isl_pw_qpolynomial_bound_range: fix removal of dims after compression
[platform/upstream/isl.git] / isl_map_simplify.c
1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  *
4  * Use of this software is governed by the GNU LGPLv2.1 license
5  *
6  * Written by Sven Verdoolaege, K.U.Leuven, Departement
7  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8  */
9
10 #include "isl_equalities.h"
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_seq.h"
14 #include "isl_tab.h"
15
16 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
17 {
18         isl_int *t = bmap->eq[a];
19         bmap->eq[a] = bmap->eq[b];
20         bmap->eq[b] = t;
21 }
22
23 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
24 {
25         if (a != b) {
26                 isl_int *t = bmap->ineq[a];
27                 bmap->ineq[a] = bmap->ineq[b];
28                 bmap->ineq[b] = t;
29         }
30 }
31
32 static void set_swap_inequality(struct isl_basic_set *bset, int a, int b)
33 {
34         swap_inequality((struct isl_basic_map *)bset, a, b);
35 }
36
37 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
38 {
39         isl_seq_cpy(c, c + n, rem);
40         isl_seq_clr(c + rem, n);
41 }
42
43 /* Drop n dimensions starting at first.
44  *
45  * In principle, this frees up some extra variables as the number
46  * of columns remains constant, but we would have to extend
47  * the div array too as the number of rows in this array is assumed
48  * to be equal to extra.
49  */
50 struct isl_basic_set *isl_basic_set_drop_dims(
51                 struct isl_basic_set *bset, unsigned first, unsigned n)
52 {
53         int i;
54
55         if (!bset)
56                 goto error;
57
58         isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
59
60         if (n == 0)
61                 return bset;
62
63         bset = isl_basic_set_cow(bset);
64         if (!bset)
65                 return NULL;
66
67         for (i = 0; i < bset->n_eq; ++i)
68                 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
69                                      (bset->dim->n_out-first-n)+bset->extra);
70
71         for (i = 0; i < bset->n_ineq; ++i)
72                 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
73                                      (bset->dim->n_out-first-n)+bset->extra);
74
75         for (i = 0; i < bset->n_div; ++i)
76                 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
77                                      (bset->dim->n_out-first-n)+bset->extra);
78
79         bset->dim = isl_dim_drop_outputs(bset->dim, first, n);
80         if (!bset->dim)
81                 goto error;
82
83         ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
84         bset = isl_basic_set_simplify(bset);
85         return isl_basic_set_finalize(bset);
86 error:
87         isl_basic_set_free(bset);
88         return NULL;
89 }
90
91 struct isl_set *isl_set_drop_dims(
92                 struct isl_set *set, unsigned first, unsigned n)
93 {
94         int i;
95
96         if (!set)
97                 goto error;
98
99         isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
100
101         if (n == 0)
102                 return set;
103         set = isl_set_cow(set);
104         if (!set)
105                 goto error;
106         set->dim = isl_dim_drop_outputs(set->dim, first, n);
107         if (!set->dim)
108                 goto error;
109
110         for (i = 0; i < set->n; ++i) {
111                 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
112                 if (!set->p[i])
113                         goto error;
114         }
115
116         ISL_F_CLR(set, ISL_SET_NORMALIZED);
117         return set;
118 error:
119         isl_set_free(set);
120         return NULL;
121 }
122
123 /* Move "n" divs starting at "first" to the end of the list of divs.
124  */
125 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
126         unsigned first, unsigned n)
127 {
128         isl_int **div;
129         int i;
130
131         if (first + n == bmap->n_div)
132                 return bmap;
133
134         div = isl_alloc_array(bmap->ctx, isl_int *, n);
135         if (!div)
136                 goto error;
137         for (i = 0; i < n; ++i)
138                 div[i] = bmap->div[first + i];
139         for (i = 0; i < bmap->n_div - first - n; ++i)
140                 bmap->div[first + i] = bmap->div[first + n + i];
141         for (i = 0; i < n; ++i)
142                 bmap->div[bmap->n_div - n + i] = div[i];
143         free(div);
144         return bmap;
145 error:
146         isl_basic_map_free(bmap);
147         return NULL;
148 }
149
150 /* Drop "n" dimensions of type "type" starting at "first".
151  *
152  * In principle, this frees up some extra variables as the number
153  * of columns remains constant, but we would have to extend
154  * the div array too as the number of rows in this array is assumed
155  * to be equal to extra.
156  */
157 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
158         enum isl_dim_type type, unsigned first, unsigned n)
159 {
160         int i;
161         unsigned dim;
162         unsigned offset;
163         unsigned left;
164
165         if (!bmap)
166                 goto error;
167
168         dim = isl_basic_map_dim(bmap, type);
169         isl_assert(bmap->ctx, first + n <= dim, goto error);
170
171         if (n == 0)
172                 return bmap;
173
174         bmap = isl_basic_map_cow(bmap);
175         if (!bmap)
176                 return NULL;
177
178         offset = isl_basic_map_offset(bmap, type) + first;
179         left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
180         for (i = 0; i < bmap->n_eq; ++i)
181                 constraint_drop_vars(bmap->eq[i]+offset, n, left);
182
183         for (i = 0; i < bmap->n_ineq; ++i)
184                 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
185
186         for (i = 0; i < bmap->n_div; ++i)
187                 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
188
189         if (type == isl_dim_div) {
190                 bmap = move_divs_last(bmap, first, n);
191                 if (!bmap)
192                         goto error;
193                 isl_basic_map_free_div(bmap, n);
194         } else
195                 bmap->dim = isl_dim_drop(bmap->dim, type, first, n);
196         if (!bmap->dim)
197                 goto error;
198
199         ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
200         bmap = isl_basic_map_simplify(bmap);
201         return isl_basic_map_finalize(bmap);
202 error:
203         isl_basic_map_free(bmap);
204         return NULL;
205 }
206
207 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
208         enum isl_dim_type type, unsigned first, unsigned n)
209 {
210         return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
211                                                         type, first, n);
212 }
213
214 struct isl_basic_map *isl_basic_map_drop_inputs(
215                 struct isl_basic_map *bmap, unsigned first, unsigned n)
216 {
217         return isl_basic_map_drop(bmap, isl_dim_in, first, n);
218 }
219
220 struct isl_map *isl_map_drop(struct isl_map *map,
221         enum isl_dim_type type, unsigned first, unsigned n)
222 {
223         int i;
224
225         if (!map)
226                 goto error;
227
228         isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
229
230         if (n == 0)
231                 return map;
232         map = isl_map_cow(map);
233         if (!map)
234                 goto error;
235         map->dim = isl_dim_drop(map->dim, type, first, n);
236         if (!map->dim)
237                 goto error;
238
239         for (i = 0; i < map->n; ++i) {
240                 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
241                 if (!map->p[i])
242                         goto error;
243         }
244         ISL_F_CLR(map, ISL_MAP_NORMALIZED);
245
246         return map;
247 error:
248         isl_map_free(map);
249         return NULL;
250 }
251
252 struct isl_set *isl_set_drop(struct isl_set *set,
253         enum isl_dim_type type, unsigned first, unsigned n)
254 {
255         return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
256 }
257
258 struct isl_map *isl_map_drop_inputs(
259                 struct isl_map *map, unsigned first, unsigned n)
260 {
261         return isl_map_drop(map, isl_dim_in, first, n);
262 }
263
264 /*
265  * We don't cow, as the div is assumed to be redundant.
266  */
267 static struct isl_basic_map *isl_basic_map_drop_div(
268                 struct isl_basic_map *bmap, unsigned div)
269 {
270         int i;
271         unsigned pos;
272
273         if (!bmap)
274                 goto error;
275
276         pos = 1 + isl_dim_total(bmap->dim) + div;
277
278         isl_assert(bmap->ctx, div < bmap->n_div, goto error);
279
280         for (i = 0; i < bmap->n_eq; ++i)
281                 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
282
283         for (i = 0; i < bmap->n_ineq; ++i) {
284                 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
285                         isl_basic_map_drop_inequality(bmap, i);
286                         --i;
287                         continue;
288                 }
289                 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
290         }
291
292         for (i = 0; i < bmap->n_div; ++i)
293                 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
294
295         if (div != bmap->n_div - 1) {
296                 int j;
297                 isl_int *t = bmap->div[div];
298
299                 for (j = div; j < bmap->n_div - 1; ++j)
300                         bmap->div[j] = bmap->div[j+1];
301
302                 bmap->div[bmap->n_div - 1] = t;
303         }
304         ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
305         isl_basic_map_free_div(bmap, 1);
306
307         return bmap;
308 error:
309         isl_basic_map_free(bmap);
310         return NULL;
311 }
312
313 struct isl_basic_map *isl_basic_map_normalize_constraints(
314         struct isl_basic_map *bmap)
315 {
316         int i;
317         isl_int gcd;
318         unsigned total = isl_basic_map_total_dim(bmap);
319
320         isl_int_init(gcd);
321         for (i = bmap->n_eq - 1; i >= 0; --i) {
322                 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
323                 if (isl_int_is_zero(gcd)) {
324                         if (!isl_int_is_zero(bmap->eq[i][0])) {
325                                 bmap = isl_basic_map_set_to_empty(bmap);
326                                 break;
327                         }
328                         isl_basic_map_drop_equality(bmap, i);
329                         continue;
330                 }
331                 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
332                         isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
333                 if (isl_int_is_one(gcd))
334                         continue;
335                 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
336                         bmap = isl_basic_map_set_to_empty(bmap);
337                         break;
338                 }
339                 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
340         }
341
342         for (i = bmap->n_ineq - 1; i >= 0; --i) {
343                 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
344                 if (isl_int_is_zero(gcd)) {
345                         if (isl_int_is_neg(bmap->ineq[i][0])) {
346                                 bmap = isl_basic_map_set_to_empty(bmap);
347                                 break;
348                         }
349                         isl_basic_map_drop_inequality(bmap, i);
350                         continue;
351                 }
352                 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
353                         isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
354                 if (isl_int_is_one(gcd))
355                         continue;
356                 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
357                 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
358         }
359         isl_int_clear(gcd);
360
361         return bmap;
362 }
363
364 struct isl_basic_set *isl_basic_set_normalize_constraints(
365         struct isl_basic_set *bset)
366 {
367         return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
368                 (struct isl_basic_map *)bset);
369 }
370
371 /* Assumes divs have been ordered if keep_divs is set.
372  */
373 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
374         unsigned pos, isl_int *eq, int keep_divs, int *progress)
375 {
376         unsigned total;
377         int k;
378         int last_div;
379
380         total = isl_basic_map_total_dim(bmap);
381         last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
382                                                 bmap->n_div);
383         for (k = 0; k < bmap->n_eq; ++k) {
384                 if (bmap->eq[k] == eq)
385                         continue;
386                 if (isl_int_is_zero(bmap->eq[k][1+pos]))
387                         continue;
388                 if (progress)
389                         *progress = 1;
390                 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
391         }
392
393         for (k = 0; k < bmap->n_ineq; ++k) {
394                 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
395                         continue;
396                 if (progress)
397                         *progress = 1;
398                 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
399                 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
400         }
401
402         for (k = 0; k < bmap->n_div; ++k) {
403                 if (isl_int_is_zero(bmap->div[k][0]))
404                         continue;
405                 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
406                         continue;
407                 if (progress)
408                         *progress = 1;
409                 /* We need to be careful about circular definitions,
410                  * so for now we just remove the definition of div k
411                  * if the equality contains any divs.
412                  * If keep_divs is set, then the divs have been ordered
413                  * and we can keep the definition as long as the result
414                  * is still ordered.
415                  */
416                 if (last_div == -1 || (keep_divs && last_div < k))
417                         isl_seq_elim(bmap->div[k]+1, eq,
418                                         1+pos, 1+total, &bmap->div[k][0]);
419                 else
420                         isl_seq_clr(bmap->div[k], 1 + total);
421                 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
422         }
423 }
424
425 /* Assumes divs have been ordered if keep_divs is set.
426  */
427 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
428         unsigned div, int keep_divs)
429 {
430         unsigned pos = isl_dim_total(bmap->dim) + div;
431
432         eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
433
434         isl_basic_map_drop_div(bmap, div);
435 }
436
437 /* Check if elimination of div "div" using equality "eq" would not
438  * result in a div depending on a later div.
439  */
440 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
441         unsigned div)
442 {
443         int k;
444         int last_div;
445         unsigned pos = isl_dim_total(bmap->dim) + div;
446
447         last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
448                                                 bmap->n_div);
449         if (last_div < 0 || last_div <= div)
450                 return 1;
451
452         for (k = 0; k <= last_div; ++k) {
453                 if (isl_int_is_zero(bmap->div[k][0]))
454                         return 1;
455                 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
456                         return 0;
457         }
458
459         return 1;
460 }
461
462 /* Elimininate divs based on equalities
463  */
464 static struct isl_basic_map *eliminate_divs_eq(
465                 struct isl_basic_map *bmap, int *progress)
466 {
467         int d;
468         int i;
469         int modified = 0;
470         unsigned off;
471
472         bmap = isl_basic_map_order_divs(bmap);
473
474         if (!bmap)
475                 return NULL;
476
477         off = 1 + isl_dim_total(bmap->dim);
478
479         for (d = bmap->n_div - 1; d >= 0 ; --d) {
480                 for (i = 0; i < bmap->n_eq; ++i) {
481                         if (!isl_int_is_one(bmap->eq[i][off + d]) &&
482                             !isl_int_is_negone(bmap->eq[i][off + d]))
483                                 continue;
484                         if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
485                                 continue;
486                         modified = 1;
487                         *progress = 1;
488                         eliminate_div(bmap, bmap->eq[i], d, 1);
489                         isl_basic_map_drop_equality(bmap, i);
490                         break;
491                 }
492         }
493         if (modified)
494                 return eliminate_divs_eq(bmap, progress);
495         return bmap;
496 }
497
498 /* Elimininate divs based on inequalities
499  */
500 static struct isl_basic_map *eliminate_divs_ineq(
501                 struct isl_basic_map *bmap, int *progress)
502 {
503         int d;
504         int i;
505         unsigned off;
506         struct isl_ctx *ctx;
507
508         if (!bmap)
509                 return NULL;
510
511         ctx = bmap->ctx;
512         off = 1 + isl_dim_total(bmap->dim);
513
514         for (d = bmap->n_div - 1; d >= 0 ; --d) {
515                 for (i = 0; i < bmap->n_eq; ++i)
516                         if (!isl_int_is_zero(bmap->eq[i][off + d]))
517                                 break;
518                 if (i < bmap->n_eq)
519                         continue;
520                 for (i = 0; i < bmap->n_ineq; ++i)
521                         if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
522                                 break;
523                 if (i < bmap->n_ineq)
524                         continue;
525                 *progress = 1;
526                 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
527                 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
528                         break;
529                 bmap = isl_basic_map_drop_div(bmap, d);
530                 if (!bmap)
531                         break;
532         }
533         return bmap;
534 }
535
536 struct isl_basic_map *isl_basic_map_gauss(
537         struct isl_basic_map *bmap, int *progress)
538 {
539         int k;
540         int done;
541         int last_var;
542         unsigned total_var;
543         unsigned total;
544
545         bmap = isl_basic_map_order_divs(bmap);
546
547         if (!bmap)
548                 return NULL;
549
550         total = isl_basic_map_total_dim(bmap);
551         total_var = total - bmap->n_div;
552
553         last_var = total - 1;
554         for (done = 0; done < bmap->n_eq; ++done) {
555                 for (; last_var >= 0; --last_var) {
556                         for (k = done; k < bmap->n_eq; ++k)
557                                 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
558                                         break;
559                         if (k < bmap->n_eq)
560                                 break;
561                 }
562                 if (last_var < 0)
563                         break;
564                 if (k != done)
565                         swap_equality(bmap, k, done);
566                 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
567                         isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
568
569                 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
570                                                 progress);
571
572                 if (last_var >= total_var &&
573                     isl_int_is_zero(bmap->div[last_var - total_var][0])) {
574                         unsigned div = last_var - total_var;
575                         isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
576                         isl_int_set_si(bmap->div[div][1+1+last_var], 0);
577                         isl_int_set(bmap->div[div][0],
578                                     bmap->eq[done][1+last_var]);
579                         ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
580                 }
581         }
582         if (done == bmap->n_eq)
583                 return bmap;
584         for (k = done; k < bmap->n_eq; ++k) {
585                 if (isl_int_is_zero(bmap->eq[k][0]))
586                         continue;
587                 return isl_basic_map_set_to_empty(bmap);
588         }
589         isl_basic_map_free_equality(bmap, bmap->n_eq-done);
590         return bmap;
591 }
592
593 struct isl_basic_set *isl_basic_set_gauss(
594         struct isl_basic_set *bset, int *progress)
595 {
596         return (struct isl_basic_set*)isl_basic_map_gauss(
597                         (struct isl_basic_map *)bset, progress);
598 }
599
600
601 static unsigned int round_up(unsigned int v)
602 {
603         int old_v = v;
604
605         while (v) {
606                 old_v = v;
607                 v ^= v & -v;
608         }
609         return old_v << 1;
610 }
611
612 static int hash_index(isl_int ***index, unsigned int size, int bits,
613                         struct isl_basic_map *bmap, int k)
614 {
615         int h;
616         unsigned total = isl_basic_map_total_dim(bmap);
617         uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
618         for (h = hash; index[h]; h = (h+1) % size)
619                 if (&bmap->ineq[k] != index[h] &&
620                     isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
621                         break;
622         return h;
623 }
624
625 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
626                           struct isl_basic_set *bset, int k)
627 {
628         return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
629 }
630
631 /* If we can eliminate more than one div, then we need to make
632  * sure we do it from last div to first div, in order not to
633  * change the position of the other divs that still need to
634  * be removed.
635  */
636 static struct isl_basic_map *remove_duplicate_divs(
637         struct isl_basic_map *bmap, int *progress)
638 {
639         unsigned int size;
640         int *index;
641         int *elim_for;
642         int k, l, h;
643         int bits;
644         struct isl_blk eq;
645         unsigned total_var = isl_dim_total(bmap->dim);
646         unsigned total = total_var + bmap->n_div;
647         struct isl_ctx *ctx;
648
649         if (bmap->n_div <= 1)
650                 return bmap;
651
652         ctx = bmap->ctx;
653         for (k = bmap->n_div - 1; k >= 0; --k)
654                 if (!isl_int_is_zero(bmap->div[k][0]))
655                         break;
656         if (k <= 0)
657                 return bmap;
658
659         elim_for = isl_calloc_array(ctx, int, bmap->n_div);
660         size = round_up(4 * bmap->n_div / 3 - 1);
661         bits = ffs(size) - 1;
662         index = isl_calloc_array(ctx, int, size);
663         if (!index)
664                 return bmap;
665         eq = isl_blk_alloc(ctx, 1+total);
666         if (isl_blk_is_error(eq))
667                 goto out;
668
669         isl_seq_clr(eq.data, 1+total);
670         index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
671         for (--k; k >= 0; --k) {
672                 uint32_t hash;
673
674                 if (isl_int_is_zero(bmap->div[k][0]))
675                         continue;
676
677                 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
678                 for (h = hash; index[h]; h = (h+1) % size)
679                         if (isl_seq_eq(bmap->div[k],
680                                        bmap->div[index[h]-1], 2+total))
681                                 break;
682                 if (index[h]) {
683                         *progress = 1;
684                         l = index[h] - 1;
685                         elim_for[l] = k + 1;
686                 }
687                 index[h] = k+1;
688         }
689         for (l = bmap->n_div - 1; l >= 0; --l) {
690                 if (!elim_for[l])
691                         continue;
692                 k = elim_for[l] - 1;
693                 isl_int_set_si(eq.data[1+total_var+k], -1);
694                 isl_int_set_si(eq.data[1+total_var+l], 1);
695                 eliminate_div(bmap, eq.data, l, 0);
696                 isl_int_set_si(eq.data[1+total_var+k], 0);
697                 isl_int_set_si(eq.data[1+total_var+l], 0);
698         }
699
700         isl_blk_free(ctx, eq);
701 out:
702         free(index);
703         free(elim_for);
704         return bmap;
705 }
706
707 static int n_pure_div_eq(struct isl_basic_map *bmap)
708 {
709         int i, j;
710         unsigned total;
711
712         total = isl_dim_total(bmap->dim);
713         for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
714                 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
715                         --j;
716                 if (j < 0)
717                         break;
718                 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
719                         return 0;
720         }
721         return i;
722 }
723
724 /* Normalize divs that appear in equalities.
725  *
726  * In particular, we assume that bmap contains some equalities
727  * of the form
728  *
729  *      a x = m * e_i
730  *
731  * and we want to replace the set of e_i by a minimal set and
732  * such that the new e_i have a canonical representation in terms
733  * of the vector x.
734  * If any of the equalities involves more than one divs, then
735  * we currently simply bail out.
736  *
737  * Let us first additionally assume that all equalities involve
738  * a div.  The equalities then express modulo constraints on the
739  * remaining variables and we can use "parameter compression"
740  * to find a minimal set of constraints.  The result is a transformation
741  *
742  *      x = T(x') = x_0 + G x'
743  *
744  * with G a lower-triangular matrix with all elements below the diagonal
745  * non-negative and smaller than the diagonal element on the same row.
746  * We first normalize x_0 by making the same property hold in the affine
747  * T matrix.
748  * The rows i of G with a 1 on the diagonal do not impose any modulo
749  * constraint and simply express x_i = x'_i.
750  * For each of the remaining rows i, we introduce a div and a corresponding
751  * equality.  In particular
752  *
753  *      g_ii e_j = x_i - g_i(x')
754  *
755  * where each x'_k is replaced either by x_k (if g_kk = 1) or the
756  * corresponding div (if g_kk != 1).
757  *
758  * If there are any equalities not involving any div, then we
759  * first apply a variable compression on the variables x:
760  *
761  *      x = C x''       x'' = C_2 x
762  *
763  * and perform the above parameter compression on A C instead of on A.
764  * The resulting compression is then of the form
765  *
766  *      x'' = T(x') = x_0 + G x'
767  *
768  * and in constructing the new divs and the corresponding equalities,
769  * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
770  * by the corresponding row from C_2.
771  */
772 static struct isl_basic_map *normalize_divs(
773         struct isl_basic_map *bmap, int *progress)
774 {
775         int i, j, k;
776         int total;
777         int div_eq;
778         struct isl_mat *B;
779         struct isl_vec *d;
780         struct isl_mat *T = NULL;
781         struct isl_mat *C = NULL;
782         struct isl_mat *C2 = NULL;
783         isl_int v;
784         int *pos;
785         int dropped, needed;
786
787         if (!bmap)
788                 return NULL;
789
790         if (bmap->n_div == 0)
791                 return bmap;
792
793         if (bmap->n_eq == 0)
794                 return bmap;
795
796         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
797                 return bmap;
798
799         total = isl_dim_total(bmap->dim);
800         div_eq = n_pure_div_eq(bmap);
801         if (div_eq == 0)
802                 return bmap;
803
804         if (div_eq < bmap->n_eq) {
805                 B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, div_eq,
806                                         bmap->n_eq - div_eq, 0, 1 + total);
807                 C = isl_mat_variable_compression(B, &C2);
808                 if (!C || !C2)
809                         goto error;
810                 if (C->n_col == 0) {
811                         bmap = isl_basic_map_set_to_empty(bmap);
812                         isl_mat_free(C);
813                         isl_mat_free(C2);
814                         goto done;
815                 }
816         }
817
818         d = isl_vec_alloc(bmap->ctx, div_eq);
819         if (!d)
820                 goto error;
821         for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
822                 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
823                         --j;
824                 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
825         }
826         B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
827
828         if (C) {
829                 B = isl_mat_product(B, C);
830                 C = NULL;
831         }
832
833         T = isl_mat_parameter_compression(B, d);
834         if (!T)
835                 goto error;
836         if (T->n_col == 0) {
837                 bmap = isl_basic_map_set_to_empty(bmap);
838                 isl_mat_free(C2);
839                 isl_mat_free(T);
840                 goto done;
841         }
842         isl_int_init(v);
843         for (i = 0; i < T->n_row - 1; ++i) {
844                 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
845                 if (isl_int_is_zero(v))
846                         continue;
847                 isl_mat_col_submul(T, 0, v, 1 + i);
848         }
849         isl_int_clear(v);
850         pos = isl_alloc_array(bmap->ctx, int, T->n_row);
851         /* We have to be careful because dropping equalities may reorder them */
852         dropped = 0;
853         for (j = bmap->n_div - 1; j >= 0; --j) {
854                 for (i = 0; i < bmap->n_eq; ++i)
855                         if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
856                                 break;
857                 if (i < bmap->n_eq) {
858                         bmap = isl_basic_map_drop_div(bmap, j);
859                         isl_basic_map_drop_equality(bmap, i);
860                         ++dropped;
861                 }
862         }
863         pos[0] = 0;
864         needed = 0;
865         for (i = 1; i < T->n_row; ++i) {
866                 if (isl_int_is_one(T->row[i][i]))
867                         pos[i] = i;
868                 else
869                         needed++;
870         }
871         if (needed > dropped) {
872                 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
873                                 needed, needed, 0);
874                 if (!bmap)
875                         goto error;
876         }
877         for (i = 1; i < T->n_row; ++i) {
878                 if (isl_int_is_one(T->row[i][i]))
879                         continue;
880                 k = isl_basic_map_alloc_div(bmap);
881                 pos[i] = 1 + total + k;
882                 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
883                 isl_int_set(bmap->div[k][0], T->row[i][i]);
884                 if (C2)
885                         isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
886                 else
887                         isl_int_set_si(bmap->div[k][1 + i], 1);
888                 for (j = 0; j < i; ++j) {
889                         if (isl_int_is_zero(T->row[i][j]))
890                                 continue;
891                         if (pos[j] < T->n_row && C2)
892                                 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
893                                                 C2->row[pos[j]], 1 + total);
894                         else
895                                 isl_int_neg(bmap->div[k][1 + pos[j]],
896                                                                 T->row[i][j]);
897                 }
898                 j = isl_basic_map_alloc_equality(bmap);
899                 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
900                 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
901         }
902         free(pos);
903         isl_mat_free(C2);
904         isl_mat_free(T);
905
906         if (progress)
907                 *progress = 1;
908 done:
909         ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
910
911         return bmap;
912 error:
913         isl_mat_free(C);
914         isl_mat_free(C2);
915         isl_mat_free(T);
916         return bmap;
917 }
918
919 static struct isl_basic_map *set_div_from_lower_bound(
920         struct isl_basic_map *bmap, int div, int ineq)
921 {
922         unsigned total = 1 + isl_dim_total(bmap->dim);
923
924         isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
925         isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
926         isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
927         isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
928         isl_int_set_si(bmap->div[div][1 + total + div], 0);
929
930         return bmap;
931 }
932
933 /* Check whether it is ok to define a div based on an inequality.
934  * To avoid the introduction of circular definitions of divs, we
935  * do not allow such a definition if the resulting expression would refer to
936  * any other undefined divs or if any known div is defined in
937  * terms of the unknown div.
938  */
939 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
940         int div, int ineq)
941 {
942         int j;
943         unsigned total = 1 + isl_dim_total(bmap->dim);
944
945         /* Not defined in terms of unknown divs */
946         for (j = 0; j < bmap->n_div; ++j) {
947                 if (div == j)
948                         continue;
949                 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
950                         continue;
951                 if (isl_int_is_zero(bmap->div[j][0]))
952                         return 0;
953         }
954
955         /* No other div defined in terms of this one => avoid loops */
956         for (j = 0; j < bmap->n_div; ++j) {
957                 if (div == j)
958                         continue;
959                 if (isl_int_is_zero(bmap->div[j][0]))
960                         continue;
961                 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
962                         return 0;
963         }
964
965         return 1;
966 }
967
968 /* Given two constraints "k" and "l" that are opposite to each other,
969  * except for the constant term, check if we can use them
970  * to obtain an expression for one of the hitherto unknown divs.
971  * "sum" is the sum of the constant terms of the constraints.
972  * If this sum is strictly smaller than the coefficient of one
973  * of the divs, then this pair can be used define the div.
974  * To avoid the introduction of circular definitions of divs, we
975  * do not use the pair if the resulting expression would refer to
976  * any other undefined divs or if any known div is defined in
977  * terms of the unknown div.
978  */
979 static struct isl_basic_map *check_for_div_constraints(
980         struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
981 {
982         int i;
983         unsigned total = 1 + isl_dim_total(bmap->dim);
984
985         for (i = 0; i < bmap->n_div; ++i) {
986                 if (!isl_int_is_zero(bmap->div[i][0]))
987                         continue;
988                 if (isl_int_is_zero(bmap->ineq[k][total + i]))
989                         continue;
990                 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
991                         continue;
992                 if (!ok_to_set_div_from_bound(bmap, i, k))
993                         break;
994                 if (isl_int_is_pos(bmap->ineq[k][total + i]))
995                         bmap = set_div_from_lower_bound(bmap, i, k);
996                 else
997                         bmap = set_div_from_lower_bound(bmap, i, l);
998                 if (progress)
999                         *progress = 1;
1000                 break;
1001         }
1002         return bmap;
1003 }
1004
1005 static struct isl_basic_map *remove_duplicate_constraints(
1006         struct isl_basic_map *bmap, int *progress)
1007 {
1008         unsigned int size;
1009         isl_int ***index;
1010         int k, l, h;
1011         int bits;
1012         unsigned total = isl_basic_map_total_dim(bmap);
1013         isl_int sum;
1014
1015         if (bmap->n_ineq <= 1)
1016                 return bmap;
1017
1018         size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1019         bits = ffs(size) - 1;
1020         index = isl_calloc_array(ctx, isl_int **, size);
1021         if (!index)
1022                 return bmap;
1023
1024         index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1025         for (k = 1; k < bmap->n_ineq; ++k) {
1026                 h = hash_index(index, size, bits, bmap, k);
1027                 if (!index[h]) {
1028                         index[h] = &bmap->ineq[k];
1029                         continue;
1030                 }
1031                 if (progress)
1032                         *progress = 1;
1033                 l = index[h] - &bmap->ineq[0];
1034                 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1035                         swap_inequality(bmap, k, l);
1036                 isl_basic_map_drop_inequality(bmap, k);
1037                 --k;
1038         }
1039         isl_int_init(sum);
1040         for (k = 0; k < bmap->n_ineq-1; ++k) {
1041                 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1042                 h = hash_index(index, size, bits, bmap, k);
1043                 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1044                 if (!index[h])
1045                         continue;
1046                 l = index[h] - &bmap->ineq[0];
1047                 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1048                 if (isl_int_is_pos(sum)) {
1049                         bmap = check_for_div_constraints(bmap, k, l, sum,
1050                                                          progress);
1051                         continue;
1052                 }
1053                 if (isl_int_is_zero(sum)) {
1054                         /* We need to break out of the loop after these
1055                          * changes since the contents of the hash
1056                          * will no longer be valid.
1057                          * Plus, we probably we want to regauss first.
1058                          */
1059                         if (progress)
1060                                 *progress = 1;
1061                         isl_basic_map_drop_inequality(bmap, l);
1062                         isl_basic_map_inequality_to_equality(bmap, k);
1063                 } else
1064                         bmap = isl_basic_map_set_to_empty(bmap);
1065                 break;
1066         }
1067         isl_int_clear(sum);
1068
1069         free(index);
1070         return bmap;
1071 }
1072
1073
1074 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1075 {
1076         int progress = 1;
1077         if (!bmap)
1078                 return NULL;
1079         while (progress) {
1080                 progress = 0;
1081                 bmap = isl_basic_map_normalize_constraints(bmap);
1082                 bmap = remove_duplicate_divs(bmap, &progress);
1083                 bmap = eliminate_divs_eq(bmap, &progress);
1084                 bmap = eliminate_divs_ineq(bmap, &progress);
1085                 bmap = isl_basic_map_gauss(bmap, &progress);
1086                 /* requires equalities in normal form */
1087                 bmap = normalize_divs(bmap, &progress);
1088                 bmap = remove_duplicate_constraints(bmap, &progress);
1089         }
1090         return bmap;
1091 }
1092
1093 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1094 {
1095         return (struct isl_basic_set *)
1096                 isl_basic_map_simplify((struct isl_basic_map *)bset);
1097 }
1098
1099
1100 /* If the only constraints a div d=floor(f/m)
1101  * appears in are its two defining constraints
1102  *
1103  *      f - m d >=0
1104  *      -(f - (m - 1)) + m d >= 0
1105  *
1106  * then it can safely be removed.
1107  */
1108 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1109 {
1110         int i;
1111         unsigned pos = 1 + isl_dim_total(bmap->dim) + div;
1112
1113         for (i = 0; i < bmap->n_eq; ++i)
1114                 if (!isl_int_is_zero(bmap->eq[i][pos]))
1115                         return 0;
1116
1117         for (i = 0; i < bmap->n_ineq; ++i) {
1118                 if (isl_int_is_zero(bmap->ineq[i][pos]))
1119                         continue;
1120                 if (isl_int_eq(bmap->ineq[i][pos], bmap->div[div][0])) {
1121                         int neg;
1122                         isl_int_sub(bmap->div[div][1],
1123                                         bmap->div[div][1], bmap->div[div][0]);
1124                         isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1125                         neg = isl_seq_is_neg(bmap->ineq[i], bmap->div[div]+1, pos);
1126                         isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1127                         isl_int_add(bmap->div[div][1],
1128                                         bmap->div[div][1], bmap->div[div][0]);
1129                         if (!neg)
1130                                 return 0;
1131                         if (isl_seq_first_non_zero(bmap->ineq[i]+pos+1,
1132                                                     bmap->n_div-div-1) != -1)
1133                                 return 0;
1134                 } else if (isl_int_abs_eq(bmap->ineq[i][pos], bmap->div[div][0])) {
1135                         if (!isl_seq_eq(bmap->ineq[i], bmap->div[div]+1, pos))
1136                                 return 0;
1137                         if (isl_seq_first_non_zero(bmap->ineq[i]+pos+1,
1138                                                     bmap->n_div-div-1) != -1)
1139                                 return 0;
1140                 } else
1141                         return 0;
1142         }
1143
1144         for (i = 0; i < bmap->n_div; ++i)
1145                 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1146                         return 0;
1147
1148         return 1;
1149 }
1150
1151 /*
1152  * Remove divs that don't occur in any of the constraints or other divs.
1153  * These can arise when dropping some of the variables in a quast
1154  * returned by piplib.
1155  */
1156 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1157 {
1158         int i;
1159
1160         if (!bmap)
1161                 return NULL;
1162
1163         for (i = bmap->n_div-1; i >= 0; --i) {
1164                 if (!div_is_redundant(bmap, i))
1165                         continue;
1166                 bmap = isl_basic_map_drop_div(bmap, i);
1167         }
1168         return bmap;
1169 }
1170
1171 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1172 {
1173         bmap = remove_redundant_divs(bmap);
1174         if (!bmap)
1175                 return NULL;
1176         ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1177         return bmap;
1178 }
1179
1180 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1181 {
1182         return (struct isl_basic_set *)
1183                 isl_basic_map_finalize((struct isl_basic_map *)bset);
1184 }
1185
1186 struct isl_set *isl_set_finalize(struct isl_set *set)
1187 {
1188         int i;
1189
1190         if (!set)
1191                 return NULL;
1192         for (i = 0; i < set->n; ++i) {
1193                 set->p[i] = isl_basic_set_finalize(set->p[i]);
1194                 if (!set->p[i])
1195                         goto error;
1196         }
1197         return set;
1198 error:
1199         isl_set_free(set);
1200         return NULL;
1201 }
1202
1203 struct isl_map *isl_map_finalize(struct isl_map *map)
1204 {
1205         int i;
1206
1207         if (!map)
1208                 return NULL;
1209         for (i = 0; i < map->n; ++i) {
1210                 map->p[i] = isl_basic_map_finalize(map->p[i]);
1211                 if (!map->p[i])
1212                         goto error;
1213         }
1214         ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1215         return map;
1216 error:
1217         isl_map_free(map);
1218         return NULL;
1219 }
1220
1221
1222 /* Remove definition of any div that is defined in terms of the given variable.
1223  * The div itself is not removed.  Functions such as
1224  * eliminate_divs_ineq depend on the other divs remaining in place.
1225  */
1226 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1227                                                                         int pos)
1228 {
1229         int i;
1230
1231         for (i = 0; i < bmap->n_div; ++i) {
1232                 if (isl_int_is_zero(bmap->div[i][0]))
1233                         continue;
1234                 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1235                         continue;
1236                 isl_int_set_si(bmap->div[i][0], 0);
1237         }
1238         return bmap;
1239 }
1240
1241 /* Eliminate the specified variables from the constraints using
1242  * Fourier-Motzkin.  The variables themselves are not removed.
1243  */
1244 struct isl_basic_map *isl_basic_map_eliminate_vars(
1245         struct isl_basic_map *bmap, unsigned pos, unsigned n)
1246 {
1247         int d;
1248         int i, j, k;
1249         unsigned total;
1250
1251         if (n == 0)
1252                 return bmap;
1253         if (!bmap)
1254                 return NULL;
1255         total = isl_basic_map_total_dim(bmap);
1256
1257         bmap = isl_basic_map_cow(bmap);
1258         for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1259                 bmap = remove_dependent_vars(bmap, d);
1260
1261         for (d = pos + n - 1;
1262              d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1263                 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1264         for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1265                 int n_lower, n_upper;
1266                 if (!bmap)
1267                         return NULL;
1268                 for (i = 0; i < bmap->n_eq; ++i) {
1269                         if (isl_int_is_zero(bmap->eq[i][1+d]))
1270                                 continue;
1271                         eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1272                         isl_basic_map_drop_equality(bmap, i);
1273                         break;
1274                 }
1275                 if (i < bmap->n_eq)
1276                         continue;
1277                 n_lower = 0;
1278                 n_upper = 0;
1279                 for (i = 0; i < bmap->n_ineq; ++i) {
1280                         if (isl_int_is_pos(bmap->ineq[i][1+d]))
1281                                 n_lower++;
1282                         else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1283                                 n_upper++;
1284                 }
1285                 bmap = isl_basic_map_extend_constraints(bmap,
1286                                 0, n_lower * n_upper);
1287                 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1288                         int last;
1289                         if (isl_int_is_zero(bmap->ineq[i][1+d]))
1290                                 continue;
1291                         last = -1;
1292                         for (j = 0; j < i; ++j) {
1293                                 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1294                                         continue;
1295                                 last = j;
1296                                 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1297                                     isl_int_sgn(bmap->ineq[j][1+d]))
1298                                         continue;
1299                                 k = isl_basic_map_alloc_inequality(bmap);
1300                                 if (k < 0)
1301                                         goto error;
1302                                 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1303                                                 1+total);
1304                                 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1305                                                 1+d, 1+total, NULL);
1306                         }
1307                         isl_basic_map_drop_inequality(bmap, i);
1308                         i = last + 1;
1309                 }
1310                 if (n_lower > 0 && n_upper > 0) {
1311                         bmap = isl_basic_map_normalize_constraints(bmap);
1312                         bmap = remove_duplicate_constraints(bmap, NULL);
1313                         bmap = isl_basic_map_gauss(bmap, NULL);
1314                         bmap = isl_basic_map_convex_hull(bmap);
1315                         if (!bmap)
1316                                 goto error;
1317                         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1318                                 break;
1319                 }
1320         }
1321         ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1322         return bmap;
1323 error:
1324         isl_basic_map_free(bmap);
1325         return NULL;
1326 }
1327
1328 struct isl_basic_set *isl_basic_set_eliminate_vars(
1329         struct isl_basic_set *bset, unsigned pos, unsigned n)
1330 {
1331         return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1332                         (struct isl_basic_map *)bset, pos, n);
1333 }
1334
1335 /* Don't assume equalities are in order, because align_divs
1336  * may have changed the order of the divs.
1337  */
1338 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1339 {
1340         int d, i;
1341         unsigned total;
1342
1343         total = isl_dim_total(bmap->dim);
1344         for (d = 0; d < total; ++d)
1345                 elim[d] = -1;
1346         for (i = 0; i < bmap->n_eq; ++i) {
1347                 for (d = total - 1; d >= 0; --d) {
1348                         if (isl_int_is_zero(bmap->eq[i][1+d]))
1349                                 continue;
1350                         elim[d] = i;
1351                         break;
1352                 }
1353         }
1354 }
1355
1356 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1357 {
1358         compute_elimination_index((struct isl_basic_map *)bset, elim);
1359 }
1360
1361 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1362         struct isl_basic_map *bmap, int *elim)
1363 {
1364         int d;
1365         int copied = 0;
1366         unsigned total;
1367
1368         total = isl_dim_total(bmap->dim);
1369         for (d = total - 1; d >= 0; --d) {
1370                 if (isl_int_is_zero(src[1+d]))
1371                         continue;
1372                 if (elim[d] == -1)
1373                         continue;
1374                 if (!copied) {
1375                         isl_seq_cpy(dst, src, 1 + total);
1376                         copied = 1;
1377                 }
1378                 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1379         }
1380         return copied;
1381 }
1382
1383 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1384         struct isl_basic_set *bset, int *elim)
1385 {
1386         return reduced_using_equalities(dst, src,
1387                                         (struct isl_basic_map *)bset, elim);
1388 }
1389
1390 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1391         struct isl_basic_set *bset, struct isl_basic_set *context)
1392 {
1393         int i;
1394         int *elim;
1395
1396         if (!bset || !context)
1397                 goto error;
1398
1399         if (context->n_eq == 0) {
1400                 isl_basic_set_free(context);
1401                 return bset;
1402         }
1403
1404         bset = isl_basic_set_cow(bset);
1405         if (!bset)
1406                 goto error;
1407
1408         elim = isl_alloc_array(ctx, int, isl_basic_set_n_dim(bset));
1409         if (!elim)
1410                 goto error;
1411         set_compute_elimination_index(context, elim);
1412         for (i = 0; i < bset->n_eq; ++i)
1413                 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1414                                                         context, elim);
1415         for (i = 0; i < bset->n_ineq; ++i)
1416                 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1417                                                         context, elim);
1418         isl_basic_set_free(context);
1419         free(elim);
1420         bset = isl_basic_set_simplify(bset);
1421         bset = isl_basic_set_finalize(bset);
1422         return bset;
1423 error:
1424         isl_basic_set_free(bset);
1425         isl_basic_set_free(context);
1426         return NULL;
1427 }
1428
1429 static struct isl_basic_set *remove_shifted_constraints(
1430         struct isl_basic_set *bset, struct isl_basic_set *context)
1431 {
1432         unsigned int size;
1433         isl_int ***index;
1434         int bits;
1435         int k, h, l;
1436
1437         if (!bset)
1438                 return NULL;
1439
1440         size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1441         bits = ffs(size) - 1;
1442         index = isl_calloc_array(ctx, isl_int **, size);
1443         if (!index)
1444                 return bset;
1445
1446         for (k = 0; k < context->n_ineq; ++k) {
1447                 h = set_hash_index(index, size, bits, context, k);
1448                 index[h] = &context->ineq[k];
1449         }
1450         for (k = 0; k < bset->n_ineq; ++k) {
1451                 h = set_hash_index(index, size, bits, bset, k);
1452                 if (!index[h])
1453                         continue;
1454                 l = index[h] - &context->ineq[0];
1455                 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1456                         continue;
1457                 bset = isl_basic_set_cow(bset);
1458                 if (!bset)
1459                         goto error;
1460                 isl_basic_set_drop_inequality(bset, k);
1461                 --k;
1462         }
1463         free(index);
1464         return bset;
1465 error:
1466         free(index);
1467         return bset;
1468 }
1469
1470 /* Tighten (decrease) the constant terms of the inequalities based
1471  * on the equalities, without removing any integer points.
1472  * For example, if there is an equality
1473  *
1474  *              i = 3 * j
1475  *
1476  * and an inequality
1477  *
1478  *              i >= 1
1479  *
1480  * then we want to replace the inequality by
1481  *
1482  *              i >= 3
1483  *
1484  * We do this by computing a variable compression and translating
1485  * the constraints to the compressed space.
1486  * If any constraint has coefficients (except the contant term)
1487  * with a common factor "f", then we can replace the constant term "c"
1488  * by
1489  *
1490  *              f * floor(c/f)
1491  *
1492  * That is, we add
1493  *
1494  *              f * floor(c/f) - c = -fract(c/f)
1495  *
1496  * and we can add the same value to the original constraint.
1497  *
1498  * In the example, the compressed space only contains "j",
1499  * and the inequality translates to
1500  *
1501  *              3 * j - 1 >= 0
1502  *
1503  * We add -fract(-1/3) = -2 to the original constraint to obtain
1504  *
1505  *              i - 3 >= 0
1506  */
1507 static struct isl_basic_set *normalize_constraints_in_compressed_space(
1508         struct isl_basic_set *bset)
1509 {
1510         int i;
1511         unsigned total;
1512         struct isl_mat *B, *C;
1513         isl_int gcd;
1514
1515         if (!bset)
1516                 return NULL;
1517
1518         if (ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL))
1519                 return bset;
1520
1521         if (!bset->n_ineq)
1522                 return bset;
1523
1524         bset = isl_basic_set_cow(bset);
1525         if (!bset)
1526                 return NULL;
1527
1528         total = isl_basic_set_total_dim(bset);
1529         B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + total);
1530         C = isl_mat_variable_compression(B, NULL);
1531         if (!C)
1532                 return bset;
1533         if (C->n_col == 0) {
1534                 isl_mat_free(C);
1535                 return isl_basic_set_set_to_empty(bset);
1536         }
1537         B = isl_mat_sub_alloc(bset->ctx, bset->ineq,
1538                                                 0, bset->n_ineq, 0, 1 + total);
1539         C = isl_mat_product(B, C);
1540         if (!C)
1541                 return bset;
1542
1543         isl_int_init(gcd);
1544         for (i = 0; i < bset->n_ineq; ++i) {
1545                 isl_seq_gcd(C->row[i] + 1, C->n_col - 1, &gcd);
1546                 if (isl_int_is_one(gcd))
1547                         continue;
1548                 isl_int_fdiv_r(C->row[i][0], C->row[i][0], gcd);
1549                 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], C->row[i][0]);
1550         }
1551         isl_int_clear(gcd);
1552
1553         isl_mat_free(C);
1554
1555         return bset;
1556 }
1557
1558 /* Remove all information from bset that is redundant in the context
1559  * of context.  Both bset and context are assumed to be full-dimensional.
1560  *
1561  * We first * remove the inequalities from "bset"
1562  * that are obviously redundant with respect to some inequality in "context".
1563  *
1564  * If there are any inequalities left, we construct a tableau for
1565  * the context and then add the inequalities of "bset".
1566  * Before adding these inequalities, we freeze all constraints such that
1567  * they won't be considered redundant in terms of the constraints of "bset".
1568  * Then we detect all redundant constraints (among the
1569  * constraints that weren't frozen), first by checking for redundancy in the
1570  * the tableau and then by checking if replacing a constraint by its negation
1571  * would lead to an empty set.  This last step is fairly expensive
1572  * and could be optimized by more reuse of the tableau.
1573  * Finally, we update bset according to the results.
1574  */
1575 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1576         __isl_take isl_basic_set *context)
1577 {
1578         int i, k;
1579         isl_basic_set *combined = NULL;
1580         struct isl_tab *tab = NULL;
1581         unsigned context_ineq;
1582         unsigned total;
1583
1584         if (!bset || !context)
1585                 goto error;
1586
1587         if (isl_basic_set_is_universe(bset)) {
1588                 isl_basic_set_free(context);
1589                 return bset;
1590         }
1591
1592         if (isl_basic_set_is_universe(context)) {
1593                 isl_basic_set_free(context);
1594                 return bset;
1595         }
1596
1597         bset = remove_shifted_constraints(bset, context);
1598         if (!bset)
1599                 goto error;
1600         if (bset->n_ineq == 0)
1601                 goto done;
1602
1603         context_ineq = context->n_ineq;
1604         combined = isl_basic_set_cow(isl_basic_set_copy(context));
1605         combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1606         tab = isl_tab_from_basic_set(combined);
1607         for (i = 0; i < context_ineq; ++i)
1608                 if (isl_tab_freeze_constraint(tab, i) < 0)
1609                         goto error;
1610         tab = isl_tab_extend(tab, bset->n_ineq);
1611         for (i = 0; i < bset->n_ineq; ++i)
1612                 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1613                         goto error;
1614         bset = isl_basic_set_add_constraints(combined, bset, 0);
1615         combined = NULL;
1616         if (!bset)
1617                 goto error;
1618         if (isl_tab_detect_redundant(tab) < 0)
1619                 goto error;
1620         total = isl_basic_set_total_dim(bset);
1621         for (i = context_ineq; i < bset->n_ineq; ++i) {
1622                 int is_empty;
1623                 if (tab->con[i].is_redundant)
1624                         continue;
1625                 tab->con[i].is_redundant = 1;
1626                 combined = isl_basic_set_dup(bset);
1627                 combined = isl_basic_set_update_from_tab(combined, tab);
1628                 combined = isl_basic_set_extend_constraints(combined, 0, 1);
1629                 k = isl_basic_set_alloc_inequality(combined);
1630                 if (k < 0)
1631                         goto error;
1632                 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
1633                 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
1634                 is_empty = isl_basic_set_is_empty(combined);
1635                 if (is_empty < 0)
1636                         goto error;
1637                 isl_basic_set_free(combined);
1638                 combined = NULL;
1639                 if (!is_empty)
1640                         tab->con[i].is_redundant = 0;
1641         }
1642         for (i = 0; i < context_ineq; ++i)
1643                 tab->con[i].is_redundant = 1;
1644         bset = isl_basic_set_update_from_tab(bset, tab);
1645         if (bset) {
1646                 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1647                 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1648         }
1649
1650         isl_tab_free(tab);
1651 done:
1652         bset = isl_basic_set_simplify(bset);
1653         bset = isl_basic_set_finalize(bset);
1654         isl_basic_set_free(context);
1655         return bset;
1656 error:
1657         isl_tab_free(tab);
1658         isl_basic_set_free(combined);
1659         isl_basic_set_free(context);
1660         isl_basic_set_free(bset);
1661         return NULL;
1662 }
1663
1664 /* Remove all information from bset that is redundant in the context
1665  * of context.  In particular, equalities that are linear combinations
1666  * of those in context are removed.  Then the inequalities that are
1667  * redundant in the context of the equalities and inequalities of
1668  * context are removed.
1669  *
1670  * We first compute the integer affine hull of the intersection,
1671  * compute the gist inside this affine hull and then add back
1672  * those equalities that are not implied by the context.
1673  */
1674 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
1675         __isl_take isl_basic_set *context)
1676 {
1677         isl_mat *eq;
1678         isl_mat *T, *T2;
1679         isl_basic_set *aff;
1680         isl_basic_set *aff_context;
1681         unsigned total;
1682
1683         if (!bset || !context)
1684                 goto error;
1685
1686         bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
1687         if (isl_basic_set_fast_is_empty(bset)) {
1688                 isl_basic_set_free(context);
1689                 return bset;
1690         }
1691         aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
1692         if (!aff)
1693                 goto error;
1694         if (isl_basic_set_fast_is_empty(aff)) {
1695                 isl_basic_set_free(aff);
1696                 isl_basic_set_free(context);
1697                 return bset;
1698         }
1699         if (aff->n_eq == 0) {
1700                 isl_basic_set_free(aff);
1701                 return uset_gist_full(bset, context);
1702         }
1703         total = isl_basic_set_total_dim(bset);
1704         eq = isl_mat_sub_alloc(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
1705         eq = isl_mat_cow(eq);
1706         T = isl_mat_variable_compression(eq, &T2);
1707         if (T && T->n_col == 0) {
1708                 isl_mat_free(T);
1709                 isl_mat_free(T2);
1710                 isl_basic_set_free(context);
1711                 isl_basic_set_free(aff);
1712                 return isl_basic_set_set_to_empty(bset);
1713         }
1714
1715         aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
1716
1717         bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
1718         context = isl_basic_set_preimage(context, T);
1719
1720         bset = uset_gist_full(bset, context);
1721         bset = isl_basic_set_preimage(bset, T2);
1722         bset = isl_basic_set_intersect(bset, aff);
1723         bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
1724
1725         if (bset) {
1726                 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1727                 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1728         }
1729
1730         return bset;
1731 error:
1732         isl_basic_set_free(bset);
1733         isl_basic_set_free(context);
1734         return NULL;
1735 }
1736
1737 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1738  * We simply add the equalities in context to bmap and then do a regular
1739  * div normalizations.  Better results can be obtained by normalizing
1740  * only the divs in bmap than do not also appear in context.
1741  * We need to be careful to reduce the divs using the equalities
1742  * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1743  * spurious constraints.
1744  */
1745 static struct isl_basic_map *normalize_divs_in_context(
1746         struct isl_basic_map *bmap, struct isl_basic_map *context)
1747 {
1748         int i;
1749         unsigned total_context;
1750         int div_eq;
1751
1752         div_eq = n_pure_div_eq(bmap);
1753         if (div_eq == 0)
1754                 return bmap;
1755
1756         if (context->n_div > 0)
1757                 bmap = isl_basic_map_align_divs(bmap, context);
1758
1759         total_context = isl_basic_map_total_dim(context);
1760         bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
1761         for (i = 0; i < context->n_eq; ++i) {
1762                 int k;
1763                 k = isl_basic_map_alloc_equality(bmap);
1764                 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
1765                 isl_seq_clr(bmap->eq[k] + 1 + total_context,
1766                                 isl_basic_map_total_dim(bmap) - total_context);
1767         }
1768         bmap = isl_basic_map_gauss(bmap, NULL);
1769         bmap = normalize_divs(bmap, NULL);
1770         bmap = isl_basic_map_gauss(bmap, NULL);
1771         return bmap;
1772 }
1773
1774 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
1775         struct isl_basic_map *context)
1776 {
1777         struct isl_basic_set *bset;
1778
1779         if (!bmap || !context)
1780                 goto error;
1781
1782         if (isl_basic_map_is_universe(context)) {
1783                 isl_basic_map_free(context);
1784                 return bmap;
1785         }
1786         if (isl_basic_map_is_universe(bmap)) {
1787                 isl_basic_map_free(context);
1788                 return bmap;
1789         }
1790         if (isl_basic_map_fast_is_empty(context)) {
1791                 struct isl_dim *dim = isl_dim_copy(bmap->dim);
1792                 isl_basic_map_free(context);
1793                 isl_basic_map_free(bmap);
1794                 return isl_basic_map_universe(dim);
1795         }
1796         if (isl_basic_map_fast_is_empty(bmap)) {
1797                 isl_basic_map_free(context);
1798                 return bmap;
1799         }
1800
1801         bmap = isl_basic_map_convex_hull(bmap);
1802         context = isl_basic_map_convex_hull(context);
1803
1804         if (context->n_eq)
1805                 bmap = normalize_divs_in_context(bmap, context);
1806
1807         context = isl_basic_map_align_divs(context, bmap);
1808         bmap = isl_basic_map_align_divs(bmap, context);
1809
1810         bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
1811                          isl_basic_map_underlying_set(context));
1812
1813         return isl_basic_map_overlying_set(bset, bmap);
1814 error:
1815         isl_basic_map_free(bmap);
1816         isl_basic_map_free(context);
1817         return NULL;
1818 }
1819
1820 /*
1821  * Assumes context has no implicit divs.
1822  */
1823 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
1824         __isl_take isl_basic_map *context)
1825 {
1826         int i;
1827
1828         if (!map || !context)
1829                 goto error;;
1830
1831         if (isl_basic_map_is_universe(context)) {
1832                 isl_basic_map_free(context);
1833                 return map;
1834         }
1835         if (isl_basic_map_fast_is_empty(context)) {
1836                 struct isl_dim *dim = isl_dim_copy(map->dim);
1837                 isl_basic_map_free(context);
1838                 isl_map_free(map);
1839                 return isl_map_universe(dim);
1840         }
1841
1842         context = isl_basic_map_convex_hull(context);
1843         map = isl_map_cow(map);
1844         if (!map || !context)
1845                 goto error;;
1846         isl_assert(map->ctx, isl_dim_equal(map->dim, context->dim), goto error);
1847         map = isl_map_compute_divs(map);
1848         for (i = 0; i < map->n; ++i)
1849                 context = isl_basic_map_align_divs(context, map->p[i]);
1850         for (i = 0; i < map->n; ++i) {
1851                 map->p[i] = isl_basic_map_gist(map->p[i],
1852                                                 isl_basic_map_copy(context));
1853                 if (!map->p[i])
1854                         goto error;
1855         }
1856         isl_basic_map_free(context);
1857         ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1858         return map;
1859 error:
1860         isl_map_free(map);
1861         isl_basic_map_free(context);
1862         return NULL;
1863 }
1864
1865 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1866         __isl_take isl_map *context)
1867 {
1868         return isl_map_gist_basic_map(map, isl_map_convex_hull(context));
1869 }
1870
1871 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
1872                                                 struct isl_basic_set *context)
1873 {
1874         return (struct isl_basic_set *)isl_basic_map_gist(
1875                 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
1876 }
1877
1878 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
1879         __isl_take isl_basic_set *context)
1880 {
1881         return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
1882                                         (struct isl_basic_map *)context);
1883 }
1884
1885 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1886         __isl_take isl_set *context)
1887 {
1888         return (struct isl_set *)isl_map_gist((struct isl_map *)set,
1889                                         (struct isl_map *)context);
1890 }
1891
1892 /* Quick check to see if two basic maps are disjoint.
1893  * In particular, we reduce the equalities and inequalities of
1894  * one basic map in the context of the equalities of the other
1895  * basic map and check if we get a contradiction.
1896  */
1897 int isl_basic_map_fast_is_disjoint(struct isl_basic_map *bmap1,
1898         struct isl_basic_map *bmap2)
1899 {
1900         struct isl_vec *v = NULL;
1901         int *elim = NULL;
1902         unsigned total;
1903         int i;
1904
1905         if (!bmap1 || !bmap2)
1906                 return -1;
1907         isl_assert(bmap1->ctx, isl_dim_equal(bmap1->dim, bmap2->dim),
1908                         return -1);
1909         if (bmap1->n_div || bmap2->n_div)
1910                 return 0;
1911         if (!bmap1->n_eq && !bmap2->n_eq)
1912                 return 0;
1913
1914         total = isl_dim_total(bmap1->dim);
1915         if (total == 0)
1916                 return 0;
1917         v = isl_vec_alloc(bmap1->ctx, 1 + total);
1918         if (!v)
1919                 goto error;
1920         elim = isl_alloc_array(bmap1->ctx, int, total);
1921         if (!elim)
1922                 goto error;
1923         compute_elimination_index(bmap1, elim);
1924         for (i = 0; i < bmap2->n_eq; ++i) {
1925                 int reduced;
1926                 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
1927                                                         bmap1, elim);
1928                 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
1929                     isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1930                         goto disjoint;
1931         }
1932         for (i = 0; i < bmap2->n_ineq; ++i) {
1933                 int reduced;
1934                 reduced = reduced_using_equalities(v->block.data,
1935                                                 bmap2->ineq[i], bmap1, elim);
1936                 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1937                     isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1938                         goto disjoint;
1939         }
1940         compute_elimination_index(bmap2, elim);
1941         for (i = 0; i < bmap1->n_ineq; ++i) {
1942                 int reduced;
1943                 reduced = reduced_using_equalities(v->block.data,
1944                                                 bmap1->ineq[i], bmap2, elim);
1945                 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1946                     isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1947                         goto disjoint;
1948         }
1949         isl_vec_free(v);
1950         free(elim);
1951         return 0;
1952 disjoint:
1953         isl_vec_free(v);
1954         free(elim);
1955         return 1;
1956 error:
1957         isl_vec_free(v);
1958         free(elim);
1959         return -1;
1960 }
1961
1962 int isl_basic_set_fast_is_disjoint(struct isl_basic_set *bset1,
1963         struct isl_basic_set *bset2)
1964 {
1965         return isl_basic_map_fast_is_disjoint((struct isl_basic_map *)bset1,
1966                                               (struct isl_basic_map *)bset2);
1967 }
1968
1969 int isl_map_fast_is_disjoint(struct isl_map *map1, struct isl_map *map2)
1970 {
1971         int i, j;
1972
1973         if (!map1 || !map2)
1974                 return -1;
1975
1976         if (isl_map_fast_is_equal(map1, map2))
1977                 return 0;
1978
1979         for (i = 0; i < map1->n; ++i) {
1980                 for (j = 0; j < map2->n; ++j) {
1981                         int d = isl_basic_map_fast_is_disjoint(map1->p[i],
1982                                                                map2->p[j]);
1983                         if (d != 1)
1984                                 return d;
1985                 }
1986         }
1987         return 1;
1988 }
1989
1990 int isl_set_fast_is_disjoint(struct isl_set *set1, struct isl_set *set2)
1991 {
1992         return isl_map_fast_is_disjoint((struct isl_map *)set1,
1993                                         (struct isl_map *)set2);
1994 }
1995
1996 /* Check if we can combine a given div with lower bound l and upper
1997  * bound u with some other div and if so return that other div.
1998  * Otherwise return -1.
1999  *
2000  * We first check that
2001  *      - the bounds are opposites of each other (except for the constant
2002  *        term)
2003  *      - the bounds do not reference any other div
2004  *      - no div is defined in terms of this div
2005  *
2006  * Let m be the size of the range allowed on the div by the bounds.
2007  * That is, the bounds are of the form
2008  *
2009  *      e <= a <= e + m - 1
2010  *
2011  * with e some expression in the other variables.
2012  * We look for another div b such that no third div is defined in terms
2013  * of this second div b and such that in any constraint that contains
2014  * a (except for the given lower and upper bound), also contains b
2015  * with a coefficient that is m times that of b.
2016  * That is, all constraints (execpt for the lower and upper bound)
2017  * are of the form
2018  *
2019  *      e + f (a + m b) >= 0
2020  *
2021  * If so, we return b so that "a + m b" can be replaced by
2022  * a single div "c = a + m b".
2023  */
2024 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2025         unsigned div, unsigned l, unsigned u)
2026 {
2027         int i, j;
2028         unsigned dim;
2029         int coalesce = -1;
2030
2031         if (bmap->n_div <= 1)
2032                 return -1;
2033         dim = isl_dim_total(bmap->dim);
2034         if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2035                 return -1;
2036         if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2037                                    bmap->n_div - div - 1) != -1)
2038                 return -1;
2039         if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2040                             dim + bmap->n_div))
2041                 return -1;
2042
2043         for (i = 0; i < bmap->n_div; ++i) {
2044                 if (isl_int_is_zero(bmap->div[i][0]))
2045                         continue;
2046                 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2047                         return -1;
2048         }
2049
2050         isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2051         if (isl_int_is_neg(bmap->ineq[l][0])) {
2052                 isl_int_sub(bmap->ineq[l][0],
2053                             bmap->ineq[l][0], bmap->ineq[u][0]);
2054                 bmap = isl_basic_map_copy(bmap);
2055                 bmap = isl_basic_map_set_to_empty(bmap);
2056                 isl_basic_map_free(bmap);
2057                 return -1;
2058         }
2059         isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2060         for (i = 0; i < bmap->n_div; ++i) {
2061                 if (i == div)
2062                         continue;
2063                 if (!pairs[i])
2064                         continue;
2065                 for (j = 0; j < bmap->n_div; ++j) {
2066                         if (isl_int_is_zero(bmap->div[j][0]))
2067                                 continue;
2068                         if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2069                                 break;
2070                 }
2071                 if (j < bmap->n_div)
2072                         continue;
2073                 for (j = 0; j < bmap->n_ineq; ++j) {
2074                         int valid;
2075                         if (j == l || j == u)
2076                                 continue;
2077                         if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2078                                 continue;
2079                         if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2080                                 break;
2081                         isl_int_mul(bmap->ineq[j][1 + dim + div],
2082                                     bmap->ineq[j][1 + dim + div],
2083                                     bmap->ineq[l][0]);
2084                         valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2085                                            bmap->ineq[j][1 + dim + i]);
2086                         isl_int_divexact(bmap->ineq[j][1 + dim + div],
2087                                          bmap->ineq[j][1 + dim + div],
2088                                          bmap->ineq[l][0]);
2089                         if (!valid)
2090                                 break;
2091                 }
2092                 if (j < bmap->n_ineq)
2093                         continue;
2094                 coalesce = i;
2095                 break;
2096         }
2097         isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2098         isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2099         return coalesce;
2100 }
2101
2102 /* Given a lower and an upper bound on div i, construct an inequality
2103  * that when nonnegative ensures that this pair of bounds always allows
2104  * for an integer value of the given div.
2105  * The lower bound is inequality l, while the upper bound is inequality u.
2106  * The constructed inequality is stored in ineq.
2107  * g, fl, fu are temporary scalars.
2108  *
2109  * Let the upper bound be
2110  *
2111  *      -n_u a + e_u >= 0
2112  *
2113  * and the lower bound
2114  *
2115  *      n_l a + e_l >= 0
2116  *
2117  * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2118  * We have
2119  *
2120  *      - f_u e_l <= f_u f_l g a <= f_l e_u
2121  *
2122  * Since all variables are integer valued, this is equivalent to
2123  *
2124  *      - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2125  *
2126  * If this interval is at least f_u f_l g, then it contains at least
2127  * one integer value for a.
2128  * That is, the test constraint is
2129  *
2130  *      f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2131  */
2132 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2133         int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2134 {
2135         unsigned dim;
2136         dim = isl_dim_total(bmap->dim);
2137
2138         isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2139         isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2140         isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2141         isl_int_neg(fu, fu);
2142         isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2143                         1 + dim + bmap->n_div);
2144         isl_int_add(ineq[0], ineq[0], fl);
2145         isl_int_add(ineq[0], ineq[0], fu);
2146         isl_int_sub_ui(ineq[0], ineq[0], 1);
2147         isl_int_mul(g, g, fl);
2148         isl_int_mul(g, g, fu);
2149         isl_int_sub(ineq[0], ineq[0], g);
2150 }
2151
2152 /* Remove more kinds of divs that are not strictly needed.
2153  * In particular, if all pairs of lower and upper bounds on a div
2154  * are such that they allow at least one integer value of the div,
2155  * the we can eliminate the div using Fourier-Motzkin without
2156  * introducing any spurious solutions.
2157  */
2158 static struct isl_basic_map *drop_more_redundant_divs(
2159         struct isl_basic_map *bmap, int *pairs, int n)
2160 {
2161         struct isl_tab *tab = NULL;
2162         struct isl_vec *vec = NULL;
2163         unsigned dim;
2164         int remove = -1;
2165         isl_int g, fl, fu;
2166
2167         isl_int_init(g);
2168         isl_int_init(fl);
2169         isl_int_init(fu);
2170
2171         if (!bmap)
2172                 goto error;
2173
2174         dim = isl_dim_total(bmap->dim);
2175         vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2176         if (!vec)
2177                 goto error;
2178
2179         tab = isl_tab_from_basic_map(bmap);
2180
2181         while (n > 0) {
2182                 int i, l, u;
2183                 int best = -1;
2184                 enum isl_lp_result res;
2185
2186                 for (i = 0; i < bmap->n_div; ++i) {
2187                         if (!pairs[i])
2188                                 continue;
2189                         if (best >= 0 && pairs[best] <= pairs[i])
2190                                 continue;
2191                         best = i;
2192                 }
2193
2194                 i = best;
2195                 for (l = 0; l < bmap->n_ineq; ++l) {
2196                         if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2197                                 continue;
2198                         for (u = 0; u < bmap->n_ineq; ++u) {
2199                                 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2200                                         continue;
2201                                 construct_test_ineq(bmap, i, l, u,
2202                                                     vec->el, g, fl, fu);
2203                                 res = isl_tab_min(tab, vec->el,
2204                                                   bmap->ctx->one, &g, NULL, 0);
2205                                 if (res == isl_lp_error)
2206                                         goto error;
2207                                 if (res == isl_lp_empty) {
2208                                         bmap = isl_basic_map_set_to_empty(bmap);
2209                                         break;
2210                                 }
2211                                 if (res != isl_lp_ok || isl_int_is_neg(g))
2212                                         break;
2213                         }
2214                         if (u < bmap->n_ineq)
2215                                 break;
2216                 }
2217                 if (l == bmap->n_ineq) {
2218                         remove = i;
2219                         break;
2220                 }
2221                 pairs[i] = 0;
2222                 --n;
2223         }
2224
2225         isl_tab_free(tab);
2226         isl_vec_free(vec);
2227
2228         isl_int_clear(g);
2229         isl_int_clear(fl);
2230         isl_int_clear(fu);
2231
2232         free(pairs);
2233
2234         if (remove < 0)
2235                 return bmap;
2236
2237         bmap = isl_basic_map_remove(bmap, isl_dim_div, remove, 1);
2238         return isl_basic_map_drop_redundant_divs(bmap);
2239 error:
2240         free(pairs);
2241         isl_basic_map_free(bmap);
2242         isl_tab_free(tab);
2243         isl_vec_free(vec);
2244         isl_int_clear(g);
2245         isl_int_clear(fl);
2246         isl_int_clear(fu);
2247         return NULL;
2248 }
2249
2250 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2251  * and the upper bound u, div1 always occurs together with div2 in the form 
2252  * (div1 + m div2), where m is the constant range on the variable div1
2253  * allowed by l and u, replace the pair div1 and div2 by a single
2254  * div that is equal to div1 + m div2.
2255  *
2256  * The new div will appear in the location that contains div2.
2257  * We need to modify all constraints that contain
2258  * div2 = (div - div1) / m
2259  * (If a constraint does not contain div2, it will also not contain div1.)
2260  * If the constraint also contains div1, then we know they appear
2261  * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2262  * i.e., the coefficient of div is f.
2263  *
2264  * Otherwise, we first need to introduce div1 into the constraint.
2265  * Let the l be
2266  *
2267  *      div1 + f >=0
2268  *
2269  * and u
2270  *
2271  *      -div1 + f' >= 0
2272  *
2273  * A lower bound on div2
2274  *
2275  *      n div2 + t >= 0
2276  *
2277  * can be replaced by
2278  *
2279  *      (n * (m div 2 + div1) + m t + n f)/g >= 0
2280  *
2281  * with g = gcd(m,n).
2282  * An upper bound
2283  *
2284  *      -n div2 + t >= 0
2285  *
2286  * can be replaced by
2287  *
2288  *      (-n * (m div2 + div1) + m t + n f')/g >= 0
2289  *
2290  * These constraint are those that we would obtain from eliminating
2291  * div1 using Fourier-Motzkin.
2292  *
2293  * After all constraints have been modified, we drop the lower and upper
2294  * bound and then drop div1.
2295  */
2296 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2297         unsigned div1, unsigned div2, unsigned l, unsigned u)
2298 {
2299         isl_int a;
2300         isl_int b;
2301         isl_int m;
2302         unsigned dim, total;
2303         int i;
2304
2305         dim = isl_dim_total(bmap->dim);
2306         total = 1 + dim + bmap->n_div;
2307
2308         isl_int_init(a);
2309         isl_int_init(b);
2310         isl_int_init(m);
2311         isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2312         isl_int_add_ui(m, m, 1);
2313
2314         for (i = 0; i < bmap->n_ineq; ++i) {
2315                 if (i == l || i == u)
2316                         continue;
2317                 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2318                         continue;
2319                 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2320                         isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2321                         isl_int_divexact(a, m, b);
2322                         isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2323                         if (isl_int_is_pos(b)) {
2324                                 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2325                                                 b, bmap->ineq[l], total);
2326                         } else {
2327                                 isl_int_neg(b, b);
2328                                 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2329                                                 b, bmap->ineq[u], total);
2330                         }
2331                 }
2332                 isl_int_set(bmap->ineq[i][1 + dim + div2],
2333                             bmap->ineq[i][1 + dim + div1]);
2334                 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2335         }
2336
2337         isl_int_clear(a);
2338         isl_int_clear(b);
2339         isl_int_clear(m);
2340         if (l > u) {
2341                 isl_basic_map_drop_inequality(bmap, l);
2342                 isl_basic_map_drop_inequality(bmap, u);
2343         } else {
2344                 isl_basic_map_drop_inequality(bmap, u);
2345                 isl_basic_map_drop_inequality(bmap, l);
2346         }
2347         bmap = isl_basic_map_drop_div(bmap, div1);
2348         return bmap;
2349 }
2350
2351 /* First check if we can coalesce any pair of divs and
2352  * then continue with dropping more redundant divs.
2353  *
2354  * We loop over all pairs of lower and upper bounds on a div
2355  * with coefficient 1 and -1, respectively, check if there
2356  * is any other div "c" with which we can coalesce the div
2357  * and if so, perform the coalescing.
2358  */
2359 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2360         struct isl_basic_map *bmap, int *pairs, int n)
2361 {
2362         int i, l, u;
2363         unsigned dim;
2364
2365         dim = isl_dim_total(bmap->dim);
2366
2367         for (i = 0; i < bmap->n_div; ++i) {
2368                 if (!pairs[i])
2369                         continue;
2370                 for (l = 0; l < bmap->n_ineq; ++l) {
2371                         if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2372                                 continue;
2373                         for (u = 0; u < bmap->n_ineq; ++u) {
2374                                 int c;
2375
2376                                 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2377                                         continue;
2378                                 c = div_find_coalesce(bmap, pairs, i, l, u);
2379                                 if (c < 0)
2380                                         continue;
2381                                 free(pairs);
2382                                 bmap = coalesce_divs(bmap, i, c, l, u);
2383                                 return isl_basic_map_drop_redundant_divs(bmap);
2384                         }
2385                 }
2386         }
2387
2388         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2389                 return bmap;
2390
2391         return drop_more_redundant_divs(bmap, pairs, n);
2392 }
2393
2394 /* Remove divs that are not strictly needed.
2395  * In particular, if a div only occurs positively (or negatively)
2396  * in constraints, then it can simply be dropped.
2397  * Also, if a div occurs only occurs in two constraints and if moreover
2398  * those two constraints are opposite to each other, except for the constant
2399  * term and if the sum of the constant terms is such that for any value
2400  * of the other values, there is always at least one integer value of the
2401  * div, i.e., if one plus this sum is greater than or equal to
2402  * the (absolute value) of the coefficent of the div in the constraints,
2403  * then we can also simply drop the div.
2404  *
2405  * If any divs are left after these simple checks then we move on
2406  * to more complicated cases in drop_more_redundant_divs.
2407  */
2408 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2409         struct isl_basic_map *bmap)
2410 {
2411         int i, j;
2412         unsigned off;
2413         int *pairs = NULL;
2414         int n = 0;
2415
2416         if (!bmap)
2417                 goto error;
2418
2419         off = isl_dim_total(bmap->dim);
2420         pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2421         if (!pairs)
2422                 goto error;
2423
2424         for (i = 0; i < bmap->n_div; ++i) {
2425                 int pos, neg;
2426                 int last_pos, last_neg;
2427                 int redundant;
2428                 int defined;
2429
2430                 defined = !isl_int_is_zero(bmap->div[i][0]);
2431                 for (j = 0; j < bmap->n_eq; ++j)
2432                         if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
2433                                 break;
2434                 if (j < bmap->n_eq)
2435                         continue;
2436                 ++n;
2437                 pos = neg = 0;
2438                 for (j = 0; j < bmap->n_ineq; ++j) {
2439                         if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
2440                                 last_pos = j;
2441                                 ++pos;
2442                         }
2443                         if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
2444                                 last_neg = j;
2445                                 ++neg;
2446                         }
2447                 }
2448                 pairs[i] = pos * neg;
2449                 if (pairs[i] == 0) {
2450                         for (j = bmap->n_ineq - 1; j >= 0; --j)
2451                                 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
2452                                         isl_basic_map_drop_inequality(bmap, j);
2453                         bmap = isl_basic_map_drop_div(bmap, i);
2454                         free(pairs);
2455                         return isl_basic_map_drop_redundant_divs(bmap);
2456                 }
2457                 if (pairs[i] != 1)
2458                         continue;
2459                 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
2460                                     bmap->ineq[last_neg] + 1,
2461                                     off + bmap->n_div))
2462                         continue;
2463
2464                 isl_int_add(bmap->ineq[last_pos][0],
2465                             bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2466                 isl_int_add_ui(bmap->ineq[last_pos][0],
2467                                bmap->ineq[last_pos][0], 1);
2468                 redundant = isl_int_ge(bmap->ineq[last_pos][0],
2469                                 bmap->ineq[last_pos][1+off+i]);
2470                 isl_int_sub_ui(bmap->ineq[last_pos][0],
2471                                bmap->ineq[last_pos][0], 1);
2472                 isl_int_sub(bmap->ineq[last_pos][0],
2473                             bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2474                 if (!redundant) {
2475                         if (defined ||
2476                             !ok_to_set_div_from_bound(bmap, i, last_pos)) {
2477                                 pairs[i] = 0;
2478                                 --n;
2479                                 continue;
2480                         }
2481                         bmap = set_div_from_lower_bound(bmap, i, last_pos);
2482                         bmap = isl_basic_map_simplify(bmap);
2483                         free(pairs);
2484                         return isl_basic_map_drop_redundant_divs(bmap);
2485                 }
2486                 if (last_pos > last_neg) {
2487                         isl_basic_map_drop_inequality(bmap, last_pos);
2488                         isl_basic_map_drop_inequality(bmap, last_neg);
2489                 } else {
2490                         isl_basic_map_drop_inequality(bmap, last_neg);
2491                         isl_basic_map_drop_inequality(bmap, last_pos);
2492                 }
2493                 bmap = isl_basic_map_drop_div(bmap, i);
2494                 free(pairs);
2495                 return isl_basic_map_drop_redundant_divs(bmap);
2496         }
2497
2498         if (n > 0)
2499                 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
2500
2501         free(pairs);
2502         return bmap;
2503 error:
2504         free(pairs);
2505         isl_basic_map_free(bmap);
2506         return NULL;
2507 }
2508
2509 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
2510         struct isl_basic_set *bset)
2511 {
2512         return (struct isl_basic_set *)
2513             isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
2514 }
2515
2516 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
2517 {
2518         int i;
2519
2520         if (!map)
2521                 return NULL;
2522         for (i = 0; i < map->n; ++i) {
2523                 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
2524                 if (!map->p[i])
2525                         goto error;
2526         }
2527         ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2528         return map;
2529 error:
2530         isl_map_free(map);
2531         return NULL;
2532 }
2533
2534 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
2535 {
2536         return (struct isl_set *)
2537             isl_map_drop_redundant_divs((struct isl_map *)set);
2538 }