1041 if (isl_int_is_pos(sum)) {
1042 bmap = check_for_div_constraints(bmap, k, l, sum,
1046 if (isl_int_is_zero(sum)) {
1047 /* We need to break out of the loop after these
1048 * changes since the contents of the hash
1049 * will no longer be valid.
1050 * Plus, we probably we want to regauss first.
1054 isl_basic_map_drop_inequality(bmap, l);
1055 isl_basic_map_inequality_to_equality(bmap, k);
1057 bmap = isl_basic_map_set_to_empty(bmap);
1067 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1074 bmap = isl_basic_map_normalize_constraints(bmap);
1075 bmap = remove_duplicate_divs(bmap, &progress);
1076 bmap = eliminate_divs_eq(bmap, &progress);
1077 bmap = eliminate_divs_ineq(bmap, &progress);
1078 bmap = isl_basic_map_gauss(bmap, &progress);
1079 /* requires equalities in normal form */
1080 bmap = normalize_divs(bmap, &progress);
1081 bmap = remove_duplicate_constraints(bmap, &progress);
1086 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1088 return (struct isl_basic_set *)
1089 isl_basic_map_simplify((struct isl_basic_map *)bset);
1093 /* If the only constraints a div d=floor(f/m)
1094 * appears in are its two defining constraints
1097 * -(f - (m - 1)) + m d >= 0
1099 * then it can safely be removed.
1101 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1104 unsigned pos = 1 + isl_dim_total(bmap->dim) + div;
1106 for (i = 0; i < bmap->n_eq; ++i)
1107 if (!isl_int_is_zero(bmap->eq[i][pos]))
1110 for (i = 0; i < bmap->n_ineq; ++i) {
1111 if (isl_int_is_zero(bmap->ineq[i][pos]))
1113 if (isl_int_eq(bmap->ineq[i][pos], bmap->div[div][0])) {
1115 isl_int_sub(bmap->div[div][1],
1116 bmap->div[div][1], bmap->div[div][0]);
1117 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1118 neg = isl_seq_is_neg(bmap->ineq[i], bmap->div[div]+1, pos);
1119 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1120 isl_int_add(bmap->div[div][1],
1121 bmap->div[div][1], bmap->div[div][0]);
1124 if (isl_seq_first_non_zero(bmap->ineq[i]+pos+1,
1125 bmap->n_div-div-1) != -1)
1127 } else if (isl_int_abs_eq(bmap->ineq[i][pos], bmap->div[div][0])) {
1128 if (!isl_seq_eq(bmap->ineq[i], bmap->div[div]+1, pos))
1130 if (isl_seq_first_non_zero(bmap->ineq[i]+pos+1,
1131 bmap->n_div-div-1) != -1)
1137 for (i = 0; i < bmap->n_div; ++i)
1138 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1145 * Remove divs that don't occur in any of the constraints or other divs.
1146 * These can arise when dropping some of the variables in a quast
1147 * returned by piplib.
1149 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1156 for (i = bmap->n_div-1; i >= 0; --i) {
1157 if (!div_is_redundant(bmap, i))
1159 bmap = isl_basic_map_drop_div(bmap, i);
1164 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1166 bmap = remove_redundant_divs(bmap);
1169 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1173 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1175 return (struct isl_basic_set *)
1176 isl_basic_map_finalize((struct isl_basic_map *)bset);
1179 struct isl_set *isl_set_finalize(struct isl_set *set)
1185 for (i = 0; i < set->n; ++i) {
1186 set->p[i] = isl_basic_set_finalize(set->p[i]);
1196 struct isl_map *isl_map_finalize(struct isl_map *map)
1202 for (i = 0; i < map->n; ++i) {
1203 map->p[i] = isl_basic_map_finalize(map->p[i]);
1207 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1215 /* Remove definition of any div that is defined in terms of the given variable.
1216 * The div itself is not removed. Functions such as
1217 * eliminate_divs_ineq depend on the other divs remaining in place.
1219 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1224 for (i = 0; i < bmap->n_div; ++i) {
1225 if (isl_int_is_zero(bmap->div[i][0]))
1227 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1229 isl_int_set_si(bmap->div[i][0], 0);
1234 /* Eliminate the specified variables from the constraints using
1235 * Fourier-Motzkin. The variables themselves are not removed.
1237 struct isl_basic_map *isl_basic_map_eliminate_vars(
1238 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1248 total = isl_basic_map_total_dim(bmap);
1250 bmap = isl_basic_map_cow(bmap);
1251 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1252 bmap = remove_dependent_vars(bmap, d);
1254 for (d = pos + n - 1;
1255 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1256 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1257 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1258 int n_lower, n_upper;
1261 for (i = 0; i < bmap->n_eq; ++i) {
1262 if (isl_int_is_zero(bmap->eq[i][1+d]))
1264 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1265 isl_basic_map_drop_equality(bmap, i);
1272 for (i = 0; i < bmap->n_ineq; ++i) {
1273 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1275 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1278 bmap = isl_basic_map_extend_constraints(bmap,
1279 0, n_lower * n_upper);
1280 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1282 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1285 for (j = 0; j < i; ++j) {
1286 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1289 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1290 isl_int_sgn(bmap->ineq[j][1+d]))
1292 k = isl_basic_map_alloc_inequality(bmap);
1295 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1297 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1298 1+d, 1+total, NULL);
1300 isl_basic_map_drop_inequality(bmap, i);
1303 if (n_lower > 0 && n_upper > 0) {
1304 bmap = isl_basic_map_normalize_constraints(bmap);
1305 bmap = remove_duplicate_constraints(bmap, NULL);
1306 bmap = isl_basic_map_gauss(bmap, NULL);
1307 bmap = isl_basic_map_convex_hull(bmap);
1310 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1314 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1317 isl_basic_map_free(bmap);
1321 struct isl_basic_set *isl_basic_set_eliminate_vars(
1322 struct isl_basic_set *bset, unsigned pos, unsigned n)
1324 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1325 (struct isl_basic_map *)bset, pos, n);
1328 /* Don't assume equalities are in order, because align_divs
1329 * may have changed the order of the divs.
1331 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1336 total = isl_dim_total(bmap->dim);
1337 for (d = 0; d < total; ++d)
1339 for (i = 0; i < bmap->n_eq; ++i) {
1340 for (d = total - 1; d >= 0; --d) {
1341 if (isl_int_is_zero(bmap->eq[i][1+d]))
1349 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1351 compute_elimination_index((struct isl_basic_map *)bset, elim);
1354 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1355 struct isl_basic_map *bmap, int *elim)
1361 total = isl_dim_total(bmap->dim);
1362 for (d = total - 1; d >= 0; --d) {
1363 if (isl_int_is_zero(src[1+d]))
1368 isl_seq_cpy(dst, src, 1 + total);
1371 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1376 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1377 struct isl_basic_set *bset, int *elim)
1379 return reduced_using_equalities(dst, src,
1380 (struct isl_basic_map *)bset, elim);
1383 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1384 struct isl_basic_set *bset, struct isl_basic_set *context)
1389 if (!bset || !context)
1392 bset = isl_basic_set_cow(bset);
1396 elim = isl_alloc_array(ctx, int, isl_basic_set_n_dim(bset));
1399 set_compute_elimination_index(context, elim);
1400 for (i = 0; i < bset->n_eq; ++i)
1401 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1403 for (i = 0; i < bset->n_ineq; ++i)
1404 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1406 isl_basic_set_free(context);
1408 bset = isl_basic_set_simplify(bset);
1409 bset = isl_basic_set_finalize(bset);
1412 isl_basic_set_free(bset);
1413 isl_basic_set_free(context);
1417 static struct isl_basic_set *remove_shifted_constraints(
1418 struct isl_basic_set *bset, struct isl_basic_set *context)
1428 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1429 bits = ffs(size) - 1;
1430 index = isl_calloc_array(ctx, isl_int **, size);
1434 for (k = 0; k < context->n_ineq; ++k) {
1435 h = set_hash_index(index, size, bits, context, k);
1436 index[h] = &context->ineq[k];
1438 for (k = 0; k < bset->n_ineq; ++k) {
1439 h = set_hash_index(index, size, bits, bset, k);
1442 l = index[h] - &context->ineq[0];
1443 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1445 bset = isl_basic_set_cow(bset);
1448 isl_basic_set_drop_inequality(bset, k);
1458 /* Tighten (decrease) the constant terms of the inequalities based
1459 * on the equalities, without removing any integer points.
1460 * For example, if there is an equality
1468 * then we want to replace the inequality by
1472 * We do this by computing a variable compression and translating
1473 * the constraints to the compressed space.
1474 * If any constraint has coefficients (except the contant term)
1475 * with a common factor "f", then we can replace the constant term "c"
1482 * f * floor(c/f) - c = -fract(c/f)
1484 * and we can add the same value to the original constraint.
1486 * In the example, the compressed space only contains "j",
1487 * and the inequality translates to
1491 * We add -fract(-1/3) = -2 to the original constraint to obtain
1495 static struct isl_basic_set *normalize_constraints_in_compressed_space(
1496 struct isl_basic_set *bset)
1500 struct isl_mat *B, *C;
1506 if (ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL))
1512 bset = isl_basic_set_cow(bset);
1516 total = isl_basic_set_total_dim(bset);
1517 B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + total);
1518 C = isl_mat_variable_compression(B, NULL);
1521 if (C->n_col == 0) {
1523 return isl_basic_set_set_to_empty(bset);
1525 B = isl_mat_sub_alloc(bset->ctx, bset->ineq,
1526 0, bset->n_ineq, 0, 1 + total);
1527 C = isl_mat_product(B, C);
1532 for (i = 0; i < bset->n_ineq; ++i) {
1533 isl_seq_gcd(C->row[i] + 1, C->n_col - 1, &gcd);
1534 if (isl_int_is_one(gcd))
1536 isl_int_fdiv_r(C->row[i][0], C->row[i][0], gcd);
1537 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], C->row[i][0]);
1546 /* Remove all information from bset that is redundant in the context
1547 * of context. In particular, equalities that are linear combinations
1548 * of those in context are removed. Then the inequalities that are
1549 * redundant in the context of the equalities and inequalities of
1550 * context are removed.
1552 * We first simplify the constraints of "bset" in the context of the
1553 * equalities of "context".
1554 * Then we simplify the inequalities of the context in the context
1555 * of the equalities of bset and remove the inequalities from "bset"
1556 * that are obviously redundant with respect to some inequality in "context".
1558 * If there are any inequalities left, we construct a tableau for
1559 * the context and then add the inequalities of "bset".
1560 * Before adding these equalities, we freeze all constraints such that
1561 * they won't be considered redundant in terms of the constraints of "bset".
1562 * Then we detect all equalities and redundant constraints (among the
1563 * constraints that weren't frozen) and update bset according to the results.
1564 * We have to be careful here because we don't want any of the context
1565 * constraints to remain and because we haven't added the equalities of "bset"
1566 * to the tableau so we temporarily have to pretend that there were no
1569 static struct isl_basic_set *uset_gist(struct isl_basic_set *bset,
1570 struct isl_basic_set *context)
1573 struct isl_tab *tab;
1574 unsigned context_ineq;
1575 struct isl_basic_set *combined = NULL;
1577 if (!context || !bset)
1580 if (context->n_eq > 0)
1581 bset = isl_basic_set_reduce_using_equalities(bset,
1582 isl_basic_set_copy(context));
1585 if (isl_basic_set_fast_is_empty(bset))
1590 if (bset->n_eq > 0) {
1591 struct isl_basic_set *affine_hull;
1592 affine_hull = isl_basic_set_copy(bset);
1593 affine_hull = isl_basic_set_cow(affine_hull);
1596 isl_basic_set_free_inequality(affine_hull, affine_hull->n_ineq);
1597 context = isl_basic_set_intersect(context, affine_hull);
1598 context = isl_basic_set_gauss(context, NULL);
1599 context = normalize_constraints_in_compressed_space(context);
1603 if (ISL_F_ISSET(context, ISL_BASIC_SET_EMPTY)) {
1604 isl_basic_set_free(bset);
1607 if (!context->n_ineq)
1609 bset = remove_shifted_constraints(bset, context);
1612 context_ineq = context->n_ineq;
1613 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1614 if (isl_basic_set_free_equality(combined, context->n_eq) < 0)
1616 combined = isl_basic_set_extend_constraints(combined,
1617 bset->n_eq, bset->n_ineq);
1618 tab = isl_tab_from_basic_set(combined);
1621 for (i = 0; i < context_ineq; ++i)
1622 if (isl_tab_freeze_constraint(tab, i) < 0)
1624 tab = isl_tab_extend(tab, bset->n_ineq);
1627 for (i = 0; i < bset->n_ineq; ++i)
1628 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1630 bset = isl_basic_set_add_constraints(combined, bset, 0);
1631 tab = isl_tab_detect_implicit_equalities(tab);
1632 if (isl_tab_detect_redundant(tab) < 0) {
1636 for (i = 0; i < context_ineq; ++i) {
1637 tab->con[i].is_zero = 0;
1638 tab->con[i].is_redundant = 1;
1640 bset = isl_basic_set_update_from_tab(bset, tab);
1642 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1643 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1645 bset = isl_basic_set_simplify(bset);
1646 bset = isl_basic_set_finalize(bset);
1647 isl_basic_set_free(context);
1650 isl_basic_set_free(combined);
1652 isl_basic_set_free(bset);
1653 isl_basic_set_free(context);
1657 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1658 * We simply add the equalities in context to bmap and then do a regular
1659 * div normalizations. Better results can be obtained by normalizing
1660 * only the divs in bmap than do not also appear in context.
1661 * We need to be careful to reduce the divs using the equalities
1662 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1663 * spurious constraints.
1665 static struct isl_basic_map *normalize_divs_in_context(
1666 struct isl_basic_map *bmap, struct isl_basic_map *context)
1669 unsigned total_context;
1672 div_eq = n_pure_div_eq(bmap);
1676 if (context->n_div > 0)
1677 bmap = isl_basic_map_align_divs(bmap, context);
1679 total_context = isl_basic_map_total_dim(context);
1680 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
1681 for (i = 0; i < context->n_eq; ++i) {
1683 k = isl_basic_map_alloc_equality(bmap);
1684 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
1685 isl_seq_clr(bmap->eq[k] + 1 + total_context,
1686 isl_basic_map_total_dim(bmap) - total_context);
1688 bmap = isl_basic_map_gauss(bmap, NULL);
1689 bmap = normalize_divs(bmap, NULL);
1690 bmap = isl_basic_map_gauss(bmap, NULL);
1694 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
1695 struct isl_basic_map *context)
1697 struct isl_basic_set *bset;
1699 if (!bmap || !context)
1702 if (isl_basic_map_is_universe(context)) {
1703 isl_basic_map_free(context);
1706 if (isl_basic_map_is_universe(bmap)) {
1707 isl_basic_map_free(context);
1710 if (isl_basic_map_fast_is_empty(context)) {
1711 struct isl_dim *dim = isl_dim_copy(bmap->dim);
1712 isl_basic_map_free(context);
1713 isl_basic_map_free(bmap);
1714 return isl_basic_map_universe(dim);
1716 if (isl_basic_map_fast_is_empty(bmap)) {
1717 isl_basic_map_free(context);
1721 bmap = isl_basic_map_convex_hull(bmap);
1722 context = isl_basic_map_convex_hull(context);
1725 bmap = normalize_divs_in_context(bmap, context);
1727 context = isl_basic_map_align_divs(context, bmap);
1728 bmap = isl_basic_map_align_divs(bmap, context);
1730 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
1731 isl_basic_map_underlying_set(context));
1733 return isl_basic_map_overlying_set(bset, bmap);
1735 isl_basic_map_free(bmap);
1736 isl_basic_map_free(context);
1741 * Assumes context has no implicit divs.
1743 struct isl_map *isl_map_gist(struct isl_map *map, struct isl_basic_map *context)
1747 if (!map || !context)
1750 if (isl_basic_map_is_universe(context)) {
1751 isl_basic_map_free(context);
1754 if (isl_basic_map_fast_is_empty(context)) {
1755 struct isl_dim *dim = isl_dim_copy(map->dim);
1756 isl_basic_map_free(context);
1758 return isl_map_universe(dim);
1761 context = isl_basic_map_convex_hull(context);
1762 map = isl_map_cow(map);
1763 if (!map || !context)
1765 isl_assert(map->ctx, isl_dim_equal(map->dim, context->dim), goto error);
1766 map = isl_map_compute_divs(map);
1767 for (i = 0; i < map->n; ++i)
1768 context = isl_basic_map_align_divs(context, map->p[i]);
1769 for (i = 0; i < map->n; ++i) {
1770 map->p[i] = isl_basic_map_gist(map->p[i],
1771 isl_basic_map_copy(context));
1775 isl_basic_map_free(context);
1776 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1780 isl_basic_map_free(context);
1784 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
1785 struct isl_basic_set *context)
1787 return (struct isl_basic_set *)isl_basic_map_gist(
1788 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
1791 struct isl_set *isl_set_gist(struct isl_set *set, struct isl_basic_set *context)
1793 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
1794 (struct isl_basic_map *)context);
1797 /* Quick check to see if two basic maps are disjoint.
1798 * In particular, we reduce the equalities and inequalities of
1799 * one basic map in the context of the equalities of the other
1800 * basic map and check if we get a contradiction.
1802 int isl_basic_map_fast_is_disjoint(struct isl_basic_map *bmap1,
1803 struct isl_basic_map *bmap2)
1805 struct isl_vec *v = NULL;
1810 if (!bmap1 || !bmap2)
1812 isl_assert(bmap1->ctx, isl_dim_equal(bmap1->dim, bmap2->dim),
1814 if (bmap1->n_div || bmap2->n_div)
1816 if (!bmap1->n_eq && !bmap2->n_eq)
1819 total = isl_dim_total(bmap1->dim);
1822 v = isl_vec_alloc(bmap1->ctx, 1 + total);
1825 elim = isl_alloc_array(bmap1->ctx, int, total);
1828 compute_elimination_index(bmap1, elim);
1829 for (i = 0; i < bmap2->n_eq; ++i) {
1831 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
1833 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
1834 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1837 for (i = 0; i < bmap2->n_ineq; ++i) {
1839 reduced = reduced_using_equalities(v->block.data,
1840 bmap2->ineq[i], bmap1, elim);
1841 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1842 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1845 compute_elimination_index(bmap2, elim);
1846 for (i = 0; i < bmap1->n_ineq; ++i) {
1848 reduced = reduced_using_equalities(v->block.data,
1849 bmap1->ineq[i], bmap2, elim);
1850 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1851 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1867 int isl_basic_set_fast_is_disjoint(struct isl_basic_set *bset1,
1868 struct isl_basic_set *bset2)
1870 return isl_basic_map_fast_is_disjoint((struct isl_basic_map *)bset1,
1871 (struct isl_basic_map *)bset2);
1874 int isl_map_fast_is_disjoint(struct isl_map *map1, struct isl_map *map2)
1881 if (isl_map_fast_is_equal(map1, map2))
1884 for (i = 0; i < map1->n; ++i) {
1885 for (j = 0; j < map2->n; ++j) {
1886 int d = isl_basic_map_fast_is_disjoint(map1->p[i],
1895 int isl_set_fast_is_disjoint(struct isl_set *set1, struct isl_set *set2)
1897 return isl_map_fast_is_disjoint((struct isl_map *)set1,
1898 (struct isl_map *)set2);
1901 /* Check if we can combine a given div with lower bound l and upper
1902 * bound u with some other div and if so return that other div.
1903 * Otherwise return -1.
1905 * We first check that
1906 * - the bounds are opposites of each other (except for the constant
1908 * - the bounds do not reference any other div
1909 * - no div is defined in terms of this div
1911 * Let m be the size of the range allowed on the div by the bounds.
1912 * That is, the bounds are of the form
1914 * e <= a <= e + m - 1
1916 * with e some expression in the other variables.
1917 * We look for another div b such that no third div is defined in terms
1918 * of this second div b and such that in any constraint that contains
1919 * a (except for the given lower and upper bound), also contains b
1920 * with a coefficient that is m times that of b.
1921 * That is, all constraints (execpt for the lower and upper bound)
1924 * e + f (a + m b) >= 0
1926 * If so, we return b so that "a + m b" can be replaced by
1927 * a single div "c = a + m b".
1929 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
1930 unsigned div, unsigned l, unsigned u)
1936 if (bmap->n_div <= 1)
1938 dim = isl_dim_total(bmap->dim);
1939 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
1941 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
1942 bmap->n_div - div - 1) != -1)
1944 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
1948 for (i = 0; i < bmap->n_div; ++i) {
1949 if (isl_int_is_zero(bmap->div[i][0]))
1951 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
1955 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
1956 if (isl_int_is_neg(bmap->ineq[l][0])) {
1957 isl_int_sub(bmap->ineq[l][0],
1958 bmap->ineq[l][0], bmap->ineq[u][0]);
1959 bmap = isl_basic_map_copy(bmap);
1960 bmap = isl_basic_map_set_to_empty(bmap);
1961 isl_basic_map_free(bmap);
1964 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
1965 for (i = 0; i < bmap->n_div; ++i) {
1970 for (j = 0; j < bmap->n_div; ++j) {
1971 if (isl_int_is_zero(bmap->div[j][0]))
1973 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
1976 if (j < bmap->n_div)
1978 for (j = 0; j < bmap->n_ineq; ++j) {
1980 if (j == l || j == u)
1982 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
1984 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
1986 isl_int_mul(bmap->ineq[j][1 + dim + div],
1987 bmap->ineq[j][1 + dim + div],
1989 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
1990 bmap->ineq[j][1 + dim + i]);
1991 isl_int_divexact(bmap->ineq[j][1 + dim + div],
1992 bmap->ineq[j][1 + dim + div],
1997 if (j < bmap->n_ineq)
2002 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2003 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2007 /* Given a lower and an upper bound on div i, construct an inequality
2008 * that when nonnegative ensures that this pair of bounds always allows
2009 * for an integer value of the given div.
2010 * The lower bound is inequality l, while the upper bound is inequality u.
2011 * The constructed inequality is stored in ineq.
2012 * g, fl, fu are temporary scalars.
2014 * Let the upper bound be
2018 * and the lower bound
2022 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2025 * - f_u e_l <= f_u f_l g a <= f_l e_u
2027 * Since all variables are integer valued, this is equivalent to
2029 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2031 * If this interval is at least f_u f_l g, then it contains at least
2032 * one integer value for a.
2033 * That is, the test constraint is
2035 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2037 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2038 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2041 dim = isl_dim_total(bmap->dim);
2043 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2044 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2045 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2046 isl_int_neg(fu, fu);
2047 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2048 1 + dim + bmap->n_div);
2049 isl_int_add(ineq[0], ineq[0], fl);
2050 isl_int_add(ineq[0], ineq[0], fu);
2051 isl_int_sub_ui(ineq[0], ineq[0], 1);
2052 isl_int_mul(g, g, fl);
2053 isl_int_mul(g, g, fu);
2054 isl_int_sub(ineq[0], ineq[0], g);
2057 /* Remove more kinds of divs that are not strictly needed.
2058 * In particular, if all pairs of lower and upper bounds on a div
2059 * are such that they allow at least one integer value of the div,
2060 * the we can eliminate the div using Fourier-Motzkin without
2061 * introducing any spurious solutions.
2063 static struct isl_basic_map *drop_more_redundant_divs(
2064 struct isl_basic_map *bmap, int *pairs, int n)
2066 struct isl_tab *tab = NULL;
2067 struct isl_vec *vec = NULL;
2079 dim = isl_dim_total(bmap->dim);
2080 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2084 tab = isl_tab_from_basic_map(bmap);
2089 enum isl_lp_result res;
2091 for (i = 0; i < bmap->n_div; ++i) {
2094 if (best >= 0 && pairs[best] <= pairs[i])
2100 for (l = 0; l < bmap->n_ineq; ++l) {
2101 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2103 for (u = 0; u < bmap->n_ineq; ++u) {
2104 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2106 construct_test_ineq(bmap, i, l, u,
2107 vec->el, g, fl, fu);
2108 res = isl_tab_min(tab, vec->el,
2109 bmap->ctx->one, &g, NULL, 0);
2110 if (res == isl_lp_error)
2112 if (res == isl_lp_empty) {
2113 bmap = isl_basic_map_set_to_empty(bmap);
2116 if (res != isl_lp_ok || isl_int_is_neg(g))
2119 if (u < bmap->n_ineq)
2122 if (l == bmap->n_ineq) {
2142 bmap = isl_basic_map_remove(bmap, isl_dim_div, remove, 1);
2143 return isl_basic_map_drop_redundant_divs(bmap);
2146 isl_basic_map_free(bmap);
2155 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2156 * and the upper bound u, div1 always occurs together with div2 in the form
2157 * (div1 + m div2), where m is the constant range on the variable div1
2158 * allowed by l and u, replace the pair div1 and div2 by a single
2159 * div that is equal to div1 + m div2.
2161 * The new div will appear in the location that contains div2.
2162 * We need to modify all constraints that contain
2163 * div2 = (div - div1) / m
2164 * (If a constraint does not contain div2, it will also not contain div1.)
2165 * If the constraint also contains div1, then we know they appear
2166 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2167 * i.e., the coefficient of div is f.
2169 * Otherwise, we first need to introduce div1 into the constraint.
2178 * A lower bound on div2
2182 * can be replaced by
2184 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2186 * with g = gcd(m,n).
2191 * can be replaced by
2193 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2195 * These constraint are those that we would obtain from eliminating
2196 * div1 using Fourier-Motzkin.
2198 * After all constraints have been modified, we drop the lower and upper
2199 * bound and then drop div1.
2201 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2202 unsigned div1, unsigned div2, unsigned l, unsigned u)
2207 unsigned dim, total;
2210 dim = isl_dim_total(bmap->dim);
2211 total = 1 + dim + bmap->n_div;
2216 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2217 isl_int_add_ui(m, m, 1);
2219 for (i = 0; i < bmap->n_ineq; ++i) {
2220 if (i == l || i == u)
2222 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2224 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2225 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2226 isl_int_divexact(a, m, b);
2227 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2228 if (isl_int_is_pos(b)) {
2229 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2230 b, bmap->ineq[l], total);
2233 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2234 b, bmap->ineq[u], total);
2237 isl_int_set(bmap->ineq[i][1 + dim + div2],
2238 bmap->ineq[i][1 + dim + div1]);
2239 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2246 isl_basic_map_drop_inequality(bmap, l);
2247 isl_basic_map_drop_inequality(bmap, u);
2249 isl_basic_map_drop_inequality(bmap, u);
2250 isl_basic_map_drop_inequality(bmap, l);
2252 bmap = isl_basic_map_drop_div(bmap, div1);
2256 /* First check if we can coalesce any pair of divs and
2257 * then continue with dropping more redundant divs.
2259 * We loop over all pairs of lower and upper bounds on a div
2260 * with coefficient 1 and -1, respectively, check if there
2261 * is any other div "c" with which we can coalesce the div
2262 * and if so, perform the coalescing.
2264 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2265 struct isl_basic_map *bmap, int *pairs, int n)
2270 dim = isl_dim_total(bmap->dim);
2272 for (i = 0; i < bmap->n_div; ++i) {
2275 for (l = 0; l < bmap->n_ineq; ++l) {
2276 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2278 for (u = 0; u < bmap->n_ineq; ++u) {
2281 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2283 c = div_find_coalesce(bmap, pairs, i, l, u);
2287 bmap = coalesce_divs(bmap, i, c, l, u);
2288 return isl_basic_map_drop_redundant_divs(bmap);
2293 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2296 return drop_more_redundant_divs(bmap, pairs, n);
2299 /* Remove divs that are not strictly needed.
2300 * In particular, if a div only occurs positively (or negatively)
2301 * in constraints, then it can simply be dropped.
2302 * Also, if a div occurs only occurs in two constraints and if moreover
2303 * those two constraints are opposite to each other, except for the constant
2304 * term and if the sum of the constant terms is such that for any value
2305 * of the other values, there is always at least one integer value of the
2306 * div, i.e., if one plus this sum is greater than or equal to
2307 * the (absolute value) of the coefficent of the div in the constraints,
2308 * then we can also simply drop the div.
2310 * If any divs are left after these simple checks then we move on
2311 * to more complicated cases in drop_more_redundant_divs.
2313 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2314 struct isl_basic_map *bmap)
2324 off = isl_dim_total(bmap->dim);
2325 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2329 for (i = 0; i < bmap->n_div; ++i) {
2331 int last_pos, last_neg;
2335 defined = !isl_int_is_zero(bmap->div[i][0]);
2336 for (j = 0; j < bmap->n_eq; ++j)
2337 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
2343 for (j = 0; j < bmap->n_ineq; ++j) {
2344 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
2348 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
2353 pairs[i] = pos * neg;
2354 if (pairs[i] == 0) {
2355 for (j = bmap->n_ineq - 1; j >= 0; --j)
2356 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
2357 isl_basic_map_drop_inequality(bmap, j);
2358 bmap = isl_basic_map_drop_div(bmap, i);
2360 return isl_basic_map_drop_redundant_divs(bmap);
2364 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
2365 bmap->ineq[last_neg] + 1,
2369 isl_int_add(bmap->ineq[last_pos][0],
2370 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2371 isl_int_add_ui(bmap->ineq[last_pos][0],
2372 bmap->ineq[last_pos][0], 1);
2373 redundant = isl_int_ge(bmap->ineq[last_pos][0],
2374 bmap->ineq[last_pos][1+off+i]);
2375 isl_int_sub_ui(bmap->ineq[last_pos][0],
2376 bmap->ineq[last_pos][0], 1);
2377 isl_int_sub(bmap->ineq[last_pos][0],
2378 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2381 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
2386 bmap = set_div_from_lower_bound(bmap, i, last_pos);
2387 bmap = isl_basic_map_simplify(bmap);
2389 return isl_basic_map_drop_redundant_divs(bmap);
2391 if (last_pos > last_neg) {
2392 isl_basic_map_drop_inequality(bmap, last_pos);
2393 isl_basic_map_drop_inequality(bmap, last_neg);
2395 isl_basic_map_drop_inequality(bmap, last_neg);
2396 isl_basic_map_drop_inequality(bmap, last_pos);
2398 bmap = isl_basic_map_drop_div(bmap, i);
2400 return isl_basic_map_drop_redundant_divs(bmap);
2404 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
2410 isl_basic_map_free(bmap);
2414 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
2415 struct isl_basic_set *bset)
2417 return (struct isl_basic_set *)
2418 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
2421 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
2427 for (i = 0; i < map->n; ++i) {
2428 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
2432 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2439 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
2441 return (struct isl_set *)
2442 isl_map_drop_redundant_divs((struct isl_map *)set);