2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
12 #include "isl_equalities.h"
16 #include <isl_dim_private.h>
17 #include <isl_mat_private.h>
19 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
21 isl_int *t = bmap->eq[a];
22 bmap->eq[a] = bmap->eq[b];
26 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
29 isl_int *t = bmap->ineq[a];
30 bmap->ineq[a] = bmap->ineq[b];
35 static void set_swap_inequality(struct isl_basic_set *bset, int a, int b)
37 swap_inequality((struct isl_basic_map *)bset, a, b);
40 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
42 isl_seq_cpy(c, c + n, rem);
43 isl_seq_clr(c + rem, n);
46 /* Drop n dimensions starting at first.
48 * In principle, this frees up some extra variables as the number
49 * of columns remains constant, but we would have to extend
50 * the div array too as the number of rows in this array is assumed
51 * to be equal to extra.
53 struct isl_basic_set *isl_basic_set_drop_dims(
54 struct isl_basic_set *bset, unsigned first, unsigned n)
61 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
63 if (n == 0 && !isl_dim_get_tuple_name(bset->dim, isl_dim_set))
66 bset = isl_basic_set_cow(bset);
70 for (i = 0; i < bset->n_eq; ++i)
71 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
72 (bset->dim->n_out-first-n)+bset->extra);
74 for (i = 0; i < bset->n_ineq; ++i)
75 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
76 (bset->dim->n_out-first-n)+bset->extra);
78 for (i = 0; i < bset->n_div; ++i)
79 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
80 (bset->dim->n_out-first-n)+bset->extra);
82 bset->dim = isl_dim_drop_outputs(bset->dim, first, n);
86 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
87 bset = isl_basic_set_simplify(bset);
88 return isl_basic_set_finalize(bset);
90 isl_basic_set_free(bset);
94 struct isl_set *isl_set_drop_dims(
95 struct isl_set *set, unsigned first, unsigned n)
102 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
104 if (n == 0 && !isl_dim_get_tuple_name(set->dim, isl_dim_set))
106 set = isl_set_cow(set);
109 set->dim = isl_dim_drop_outputs(set->dim, first, n);
113 for (i = 0; i < set->n; ++i) {
114 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
119 ISL_F_CLR(set, ISL_SET_NORMALIZED);
126 /* Move "n" divs starting at "first" to the end of the list of divs.
128 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
129 unsigned first, unsigned n)
134 if (first + n == bmap->n_div)
137 div = isl_alloc_array(bmap->ctx, isl_int *, n);
140 for (i = 0; i < n; ++i)
141 div[i] = bmap->div[first + i];
142 for (i = 0; i < bmap->n_div - first - n; ++i)
143 bmap->div[first + i] = bmap->div[first + n + i];
144 for (i = 0; i < n; ++i)
145 bmap->div[bmap->n_div - n + i] = div[i];
149 isl_basic_map_free(bmap);
153 /* Drop "n" dimensions of type "type" starting at "first".
155 * In principle, this frees up some extra variables as the number
156 * of columns remains constant, but we would have to extend
157 * the div array too as the number of rows in this array is assumed
158 * to be equal to extra.
160 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
161 enum isl_dim_type type, unsigned first, unsigned n)
171 dim = isl_basic_map_dim(bmap, type);
172 isl_assert(bmap->ctx, first + n <= dim, goto error);
174 if (n == 0 && !isl_dim_get_tuple_name(bmap->dim, type))
177 bmap = isl_basic_map_cow(bmap);
181 offset = isl_basic_map_offset(bmap, type) + first;
182 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
183 for (i = 0; i < bmap->n_eq; ++i)
184 constraint_drop_vars(bmap->eq[i]+offset, n, left);
186 for (i = 0; i < bmap->n_ineq; ++i)
187 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
189 for (i = 0; i < bmap->n_div; ++i)
190 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
192 if (type == isl_dim_div) {
193 bmap = move_divs_last(bmap, first, n);
196 isl_basic_map_free_div(bmap, n);
198 bmap->dim = isl_dim_drop(bmap->dim, type, first, n);
202 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
203 bmap = isl_basic_map_simplify(bmap);
204 return isl_basic_map_finalize(bmap);
206 isl_basic_map_free(bmap);
210 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
211 enum isl_dim_type type, unsigned first, unsigned n)
213 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
217 struct isl_basic_map *isl_basic_map_drop_inputs(
218 struct isl_basic_map *bmap, unsigned first, unsigned n)
220 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
223 struct isl_map *isl_map_drop(struct isl_map *map,
224 enum isl_dim_type type, unsigned first, unsigned n)
231 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
233 if (n == 0 && !isl_dim_get_tuple_name(map->dim, type))
235 map = isl_map_cow(map);
238 map->dim = isl_dim_drop(map->dim, type, first, n);
242 for (i = 0; i < map->n; ++i) {
243 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
247 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
255 struct isl_set *isl_set_drop(struct isl_set *set,
256 enum isl_dim_type type, unsigned first, unsigned n)
258 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
261 struct isl_map *isl_map_drop_inputs(
262 struct isl_map *map, unsigned first, unsigned n)
264 return isl_map_drop(map, isl_dim_in, first, n);
268 * We don't cow, as the div is assumed to be redundant.
270 static struct isl_basic_map *isl_basic_map_drop_div(
271 struct isl_basic_map *bmap, unsigned div)
279 pos = 1 + isl_dim_total(bmap->dim) + div;
281 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
283 for (i = 0; i < bmap->n_eq; ++i)
284 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
286 for (i = 0; i < bmap->n_ineq; ++i) {
287 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
288 isl_basic_map_drop_inequality(bmap, i);
292 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
295 for (i = 0; i < bmap->n_div; ++i)
296 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
298 if (div != bmap->n_div - 1) {
300 isl_int *t = bmap->div[div];
302 for (j = div; j < bmap->n_div - 1; ++j)
303 bmap->div[j] = bmap->div[j+1];
305 bmap->div[bmap->n_div - 1] = t;
307 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
308 isl_basic_map_free_div(bmap, 1);
312 isl_basic_map_free(bmap);
316 struct isl_basic_map *isl_basic_map_normalize_constraints(
317 struct isl_basic_map *bmap)
321 unsigned total = isl_basic_map_total_dim(bmap);
327 for (i = bmap->n_eq - 1; i >= 0; --i) {
328 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
329 if (isl_int_is_zero(gcd)) {
330 if (!isl_int_is_zero(bmap->eq[i][0])) {
331 bmap = isl_basic_map_set_to_empty(bmap);
334 isl_basic_map_drop_equality(bmap, i);
337 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
338 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
339 if (isl_int_is_one(gcd))
341 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
342 bmap = isl_basic_map_set_to_empty(bmap);
345 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
348 for (i = bmap->n_ineq - 1; i >= 0; --i) {
349 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
350 if (isl_int_is_zero(gcd)) {
351 if (isl_int_is_neg(bmap->ineq[i][0])) {
352 bmap = isl_basic_map_set_to_empty(bmap);
355 isl_basic_map_drop_inequality(bmap, i);
358 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
359 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
360 if (isl_int_is_one(gcd))
362 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
363 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
370 struct isl_basic_set *isl_basic_set_normalize_constraints(
371 struct isl_basic_set *bset)
373 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
374 (struct isl_basic_map *)bset);
377 /* Assumes divs have been ordered if keep_divs is set.
379 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
380 unsigned pos, isl_int *eq, int keep_divs, int *progress)
386 total = isl_basic_map_total_dim(bmap);
387 last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
389 for (k = 0; k < bmap->n_eq; ++k) {
390 if (bmap->eq[k] == eq)
392 if (isl_int_is_zero(bmap->eq[k][1+pos]))
396 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
397 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
400 for (k = 0; k < bmap->n_ineq; ++k) {
401 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
405 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
406 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
407 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
410 for (k = 0; k < bmap->n_div; ++k) {
411 if (isl_int_is_zero(bmap->div[k][0]))
413 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
417 /* We need to be careful about circular definitions,
418 * so for now we just remove the definition of div k
419 * if the equality contains any divs.
420 * If keep_divs is set, then the divs have been ordered
421 * and we can keep the definition as long as the result
424 if (last_div == -1 || (keep_divs && last_div < k))
425 isl_seq_elim(bmap->div[k]+1, eq,
426 1+pos, 1+total, &bmap->div[k][0]);
428 isl_seq_clr(bmap->div[k], 1 + total);
429 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
433 /* Assumes divs have been ordered if keep_divs is set.
435 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
436 unsigned div, int keep_divs)
438 unsigned pos = isl_dim_total(bmap->dim) + div;
440 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
442 isl_basic_map_drop_div(bmap, div);
445 /* Check if elimination of div "div" using equality "eq" would not
446 * result in a div depending on a later div.
448 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
453 unsigned pos = isl_dim_total(bmap->dim) + div;
455 last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
457 if (last_div < 0 || last_div <= div)
460 for (k = 0; k <= last_div; ++k) {
461 if (isl_int_is_zero(bmap->div[k][0]))
463 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
470 /* Elimininate divs based on equalities
472 static struct isl_basic_map *eliminate_divs_eq(
473 struct isl_basic_map *bmap, int *progress)
480 bmap = isl_basic_map_order_divs(bmap);
485 off = 1 + isl_dim_total(bmap->dim);
487 for (d = bmap->n_div - 1; d >= 0 ; --d) {
488 for (i = 0; i < bmap->n_eq; ++i) {
489 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
490 !isl_int_is_negone(bmap->eq[i][off + d]))
492 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
496 eliminate_div(bmap, bmap->eq[i], d, 1);
497 isl_basic_map_drop_equality(bmap, i);
502 return eliminate_divs_eq(bmap, progress);
506 /* Elimininate divs based on inequalities
508 static struct isl_basic_map *eliminate_divs_ineq(
509 struct isl_basic_map *bmap, int *progress)
520 off = 1 + isl_dim_total(bmap->dim);
522 for (d = bmap->n_div - 1; d >= 0 ; --d) {
523 for (i = 0; i < bmap->n_eq; ++i)
524 if (!isl_int_is_zero(bmap->eq[i][off + d]))
528 for (i = 0; i < bmap->n_ineq; ++i)
529 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
531 if (i < bmap->n_ineq)
534 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
535 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
537 bmap = isl_basic_map_drop_div(bmap, d);
544 struct isl_basic_map *isl_basic_map_gauss(
545 struct isl_basic_map *bmap, int *progress)
553 bmap = isl_basic_map_order_divs(bmap);
558 total = isl_basic_map_total_dim(bmap);
559 total_var = total - bmap->n_div;
561 last_var = total - 1;
562 for (done = 0; done < bmap->n_eq; ++done) {
563 for (; last_var >= 0; --last_var) {
564 for (k = done; k < bmap->n_eq; ++k)
565 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
573 swap_equality(bmap, k, done);
574 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
575 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
577 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
580 if (last_var >= total_var &&
581 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
582 unsigned div = last_var - total_var;
583 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
584 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
585 isl_int_set(bmap->div[div][0],
586 bmap->eq[done][1+last_var]);
587 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
590 if (done == bmap->n_eq)
592 for (k = done; k < bmap->n_eq; ++k) {
593 if (isl_int_is_zero(bmap->eq[k][0]))
595 return isl_basic_map_set_to_empty(bmap);
597 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
601 struct isl_basic_set *isl_basic_set_gauss(
602 struct isl_basic_set *bset, int *progress)
604 return (struct isl_basic_set*)isl_basic_map_gauss(
605 (struct isl_basic_map *)bset, progress);
609 static unsigned int round_up(unsigned int v)
620 static int hash_index(isl_int ***index, unsigned int size, int bits,
621 struct isl_basic_map *bmap, int k)
624 unsigned total = isl_basic_map_total_dim(bmap);
625 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
626 for (h = hash; index[h]; h = (h+1) % size)
627 if (&bmap->ineq[k] != index[h] &&
628 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
633 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
634 struct isl_basic_set *bset, int k)
636 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
639 /* If we can eliminate more than one div, then we need to make
640 * sure we do it from last div to first div, in order not to
641 * change the position of the other divs that still need to
644 static struct isl_basic_map *remove_duplicate_divs(
645 struct isl_basic_map *bmap, int *progress)
657 if (!bmap || bmap->n_div <= 1)
660 total_var = isl_dim_total(bmap->dim);
661 total = total_var + bmap->n_div;
664 for (k = bmap->n_div - 1; k >= 0; --k)
665 if (!isl_int_is_zero(bmap->div[k][0]))
670 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
671 size = round_up(4 * bmap->n_div / 3 - 1);
672 bits = ffs(size) - 1;
673 index = isl_calloc_array(ctx, int, size);
676 eq = isl_blk_alloc(ctx, 1+total);
677 if (isl_blk_is_error(eq))
680 isl_seq_clr(eq.data, 1+total);
681 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
682 for (--k; k >= 0; --k) {
685 if (isl_int_is_zero(bmap->div[k][0]))
688 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
689 for (h = hash; index[h]; h = (h+1) % size)
690 if (isl_seq_eq(bmap->div[k],
691 bmap->div[index[h]-1], 2+total))
700 for (l = bmap->n_div - 1; l >= 0; --l) {
704 isl_int_set_si(eq.data[1+total_var+k], -1);
705 isl_int_set_si(eq.data[1+total_var+l], 1);
706 eliminate_div(bmap, eq.data, l, 0);
707 isl_int_set_si(eq.data[1+total_var+k], 0);
708 isl_int_set_si(eq.data[1+total_var+l], 0);
711 isl_blk_free(ctx, eq);
718 static int n_pure_div_eq(struct isl_basic_map *bmap)
723 total = isl_dim_total(bmap->dim);
724 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
725 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
729 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
735 /* Normalize divs that appear in equalities.
737 * In particular, we assume that bmap contains some equalities
742 * and we want to replace the set of e_i by a minimal set and
743 * such that the new e_i have a canonical representation in terms
745 * If any of the equalities involves more than one divs, then
746 * we currently simply bail out.
748 * Let us first additionally assume that all equalities involve
749 * a div. The equalities then express modulo constraints on the
750 * remaining variables and we can use "parameter compression"
751 * to find a minimal set of constraints. The result is a transformation
753 * x = T(x') = x_0 + G x'
755 * with G a lower-triangular matrix with all elements below the diagonal
756 * non-negative and smaller than the diagonal element on the same row.
757 * We first normalize x_0 by making the same property hold in the affine
759 * The rows i of G with a 1 on the diagonal do not impose any modulo
760 * constraint and simply express x_i = x'_i.
761 * For each of the remaining rows i, we introduce a div and a corresponding
762 * equality. In particular
764 * g_ii e_j = x_i - g_i(x')
766 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
767 * corresponding div (if g_kk != 1).
769 * If there are any equalities not involving any div, then we
770 * first apply a variable compression on the variables x:
772 * x = C x'' x'' = C_2 x
774 * and perform the above parameter compression on A C instead of on A.
775 * The resulting compression is then of the form
777 * x'' = T(x') = x_0 + G x'
779 * and in constructing the new divs and the corresponding equalities,
780 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
781 * by the corresponding row from C_2.
783 static struct isl_basic_map *normalize_divs(
784 struct isl_basic_map *bmap, int *progress)
791 struct isl_mat *T = NULL;
792 struct isl_mat *C = NULL;
793 struct isl_mat *C2 = NULL;
801 if (bmap->n_div == 0)
807 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
810 total = isl_dim_total(bmap->dim);
811 div_eq = n_pure_div_eq(bmap);
815 if (div_eq < bmap->n_eq) {
816 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
817 bmap->n_eq - div_eq, 0, 1 + total);
818 C = isl_mat_variable_compression(B, &C2);
822 bmap = isl_basic_map_set_to_empty(bmap);
829 d = isl_vec_alloc(bmap->ctx, div_eq);
832 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
833 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
835 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
837 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
840 B = isl_mat_product(B, C);
844 T = isl_mat_parameter_compression(B, d);
848 bmap = isl_basic_map_set_to_empty(bmap);
854 for (i = 0; i < T->n_row - 1; ++i) {
855 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
856 if (isl_int_is_zero(v))
858 isl_mat_col_submul(T, 0, v, 1 + i);
861 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
864 /* We have to be careful because dropping equalities may reorder them */
866 for (j = bmap->n_div - 1; j >= 0; --j) {
867 for (i = 0; i < bmap->n_eq; ++i)
868 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
870 if (i < bmap->n_eq) {
871 bmap = isl_basic_map_drop_div(bmap, j);
872 isl_basic_map_drop_equality(bmap, i);
878 for (i = 1; i < T->n_row; ++i) {
879 if (isl_int_is_one(T->row[i][i]))
884 if (needed > dropped) {
885 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
890 for (i = 1; i < T->n_row; ++i) {
891 if (isl_int_is_one(T->row[i][i]))
893 k = isl_basic_map_alloc_div(bmap);
894 pos[i] = 1 + total + k;
895 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
896 isl_int_set(bmap->div[k][0], T->row[i][i]);
898 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
900 isl_int_set_si(bmap->div[k][1 + i], 1);
901 for (j = 0; j < i; ++j) {
902 if (isl_int_is_zero(T->row[i][j]))
904 if (pos[j] < T->n_row && C2)
905 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
906 C2->row[pos[j]], 1 + total);
908 isl_int_neg(bmap->div[k][1 + pos[j]],
911 j = isl_basic_map_alloc_equality(bmap);
912 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
913 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
922 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
932 static struct isl_basic_map *set_div_from_lower_bound(
933 struct isl_basic_map *bmap, int div, int ineq)
935 unsigned total = 1 + isl_dim_total(bmap->dim);
937 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
938 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
939 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
940 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
941 isl_int_set_si(bmap->div[div][1 + total + div], 0);
946 /* Check whether it is ok to define a div based on an inequality.
947 * To avoid the introduction of circular definitions of divs, we
948 * do not allow such a definition if the resulting expression would refer to
949 * any other undefined divs or if any known div is defined in
950 * terms of the unknown div.
952 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
956 unsigned total = 1 + isl_dim_total(bmap->dim);
958 /* Not defined in terms of unknown divs */
959 for (j = 0; j < bmap->n_div; ++j) {
962 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
964 if (isl_int_is_zero(bmap->div[j][0]))
968 /* No other div defined in terms of this one => avoid loops */
969 for (j = 0; j < bmap->n_div; ++j) {
972 if (isl_int_is_zero(bmap->div[j][0]))
974 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
981 /* Given two constraints "k" and "l" that are opposite to each other,
982 * except for the constant term, check if we can use them
983 * to obtain an expression for one of the hitherto unknown divs.
984 * "sum" is the sum of the constant terms of the constraints.
985 * If this sum is strictly smaller than the coefficient of one
986 * of the divs, then this pair can be used define the div.
987 * To avoid the introduction of circular definitions of divs, we
988 * do not use the pair if the resulting expression would refer to
989 * any other undefined divs or if any known div is defined in
990 * terms of the unknown div.
992 static struct isl_basic_map *check_for_div_constraints(
993 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
996 unsigned total = 1 + isl_dim_total(bmap->dim);
998 for (i = 0; i < bmap->n_div; ++i) {
999 if (!isl_int_is_zero(bmap->div[i][0]))
1001 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1003 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1005 if (!ok_to_set_div_from_bound(bmap, i, k))
1007 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1008 bmap = set_div_from_lower_bound(bmap, i, k);
1010 bmap = set_div_from_lower_bound(bmap, i, l);
1018 static struct isl_basic_map *remove_duplicate_constraints(
1019 struct isl_basic_map *bmap, int *progress, int detect_divs)
1025 unsigned total = isl_basic_map_total_dim(bmap);
1028 if (!bmap || bmap->n_ineq <= 1)
1031 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1032 bits = ffs(size) - 1;
1033 index = isl_calloc_array(ctx, isl_int **, size);
1037 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1038 for (k = 1; k < bmap->n_ineq; ++k) {
1039 h = hash_index(index, size, bits, bmap, k);
1041 index[h] = &bmap->ineq[k];
1046 l = index[h] - &bmap->ineq[0];
1047 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1048 swap_inequality(bmap, k, l);
1049 isl_basic_map_drop_inequality(bmap, k);
1053 for (k = 0; k < bmap->n_ineq-1; ++k) {
1054 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1055 h = hash_index(index, size, bits, bmap, k);
1056 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1059 l = index[h] - &bmap->ineq[0];
1060 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1061 if (isl_int_is_pos(sum)) {
1063 bmap = check_for_div_constraints(bmap, k, l,
1067 if (isl_int_is_zero(sum)) {
1068 /* We need to break out of the loop after these
1069 * changes since the contents of the hash
1070 * will no longer be valid.
1071 * Plus, we probably we want to regauss first.
1075 isl_basic_map_drop_inequality(bmap, l);
1076 isl_basic_map_inequality_to_equality(bmap, k);
1078 bmap = isl_basic_map_set_to_empty(bmap);
1088 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1095 bmap = isl_basic_map_normalize_constraints(bmap);
1096 bmap = remove_duplicate_divs(bmap, &progress);
1097 bmap = eliminate_divs_eq(bmap, &progress);
1098 bmap = eliminate_divs_ineq(bmap, &progress);
1099 bmap = isl_basic_map_gauss(bmap, &progress);
1100 /* requires equalities in normal form */
1101 bmap = normalize_divs(bmap, &progress);
1102 bmap = remove_duplicate_constraints(bmap, &progress, 1);
1107 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1109 return (struct isl_basic_set *)
1110 isl_basic_map_simplify((struct isl_basic_map *)bset);
1114 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1115 isl_int *constraint, unsigned div)
1122 pos = 1 + isl_dim_total(bmap->dim) + div;
1124 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1126 isl_int_sub(bmap->div[div][1],
1127 bmap->div[div][1], bmap->div[div][0]);
1128 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1129 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1130 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1131 isl_int_add(bmap->div[div][1],
1132 bmap->div[div][1], bmap->div[div][0]);
1135 if (isl_seq_first_non_zero(constraint+pos+1,
1136 bmap->n_div-div-1) != -1)
1138 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1139 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1141 if (isl_seq_first_non_zero(constraint+pos+1,
1142 bmap->n_div-div-1) != -1)
1151 /* If the only constraints a div d=floor(f/m)
1152 * appears in are its two defining constraints
1155 * -(f - (m - 1)) + m d >= 0
1157 * then it can safely be removed.
1159 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1162 unsigned pos = 1 + isl_dim_total(bmap->dim) + div;
1164 for (i = 0; i < bmap->n_eq; ++i)
1165 if (!isl_int_is_zero(bmap->eq[i][pos]))
1168 for (i = 0; i < bmap->n_ineq; ++i) {
1169 if (isl_int_is_zero(bmap->ineq[i][pos]))
1171 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1175 for (i = 0; i < bmap->n_div; ++i)
1176 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1183 * Remove divs that don't occur in any of the constraints or other divs.
1184 * These can arise when dropping some of the variables in a quast
1185 * returned by piplib.
1187 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1194 for (i = bmap->n_div-1; i >= 0; --i) {
1195 if (!div_is_redundant(bmap, i))
1197 bmap = isl_basic_map_drop_div(bmap, i);
1202 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1204 bmap = remove_redundant_divs(bmap);
1207 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1211 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1213 return (struct isl_basic_set *)
1214 isl_basic_map_finalize((struct isl_basic_map *)bset);
1217 struct isl_set *isl_set_finalize(struct isl_set *set)
1223 for (i = 0; i < set->n; ++i) {
1224 set->p[i] = isl_basic_set_finalize(set->p[i]);
1234 struct isl_map *isl_map_finalize(struct isl_map *map)
1240 for (i = 0; i < map->n; ++i) {
1241 map->p[i] = isl_basic_map_finalize(map->p[i]);
1245 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1253 /* Remove definition of any div that is defined in terms of the given variable.
1254 * The div itself is not removed. Functions such as
1255 * eliminate_divs_ineq depend on the other divs remaining in place.
1257 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1262 for (i = 0; i < bmap->n_div; ++i) {
1263 if (isl_int_is_zero(bmap->div[i][0]))
1265 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1267 isl_int_set_si(bmap->div[i][0], 0);
1272 /* Eliminate the specified variables from the constraints using
1273 * Fourier-Motzkin. The variables themselves are not removed.
1275 struct isl_basic_map *isl_basic_map_eliminate_vars(
1276 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1286 total = isl_basic_map_total_dim(bmap);
1288 bmap = isl_basic_map_cow(bmap);
1289 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1290 bmap = remove_dependent_vars(bmap, d);
1292 for (d = pos + n - 1;
1293 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1294 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1295 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1296 int n_lower, n_upper;
1299 for (i = 0; i < bmap->n_eq; ++i) {
1300 if (isl_int_is_zero(bmap->eq[i][1+d]))
1302 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1303 isl_basic_map_drop_equality(bmap, i);
1310 for (i = 0; i < bmap->n_ineq; ++i) {
1311 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1313 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1316 bmap = isl_basic_map_extend_constraints(bmap,
1317 0, n_lower * n_upper);
1320 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1322 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1325 for (j = 0; j < i; ++j) {
1326 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1329 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1330 isl_int_sgn(bmap->ineq[j][1+d]))
1332 k = isl_basic_map_alloc_inequality(bmap);
1335 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1337 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1338 1+d, 1+total, NULL);
1340 isl_basic_map_drop_inequality(bmap, i);
1343 if (n_lower > 0 && n_upper > 0) {
1344 bmap = isl_basic_map_normalize_constraints(bmap);
1345 bmap = remove_duplicate_constraints(bmap, NULL, 0);
1346 bmap = isl_basic_map_gauss(bmap, NULL);
1347 bmap = isl_basic_map_remove_redundancies(bmap);
1350 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1354 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1357 isl_basic_map_free(bmap);
1361 struct isl_basic_set *isl_basic_set_eliminate_vars(
1362 struct isl_basic_set *bset, unsigned pos, unsigned n)
1364 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1365 (struct isl_basic_map *)bset, pos, n);
1368 /* Don't assume equalities are in order, because align_divs
1369 * may have changed the order of the divs.
1371 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1376 total = isl_dim_total(bmap->dim);
1377 for (d = 0; d < total; ++d)
1379 for (i = 0; i < bmap->n_eq; ++i) {
1380 for (d = total - 1; d >= 0; --d) {
1381 if (isl_int_is_zero(bmap->eq[i][1+d]))
1389 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1391 compute_elimination_index((struct isl_basic_map *)bset, elim);
1394 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1395 struct isl_basic_map *bmap, int *elim)
1401 total = isl_dim_total(bmap->dim);
1402 for (d = total - 1; d >= 0; --d) {
1403 if (isl_int_is_zero(src[1+d]))
1408 isl_seq_cpy(dst, src, 1 + total);
1411 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1416 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1417 struct isl_basic_set *bset, int *elim)
1419 return reduced_using_equalities(dst, src,
1420 (struct isl_basic_map *)bset, elim);
1423 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1424 struct isl_basic_set *bset, struct isl_basic_set *context)
1429 if (!bset || !context)
1432 if (context->n_eq == 0) {
1433 isl_basic_set_free(context);
1437 bset = isl_basic_set_cow(bset);
1441 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1444 set_compute_elimination_index(context, elim);
1445 for (i = 0; i < bset->n_eq; ++i)
1446 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1448 for (i = 0; i < bset->n_ineq; ++i)
1449 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1451 isl_basic_set_free(context);
1453 bset = isl_basic_set_simplify(bset);
1454 bset = isl_basic_set_finalize(bset);
1457 isl_basic_set_free(bset);
1458 isl_basic_set_free(context);
1462 static struct isl_basic_set *remove_shifted_constraints(
1463 struct isl_basic_set *bset, struct isl_basic_set *context)
1473 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1474 bits = ffs(size) - 1;
1475 index = isl_calloc_array(ctx, isl_int **, size);
1479 for (k = 0; k < context->n_ineq; ++k) {
1480 h = set_hash_index(index, size, bits, context, k);
1481 index[h] = &context->ineq[k];
1483 for (k = 0; k < bset->n_ineq; ++k) {
1484 h = set_hash_index(index, size, bits, bset, k);
1487 l = index[h] - &context->ineq[0];
1488 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1490 bset = isl_basic_set_cow(bset);
1493 isl_basic_set_drop_inequality(bset, k);
1503 /* Tighten (decrease) the constant terms of the inequalities based
1504 * on the equalities, without removing any integer points.
1505 * For example, if there is an equality
1513 * then we want to replace the inequality by
1517 * We do this by computing a variable compression and translating
1518 * the constraints to the compressed space.
1519 * If any constraint has coefficients (except the contant term)
1520 * with a common factor "f", then we can replace the constant term "c"
1527 * f * floor(c/f) - c = -fract(c/f)
1529 * and we can add the same value to the original constraint.
1531 * In the example, the compressed space only contains "j",
1532 * and the inequality translates to
1536 * We add -fract(-1/3) = -2 to the original constraint to obtain
1540 static struct isl_basic_set *normalize_constraints_in_compressed_space(
1541 struct isl_basic_set *bset)
1545 struct isl_mat *B, *C;
1551 if (ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL))
1557 bset = isl_basic_set_cow(bset);
1561 total = isl_basic_set_total_dim(bset);
1562 B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + total);
1563 C = isl_mat_variable_compression(B, NULL);
1566 if (C->n_col == 0) {
1568 return isl_basic_set_set_to_empty(bset);
1570 B = isl_mat_sub_alloc6(bset->ctx, bset->ineq,
1571 0, bset->n_ineq, 0, 1 + total);
1572 C = isl_mat_product(B, C);
1577 for (i = 0; i < bset->n_ineq; ++i) {
1578 isl_seq_gcd(C->row[i] + 1, C->n_col - 1, &gcd);
1579 if (isl_int_is_one(gcd))
1581 isl_int_fdiv_r(C->row[i][0], C->row[i][0], gcd);
1582 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], C->row[i][0]);
1591 /* Remove all information from bset that is redundant in the context
1592 * of context. Both bset and context are assumed to be full-dimensional.
1594 * We first * remove the inequalities from "bset"
1595 * that are obviously redundant with respect to some inequality in "context".
1597 * If there are any inequalities left, we construct a tableau for
1598 * the context and then add the inequalities of "bset".
1599 * Before adding these inequalities, we freeze all constraints such that
1600 * they won't be considered redundant in terms of the constraints of "bset".
1601 * Then we detect all redundant constraints (among the
1602 * constraints that weren't frozen), first by checking for redundancy in the
1603 * the tableau and then by checking if replacing a constraint by its negation
1604 * would lead to an empty set. This last step is fairly expensive
1605 * and could be optimized by more reuse of the tableau.
1606 * Finally, we update bset according to the results.
1608 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1609 __isl_take isl_basic_set *context)
1612 isl_basic_set *combined = NULL;
1613 struct isl_tab *tab = NULL;
1614 unsigned context_ineq;
1617 if (!bset || !context)
1620 if (isl_basic_set_is_universe(bset)) {
1621 isl_basic_set_free(context);
1625 if (isl_basic_set_is_universe(context)) {
1626 isl_basic_set_free(context);
1630 bset = remove_shifted_constraints(bset, context);
1633 if (bset->n_ineq == 0)
1636 context_ineq = context->n_ineq;
1637 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1638 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1639 tab = isl_tab_from_basic_set(combined);
1640 for (i = 0; i < context_ineq; ++i)
1641 if (isl_tab_freeze_constraint(tab, i) < 0)
1643 tab = isl_tab_extend(tab, bset->n_ineq);
1644 for (i = 0; i < bset->n_ineq; ++i)
1645 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1647 bset = isl_basic_set_add_constraints(combined, bset, 0);
1651 if (isl_tab_detect_redundant(tab) < 0)
1653 total = isl_basic_set_total_dim(bset);
1654 for (i = context_ineq; i < bset->n_ineq; ++i) {
1656 if (tab->con[i].is_redundant)
1658 tab->con[i].is_redundant = 1;
1659 combined = isl_basic_set_dup(bset);
1660 combined = isl_basic_set_update_from_tab(combined, tab);
1661 combined = isl_basic_set_extend_constraints(combined, 0, 1);
1662 k = isl_basic_set_alloc_inequality(combined);
1665 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
1666 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
1667 is_empty = isl_basic_set_is_empty(combined);
1670 isl_basic_set_free(combined);
1673 tab->con[i].is_redundant = 0;
1675 for (i = 0; i < context_ineq; ++i)
1676 tab->con[i].is_redundant = 1;
1677 bset = isl_basic_set_update_from_tab(bset, tab);
1679 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1680 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1685 bset = isl_basic_set_simplify(bset);
1686 bset = isl_basic_set_finalize(bset);
1687 isl_basic_set_free(context);
1691 isl_basic_set_free(combined);
1692 isl_basic_set_free(context);
1693 isl_basic_set_free(bset);
1697 /* Remove all information from bset that is redundant in the context
1698 * of context. In particular, equalities that are linear combinations
1699 * of those in context are removed. Then the inequalities that are
1700 * redundant in the context of the equalities and inequalities of
1701 * context are removed.
1703 * We first compute the integer affine hull of the intersection,
1704 * compute the gist inside this affine hull and then add back
1705 * those equalities that are not implied by the context.
1707 * If two constraints are mutually redundant, then uset_gist_full
1708 * will remove the second of those constraints. We therefore first
1709 * sort the constraints so that constraints not involving existentially
1710 * quantified variables are given precedence over those that do.
1711 * We have to perform this sorting before the variable compression,
1712 * because that may effect the order of the variables.
1714 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
1715 __isl_take isl_basic_set *context)
1720 isl_basic_set *aff_context;
1723 if (!bset || !context)
1726 bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
1727 if (isl_basic_set_plain_is_empty(bset)) {
1728 isl_basic_set_free(context);
1731 bset = isl_basic_set_sort_constraints(bset);
1732 aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
1735 if (isl_basic_set_plain_is_empty(aff)) {
1736 isl_basic_set_free(aff);
1737 isl_basic_set_free(context);
1740 if (aff->n_eq == 0) {
1741 isl_basic_set_free(aff);
1742 return uset_gist_full(bset, context);
1744 total = isl_basic_set_total_dim(bset);
1745 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
1746 eq = isl_mat_cow(eq);
1747 T = isl_mat_variable_compression(eq, &T2);
1748 if (T && T->n_col == 0) {
1751 isl_basic_set_free(context);
1752 isl_basic_set_free(aff);
1753 return isl_basic_set_set_to_empty(bset);
1756 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
1758 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
1759 context = isl_basic_set_preimage(context, T);
1761 bset = uset_gist_full(bset, context);
1762 bset = isl_basic_set_preimage(bset, T2);
1763 bset = isl_basic_set_intersect(bset, aff);
1764 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
1767 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1768 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1773 isl_basic_set_free(bset);
1774 isl_basic_set_free(context);
1778 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1779 * We simply add the equalities in context to bmap and then do a regular
1780 * div normalizations. Better results can be obtained by normalizing
1781 * only the divs in bmap than do not also appear in context.
1782 * We need to be careful to reduce the divs using the equalities
1783 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1784 * spurious constraints.
1786 static struct isl_basic_map *normalize_divs_in_context(
1787 struct isl_basic_map *bmap, struct isl_basic_map *context)
1790 unsigned total_context;
1793 div_eq = n_pure_div_eq(bmap);
1797 if (context->n_div > 0)
1798 bmap = isl_basic_map_align_divs(bmap, context);
1800 total_context = isl_basic_map_total_dim(context);
1801 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
1802 for (i = 0; i < context->n_eq; ++i) {
1804 k = isl_basic_map_alloc_equality(bmap);
1805 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
1806 isl_seq_clr(bmap->eq[k] + 1 + total_context,
1807 isl_basic_map_total_dim(bmap) - total_context);
1809 bmap = isl_basic_map_gauss(bmap, NULL);
1810 bmap = normalize_divs(bmap, NULL);
1811 bmap = isl_basic_map_gauss(bmap, NULL);
1815 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
1816 struct isl_basic_map *context)
1818 struct isl_basic_set *bset;
1820 if (!bmap || !context)
1823 if (isl_basic_map_is_universe(bmap)) {
1824 isl_basic_map_free(context);
1827 if (isl_basic_map_plain_is_empty(context)) {
1828 struct isl_dim *dim = isl_dim_copy(bmap->dim);
1829 isl_basic_map_free(context);
1830 isl_basic_map_free(bmap);
1831 return isl_basic_map_universe(dim);
1833 if (isl_basic_map_plain_is_empty(bmap)) {
1834 isl_basic_map_free(context);
1838 bmap = isl_basic_map_remove_redundancies(bmap);
1839 context = isl_basic_map_remove_redundancies(context);
1842 bmap = normalize_divs_in_context(bmap, context);
1844 context = isl_basic_map_align_divs(context, bmap);
1845 bmap = isl_basic_map_align_divs(bmap, context);
1847 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
1848 isl_basic_map_underlying_set(context));
1850 return isl_basic_map_overlying_set(bset, bmap);
1852 isl_basic_map_free(bmap);
1853 isl_basic_map_free(context);
1858 * Assumes context has no implicit divs.
1860 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
1861 __isl_take isl_basic_map *context)
1865 if (!map || !context)
1868 if (isl_basic_map_plain_is_empty(context)) {
1869 struct isl_dim *dim = isl_dim_copy(map->dim);
1870 isl_basic_map_free(context);
1872 return isl_map_universe(dim);
1875 context = isl_basic_map_remove_redundancies(context);
1876 map = isl_map_cow(map);
1877 if (!map || !context)
1879 isl_assert(map->ctx, isl_dim_equal(map->dim, context->dim), goto error);
1880 map = isl_map_compute_divs(map);
1881 for (i = 0; i < map->n; ++i)
1882 context = isl_basic_map_align_divs(context, map->p[i]);
1883 for (i = map->n - 1; i >= 0; --i) {
1884 map->p[i] = isl_basic_map_gist(map->p[i],
1885 isl_basic_map_copy(context));
1888 if (isl_basic_map_plain_is_empty(map->p[i])) {
1889 isl_basic_map_free(map->p[i]);
1890 if (i != map->n - 1)
1891 map->p[i] = map->p[map->n - 1];
1895 isl_basic_map_free(context);
1896 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1900 isl_basic_map_free(context);
1904 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1905 __isl_take isl_map *context)
1907 context = isl_map_compute_divs(context);
1908 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
1911 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
1912 struct isl_basic_set *context)
1914 return (struct isl_basic_set *)isl_basic_map_gist(
1915 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
1918 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
1919 __isl_take isl_basic_set *context)
1921 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
1922 (struct isl_basic_map *)context);
1925 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1926 __isl_take isl_set *context)
1928 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
1929 (struct isl_map *)context);
1932 /* Quick check to see if two basic maps are disjoint.
1933 * In particular, we reduce the equalities and inequalities of
1934 * one basic map in the context of the equalities of the other
1935 * basic map and check if we get a contradiction.
1937 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
1938 __isl_keep isl_basic_map *bmap2)
1940 struct isl_vec *v = NULL;
1945 if (!bmap1 || !bmap2)
1947 isl_assert(bmap1->ctx, isl_dim_equal(bmap1->dim, bmap2->dim),
1949 if (bmap1->n_div || bmap2->n_div)
1951 if (!bmap1->n_eq && !bmap2->n_eq)
1954 total = isl_dim_total(bmap1->dim);
1957 v = isl_vec_alloc(bmap1->ctx, 1 + total);
1960 elim = isl_alloc_array(bmap1->ctx, int, total);
1963 compute_elimination_index(bmap1, elim);
1964 for (i = 0; i < bmap2->n_eq; ++i) {
1966 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
1968 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
1969 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1972 for (i = 0; i < bmap2->n_ineq; ++i) {
1974 reduced = reduced_using_equalities(v->block.data,
1975 bmap2->ineq[i], bmap1, elim);
1976 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1977 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1980 compute_elimination_index(bmap2, elim);
1981 for (i = 0; i < bmap1->n_ineq; ++i) {
1983 reduced = reduced_using_equalities(v->block.data,
1984 bmap1->ineq[i], bmap2, elim);
1985 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1986 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2002 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2003 __isl_keep isl_basic_set *bset2)
2005 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2006 (struct isl_basic_map *)bset2);
2009 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2010 __isl_keep isl_map *map2)
2017 if (isl_map_plain_is_equal(map1, map2))
2020 for (i = 0; i < map1->n; ++i) {
2021 for (j = 0; j < map2->n; ++j) {
2022 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2031 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2032 __isl_keep isl_set *set2)
2034 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2035 (struct isl_map *)set2);
2038 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2040 return isl_set_plain_is_disjoint(set1, set2);
2043 /* Check if we can combine a given div with lower bound l and upper
2044 * bound u with some other div and if so return that other div.
2045 * Otherwise return -1.
2047 * We first check that
2048 * - the bounds are opposites of each other (except for the constant
2050 * - the bounds do not reference any other div
2051 * - no div is defined in terms of this div
2053 * Let m be the size of the range allowed on the div by the bounds.
2054 * That is, the bounds are of the form
2056 * e <= a <= e + m - 1
2058 * with e some expression in the other variables.
2059 * We look for another div b such that no third div is defined in terms
2060 * of this second div b and such that in any constraint that contains
2061 * a (except for the given lower and upper bound), also contains b
2062 * with a coefficient that is m times that of b.
2063 * That is, all constraints (execpt for the lower and upper bound)
2066 * e + f (a + m b) >= 0
2068 * If so, we return b so that "a + m b" can be replaced by
2069 * a single div "c = a + m b".
2071 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2072 unsigned div, unsigned l, unsigned u)
2078 if (bmap->n_div <= 1)
2080 dim = isl_dim_total(bmap->dim);
2081 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2083 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2084 bmap->n_div - div - 1) != -1)
2086 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2090 for (i = 0; i < bmap->n_div; ++i) {
2091 if (isl_int_is_zero(bmap->div[i][0]))
2093 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2097 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2098 if (isl_int_is_neg(bmap->ineq[l][0])) {
2099 isl_int_sub(bmap->ineq[l][0],
2100 bmap->ineq[l][0], bmap->ineq[u][0]);
2101 bmap = isl_basic_map_copy(bmap);
2102 bmap = isl_basic_map_set_to_empty(bmap);
2103 isl_basic_map_free(bmap);
2106 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2107 for (i = 0; i < bmap->n_div; ++i) {
2112 for (j = 0; j < bmap->n_div; ++j) {
2113 if (isl_int_is_zero(bmap->div[j][0]))
2115 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2118 if (j < bmap->n_div)
2120 for (j = 0; j < bmap->n_ineq; ++j) {
2122 if (j == l || j == u)
2124 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2126 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2128 isl_int_mul(bmap->ineq[j][1 + dim + div],
2129 bmap->ineq[j][1 + dim + div],
2131 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2132 bmap->ineq[j][1 + dim + i]);
2133 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2134 bmap->ineq[j][1 + dim + div],
2139 if (j < bmap->n_ineq)
2144 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2145 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2149 /* Given a lower and an upper bound on div i, construct an inequality
2150 * that when nonnegative ensures that this pair of bounds always allows
2151 * for an integer value of the given div.
2152 * The lower bound is inequality l, while the upper bound is inequality u.
2153 * The constructed inequality is stored in ineq.
2154 * g, fl, fu are temporary scalars.
2156 * Let the upper bound be
2160 * and the lower bound
2164 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2167 * - f_u e_l <= f_u f_l g a <= f_l e_u
2169 * Since all variables are integer valued, this is equivalent to
2171 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2173 * If this interval is at least f_u f_l g, then it contains at least
2174 * one integer value for a.
2175 * That is, the test constraint is
2177 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2179 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2180 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2183 dim = isl_dim_total(bmap->dim);
2185 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2186 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2187 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2188 isl_int_neg(fu, fu);
2189 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2190 1 + dim + bmap->n_div);
2191 isl_int_add(ineq[0], ineq[0], fl);
2192 isl_int_add(ineq[0], ineq[0], fu);
2193 isl_int_sub_ui(ineq[0], ineq[0], 1);
2194 isl_int_mul(g, g, fl);
2195 isl_int_mul(g, g, fu);
2196 isl_int_sub(ineq[0], ineq[0], g);
2199 /* Remove more kinds of divs that are not strictly needed.
2200 * In particular, if all pairs of lower and upper bounds on a div
2201 * are such that they allow at least one integer value of the div,
2202 * the we can eliminate the div using Fourier-Motzkin without
2203 * introducing any spurious solutions.
2205 static struct isl_basic_map *drop_more_redundant_divs(
2206 struct isl_basic_map *bmap, int *pairs, int n)
2208 struct isl_tab *tab = NULL;
2209 struct isl_vec *vec = NULL;
2221 dim = isl_dim_total(bmap->dim);
2222 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2226 tab = isl_tab_from_basic_map(bmap);
2231 enum isl_lp_result res;
2233 for (i = 0; i < bmap->n_div; ++i) {
2236 if (best >= 0 && pairs[best] <= pairs[i])
2242 for (l = 0; l < bmap->n_ineq; ++l) {
2243 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2245 for (u = 0; u < bmap->n_ineq; ++u) {
2246 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2248 construct_test_ineq(bmap, i, l, u,
2249 vec->el, g, fl, fu);
2250 res = isl_tab_min(tab, vec->el,
2251 bmap->ctx->one, &g, NULL, 0);
2252 if (res == isl_lp_error)
2254 if (res == isl_lp_empty) {
2255 bmap = isl_basic_map_set_to_empty(bmap);
2258 if (res != isl_lp_ok || isl_int_is_neg(g))
2261 if (u < bmap->n_ineq)
2264 if (l == bmap->n_ineq) {
2284 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2285 return isl_basic_map_drop_redundant_divs(bmap);
2288 isl_basic_map_free(bmap);
2297 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2298 * and the upper bound u, div1 always occurs together with div2 in the form
2299 * (div1 + m div2), where m is the constant range on the variable div1
2300 * allowed by l and u, replace the pair div1 and div2 by a single
2301 * div that is equal to div1 + m div2.
2303 * The new div will appear in the location that contains div2.
2304 * We need to modify all constraints that contain
2305 * div2 = (div - div1) / m
2306 * (If a constraint does not contain div2, it will also not contain div1.)
2307 * If the constraint also contains div1, then we know they appear
2308 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2309 * i.e., the coefficient of div is f.
2311 * Otherwise, we first need to introduce div1 into the constraint.
2320 * A lower bound on div2
2324 * can be replaced by
2326 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2328 * with g = gcd(m,n).
2333 * can be replaced by
2335 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2337 * These constraint are those that we would obtain from eliminating
2338 * div1 using Fourier-Motzkin.
2340 * After all constraints have been modified, we drop the lower and upper
2341 * bound and then drop div1.
2343 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2344 unsigned div1, unsigned div2, unsigned l, unsigned u)
2349 unsigned dim, total;
2352 dim = isl_dim_total(bmap->dim);
2353 total = 1 + dim + bmap->n_div;
2358 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2359 isl_int_add_ui(m, m, 1);
2361 for (i = 0; i < bmap->n_ineq; ++i) {
2362 if (i == l || i == u)
2364 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2366 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2367 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2368 isl_int_divexact(a, m, b);
2369 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2370 if (isl_int_is_pos(b)) {
2371 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2372 b, bmap->ineq[l], total);
2375 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2376 b, bmap->ineq[u], total);
2379 isl_int_set(bmap->ineq[i][1 + dim + div2],
2380 bmap->ineq[i][1 + dim + div1]);
2381 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2388 isl_basic_map_drop_inequality(bmap, l);
2389 isl_basic_map_drop_inequality(bmap, u);
2391 isl_basic_map_drop_inequality(bmap, u);
2392 isl_basic_map_drop_inequality(bmap, l);
2394 bmap = isl_basic_map_drop_div(bmap, div1);
2398 /* First check if we can coalesce any pair of divs and
2399 * then continue with dropping more redundant divs.
2401 * We loop over all pairs of lower and upper bounds on a div
2402 * with coefficient 1 and -1, respectively, check if there
2403 * is any other div "c" with which we can coalesce the div
2404 * and if so, perform the coalescing.
2406 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2407 struct isl_basic_map *bmap, int *pairs, int n)
2412 dim = isl_dim_total(bmap->dim);
2414 for (i = 0; i < bmap->n_div; ++i) {
2417 for (l = 0; l < bmap->n_ineq; ++l) {
2418 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2420 for (u = 0; u < bmap->n_ineq; ++u) {
2423 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2425 c = div_find_coalesce(bmap, pairs, i, l, u);
2429 bmap = coalesce_divs(bmap, i, c, l, u);
2430 return isl_basic_map_drop_redundant_divs(bmap);
2435 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2438 return drop_more_redundant_divs(bmap, pairs, n);
2441 /* Remove divs that are not strictly needed.
2442 * In particular, if a div only occurs positively (or negatively)
2443 * in constraints, then it can simply be dropped.
2444 * Also, if a div occurs only occurs in two constraints and if moreover
2445 * those two constraints are opposite to each other, except for the constant
2446 * term and if the sum of the constant terms is such that for any value
2447 * of the other values, there is always at least one integer value of the
2448 * div, i.e., if one plus this sum is greater than or equal to
2449 * the (absolute value) of the coefficent of the div in the constraints,
2450 * then we can also simply drop the div.
2452 * If any divs are left after these simple checks then we move on
2453 * to more complicated cases in drop_more_redundant_divs.
2455 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2456 struct isl_basic_map *bmap)
2466 off = isl_dim_total(bmap->dim);
2467 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2471 for (i = 0; i < bmap->n_div; ++i) {
2473 int last_pos, last_neg;
2477 defined = !isl_int_is_zero(bmap->div[i][0]);
2478 for (j = 0; j < bmap->n_eq; ++j)
2479 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
2485 for (j = 0; j < bmap->n_ineq; ++j) {
2486 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
2490 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
2495 pairs[i] = pos * neg;
2496 if (pairs[i] == 0) {
2497 for (j = bmap->n_ineq - 1; j >= 0; --j)
2498 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
2499 isl_basic_map_drop_inequality(bmap, j);
2500 bmap = isl_basic_map_drop_div(bmap, i);
2502 return isl_basic_map_drop_redundant_divs(bmap);
2506 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
2507 bmap->ineq[last_neg] + 1,
2511 isl_int_add(bmap->ineq[last_pos][0],
2512 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2513 isl_int_add_ui(bmap->ineq[last_pos][0],
2514 bmap->ineq[last_pos][0], 1);
2515 redundant = isl_int_ge(bmap->ineq[last_pos][0],
2516 bmap->ineq[last_pos][1+off+i]);
2517 isl_int_sub_ui(bmap->ineq[last_pos][0],
2518 bmap->ineq[last_pos][0], 1);
2519 isl_int_sub(bmap->ineq[last_pos][0],
2520 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2523 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
2528 bmap = set_div_from_lower_bound(bmap, i, last_pos);
2529 bmap = isl_basic_map_simplify(bmap);
2531 return isl_basic_map_drop_redundant_divs(bmap);
2533 if (last_pos > last_neg) {
2534 isl_basic_map_drop_inequality(bmap, last_pos);
2535 isl_basic_map_drop_inequality(bmap, last_neg);
2537 isl_basic_map_drop_inequality(bmap, last_neg);
2538 isl_basic_map_drop_inequality(bmap, last_pos);
2540 bmap = isl_basic_map_drop_div(bmap, i);
2542 return isl_basic_map_drop_redundant_divs(bmap);
2546 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
2552 isl_basic_map_free(bmap);
2556 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
2557 struct isl_basic_set *bset)
2559 return (struct isl_basic_set *)
2560 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
2563 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
2569 for (i = 0; i < map->n; ++i) {
2570 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
2574 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2581 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
2583 return (struct isl_set *)
2584 isl_map_drop_redundant_divs((struct isl_map *)set);