2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include "isl_equalities.h"
12 #include "isl_map_private.h"
15 #include <isl_dim_private.h>
17 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
19 isl_int *t = bmap->eq[a];
20 bmap->eq[a] = bmap->eq[b];
24 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
27 isl_int *t = bmap->ineq[a];
28 bmap->ineq[a] = bmap->ineq[b];
33 static void set_swap_inequality(struct isl_basic_set *bset, int a, int b)
35 swap_inequality((struct isl_basic_map *)bset, a, b);
38 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
40 isl_seq_cpy(c, c + n, rem);
41 isl_seq_clr(c + rem, n);
44 /* Drop n dimensions starting at first.
46 * In principle, this frees up some extra variables as the number
47 * of columns remains constant, but we would have to extend
48 * the div array too as the number of rows in this array is assumed
49 * to be equal to extra.
51 struct isl_basic_set *isl_basic_set_drop_dims(
52 struct isl_basic_set *bset, unsigned first, unsigned n)
59 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
61 if (n == 0 && !isl_dim_get_tuple_name(bset->dim, isl_dim_set))
64 bset = isl_basic_set_cow(bset);
68 for (i = 0; i < bset->n_eq; ++i)
69 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
70 (bset->dim->n_out-first-n)+bset->extra);
72 for (i = 0; i < bset->n_ineq; ++i)
73 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
74 (bset->dim->n_out-first-n)+bset->extra);
76 for (i = 0; i < bset->n_div; ++i)
77 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
78 (bset->dim->n_out-first-n)+bset->extra);
80 bset->dim = isl_dim_drop_outputs(bset->dim, first, n);
84 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
85 bset = isl_basic_set_simplify(bset);
86 return isl_basic_set_finalize(bset);
88 isl_basic_set_free(bset);
92 struct isl_set *isl_set_drop_dims(
93 struct isl_set *set, unsigned first, unsigned n)
100 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
102 if (n == 0 && !isl_dim_get_tuple_name(set->dim, isl_dim_set))
104 set = isl_set_cow(set);
107 set->dim = isl_dim_drop_outputs(set->dim, first, n);
111 for (i = 0; i < set->n; ++i) {
112 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
117 ISL_F_CLR(set, ISL_SET_NORMALIZED);
124 /* Move "n" divs starting at "first" to the end of the list of divs.
126 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
127 unsigned first, unsigned n)
132 if (first + n == bmap->n_div)
135 div = isl_alloc_array(bmap->ctx, isl_int *, n);
138 for (i = 0; i < n; ++i)
139 div[i] = bmap->div[first + i];
140 for (i = 0; i < bmap->n_div - first - n; ++i)
141 bmap->div[first + i] = bmap->div[first + n + i];
142 for (i = 0; i < n; ++i)
143 bmap->div[bmap->n_div - n + i] = div[i];
147 isl_basic_map_free(bmap);
151 /* Drop "n" dimensions of type "type" starting at "first".
153 * In principle, this frees up some extra variables as the number
154 * of columns remains constant, but we would have to extend
155 * the div array too as the number of rows in this array is assumed
156 * to be equal to extra.
158 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
159 enum isl_dim_type type, unsigned first, unsigned n)
169 dim = isl_basic_map_dim(bmap, type);
170 isl_assert(bmap->ctx, first + n <= dim, goto error);
172 if (n == 0 && !isl_dim_get_tuple_name(bmap->dim, type))
175 bmap = isl_basic_map_cow(bmap);
179 offset = isl_basic_map_offset(bmap, type) + first;
180 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
181 for (i = 0; i < bmap->n_eq; ++i)
182 constraint_drop_vars(bmap->eq[i]+offset, n, left);
184 for (i = 0; i < bmap->n_ineq; ++i)
185 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
187 for (i = 0; i < bmap->n_div; ++i)
188 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
190 if (type == isl_dim_div) {
191 bmap = move_divs_last(bmap, first, n);
194 isl_basic_map_free_div(bmap, n);
196 bmap->dim = isl_dim_drop(bmap->dim, type, first, n);
200 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
201 bmap = isl_basic_map_simplify(bmap);
202 return isl_basic_map_finalize(bmap);
204 isl_basic_map_free(bmap);
208 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
209 enum isl_dim_type type, unsigned first, unsigned n)
211 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
215 struct isl_basic_map *isl_basic_map_drop_inputs(
216 struct isl_basic_map *bmap, unsigned first, unsigned n)
218 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
221 struct isl_map *isl_map_drop(struct isl_map *map,
222 enum isl_dim_type type, unsigned first, unsigned n)
229 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
231 if (n == 0 && !isl_dim_get_tuple_name(map->dim, type))
233 map = isl_map_cow(map);
236 map->dim = isl_dim_drop(map->dim, type, first, n);
240 for (i = 0; i < map->n; ++i) {
241 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
245 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
253 struct isl_set *isl_set_drop(struct isl_set *set,
254 enum isl_dim_type type, unsigned first, unsigned n)
256 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
259 struct isl_map *isl_map_drop_inputs(
260 struct isl_map *map, unsigned first, unsigned n)
262 return isl_map_drop(map, isl_dim_in, first, n);
266 * We don't cow, as the div is assumed to be redundant.
268 static struct isl_basic_map *isl_basic_map_drop_div(
269 struct isl_basic_map *bmap, unsigned div)
277 pos = 1 + isl_dim_total(bmap->dim) + div;
279 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
281 for (i = 0; i < bmap->n_eq; ++i)
282 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
284 for (i = 0; i < bmap->n_ineq; ++i) {
285 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
286 isl_basic_map_drop_inequality(bmap, i);
290 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
293 for (i = 0; i < bmap->n_div; ++i)
294 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
296 if (div != bmap->n_div - 1) {
298 isl_int *t = bmap->div[div];
300 for (j = div; j < bmap->n_div - 1; ++j)
301 bmap->div[j] = bmap->div[j+1];
303 bmap->div[bmap->n_div - 1] = t;
305 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
306 isl_basic_map_free_div(bmap, 1);
310 isl_basic_map_free(bmap);
314 struct isl_basic_map *isl_basic_map_normalize_constraints(
315 struct isl_basic_map *bmap)
319 unsigned total = isl_basic_map_total_dim(bmap);
325 for (i = bmap->n_eq - 1; i >= 0; --i) {
326 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
327 if (isl_int_is_zero(gcd)) {
328 if (!isl_int_is_zero(bmap->eq[i][0])) {
329 bmap = isl_basic_map_set_to_empty(bmap);
332 isl_basic_map_drop_equality(bmap, i);
335 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
336 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
337 if (isl_int_is_one(gcd))
339 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
340 bmap = isl_basic_map_set_to_empty(bmap);
343 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
346 for (i = bmap->n_ineq - 1; i >= 0; --i) {
347 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
348 if (isl_int_is_zero(gcd)) {
349 if (isl_int_is_neg(bmap->ineq[i][0])) {
350 bmap = isl_basic_map_set_to_empty(bmap);
353 isl_basic_map_drop_inequality(bmap, i);
356 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
357 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
358 if (isl_int_is_one(gcd))
360 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
361 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
368 struct isl_basic_set *isl_basic_set_normalize_constraints(
369 struct isl_basic_set *bset)
371 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
372 (struct isl_basic_map *)bset);
375 /* Assumes divs have been ordered if keep_divs is set.
377 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
378 unsigned pos, isl_int *eq, int keep_divs, int *progress)
384 total = isl_basic_map_total_dim(bmap);
385 last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
387 for (k = 0; k < bmap->n_eq; ++k) {
388 if (bmap->eq[k] == eq)
390 if (isl_int_is_zero(bmap->eq[k][1+pos]))
394 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
397 for (k = 0; k < bmap->n_ineq; ++k) {
398 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
402 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
403 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
406 for (k = 0; k < bmap->n_div; ++k) {
407 if (isl_int_is_zero(bmap->div[k][0]))
409 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
413 /* We need to be careful about circular definitions,
414 * so for now we just remove the definition of div k
415 * if the equality contains any divs.
416 * If keep_divs is set, then the divs have been ordered
417 * and we can keep the definition as long as the result
420 if (last_div == -1 || (keep_divs && last_div < k))
421 isl_seq_elim(bmap->div[k]+1, eq,
422 1+pos, 1+total, &bmap->div[k][0]);
424 isl_seq_clr(bmap->div[k], 1 + total);
425 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
429 /* Assumes divs have been ordered if keep_divs is set.
431 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
432 unsigned div, int keep_divs)
434 unsigned pos = isl_dim_total(bmap->dim) + div;
436 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
438 isl_basic_map_drop_div(bmap, div);
441 /* Check if elimination of div "div" using equality "eq" would not
442 * result in a div depending on a later div.
444 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
449 unsigned pos = isl_dim_total(bmap->dim) + div;
451 last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
453 if (last_div < 0 || last_div <= div)
456 for (k = 0; k <= last_div; ++k) {
457 if (isl_int_is_zero(bmap->div[k][0]))
459 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
466 /* Elimininate divs based on equalities
468 static struct isl_basic_map *eliminate_divs_eq(
469 struct isl_basic_map *bmap, int *progress)
476 bmap = isl_basic_map_order_divs(bmap);
481 off = 1 + isl_dim_total(bmap->dim);
483 for (d = bmap->n_div - 1; d >= 0 ; --d) {
484 for (i = 0; i < bmap->n_eq; ++i) {
485 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
486 !isl_int_is_negone(bmap->eq[i][off + d]))
488 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
492 eliminate_div(bmap, bmap->eq[i], d, 1);
493 isl_basic_map_drop_equality(bmap, i);
498 return eliminate_divs_eq(bmap, progress);
502 /* Elimininate divs based on inequalities
504 static struct isl_basic_map *eliminate_divs_ineq(
505 struct isl_basic_map *bmap, int *progress)
516 off = 1 + isl_dim_total(bmap->dim);
518 for (d = bmap->n_div - 1; d >= 0 ; --d) {
519 for (i = 0; i < bmap->n_eq; ++i)
520 if (!isl_int_is_zero(bmap->eq[i][off + d]))
524 for (i = 0; i < bmap->n_ineq; ++i)
525 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
527 if (i < bmap->n_ineq)
530 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
531 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
533 bmap = isl_basic_map_drop_div(bmap, d);
540 struct isl_basic_map *isl_basic_map_gauss(
541 struct isl_basic_map *bmap, int *progress)
549 bmap = isl_basic_map_order_divs(bmap);
554 total = isl_basic_map_total_dim(bmap);
555 total_var = total - bmap->n_div;
557 last_var = total - 1;
558 for (done = 0; done < bmap->n_eq; ++done) {
559 for (; last_var >= 0; --last_var) {
560 for (k = done; k < bmap->n_eq; ++k)
561 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
569 swap_equality(bmap, k, done);
570 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
571 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
573 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
576 if (last_var >= total_var &&
577 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
578 unsigned div = last_var - total_var;
579 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
580 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
581 isl_int_set(bmap->div[div][0],
582 bmap->eq[done][1+last_var]);
583 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
586 if (done == bmap->n_eq)
588 for (k = done; k < bmap->n_eq; ++k) {
589 if (isl_int_is_zero(bmap->eq[k][0]))
591 return isl_basic_map_set_to_empty(bmap);
593 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
597 struct isl_basic_set *isl_basic_set_gauss(
598 struct isl_basic_set *bset, int *progress)
600 return (struct isl_basic_set*)isl_basic_map_gauss(
601 (struct isl_basic_map *)bset, progress);
605 static unsigned int round_up(unsigned int v)
616 static int hash_index(isl_int ***index, unsigned int size, int bits,
617 struct isl_basic_map *bmap, int k)
620 unsigned total = isl_basic_map_total_dim(bmap);
621 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
622 for (h = hash; index[h]; h = (h+1) % size)
623 if (&bmap->ineq[k] != index[h] &&
624 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
629 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
630 struct isl_basic_set *bset, int k)
632 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
635 /* If we can eliminate more than one div, then we need to make
636 * sure we do it from last div to first div, in order not to
637 * change the position of the other divs that still need to
640 static struct isl_basic_map *remove_duplicate_divs(
641 struct isl_basic_map *bmap, int *progress)
653 if (!bmap || bmap->n_div <= 1)
656 total_var = isl_dim_total(bmap->dim);
657 total = total_var + bmap->n_div;
660 for (k = bmap->n_div - 1; k >= 0; --k)
661 if (!isl_int_is_zero(bmap->div[k][0]))
666 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
667 size = round_up(4 * bmap->n_div / 3 - 1);
668 bits = ffs(size) - 1;
669 index = isl_calloc_array(ctx, int, size);
672 eq = isl_blk_alloc(ctx, 1+total);
673 if (isl_blk_is_error(eq))
676 isl_seq_clr(eq.data, 1+total);
677 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
678 for (--k; k >= 0; --k) {
681 if (isl_int_is_zero(bmap->div[k][0]))
684 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
685 for (h = hash; index[h]; h = (h+1) % size)
686 if (isl_seq_eq(bmap->div[k],
687 bmap->div[index[h]-1], 2+total))
696 for (l = bmap->n_div - 1; l >= 0; --l) {
700 isl_int_set_si(eq.data[1+total_var+k], -1);
701 isl_int_set_si(eq.data[1+total_var+l], 1);
702 eliminate_div(bmap, eq.data, l, 0);
703 isl_int_set_si(eq.data[1+total_var+k], 0);
704 isl_int_set_si(eq.data[1+total_var+l], 0);
707 isl_blk_free(ctx, eq);
714 static int n_pure_div_eq(struct isl_basic_map *bmap)
719 total = isl_dim_total(bmap->dim);
720 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
721 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
725 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
731 /* Normalize divs that appear in equalities.
733 * In particular, we assume that bmap contains some equalities
738 * and we want to replace the set of e_i by a minimal set and
739 * such that the new e_i have a canonical representation in terms
741 * If any of the equalities involves more than one divs, then
742 * we currently simply bail out.
744 * Let us first additionally assume that all equalities involve
745 * a div. The equalities then express modulo constraints on the
746 * remaining variables and we can use "parameter compression"
747 * to find a minimal set of constraints. The result is a transformation
749 * x = T(x') = x_0 + G x'
751 * with G a lower-triangular matrix with all elements below the diagonal
752 * non-negative and smaller than the diagonal element on the same row.
753 * We first normalize x_0 by making the same property hold in the affine
755 * The rows i of G with a 1 on the diagonal do not impose any modulo
756 * constraint and simply express x_i = x'_i.
757 * For each of the remaining rows i, we introduce a div and a corresponding
758 * equality. In particular
760 * g_ii e_j = x_i - g_i(x')
762 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
763 * corresponding div (if g_kk != 1).
765 * If there are any equalities not involving any div, then we
766 * first apply a variable compression on the variables x:
768 * x = C x'' x'' = C_2 x
770 * and perform the above parameter compression on A C instead of on A.
771 * The resulting compression is then of the form
773 * x'' = T(x') = x_0 + G x'
775 * and in constructing the new divs and the corresponding equalities,
776 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
777 * by the corresponding row from C_2.
779 static struct isl_basic_map *normalize_divs(
780 struct isl_basic_map *bmap, int *progress)
787 struct isl_mat *T = NULL;
788 struct isl_mat *C = NULL;
789 struct isl_mat *C2 = NULL;
797 if (bmap->n_div == 0)
803 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
806 total = isl_dim_total(bmap->dim);
807 div_eq = n_pure_div_eq(bmap);
811 if (div_eq < bmap->n_eq) {
812 B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, div_eq,
813 bmap->n_eq - div_eq, 0, 1 + total);
814 C = isl_mat_variable_compression(B, &C2);
818 bmap = isl_basic_map_set_to_empty(bmap);
825 d = isl_vec_alloc(bmap->ctx, div_eq);
828 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
829 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
831 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
833 B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
836 B = isl_mat_product(B, C);
840 T = isl_mat_parameter_compression(B, d);
844 bmap = isl_basic_map_set_to_empty(bmap);
850 for (i = 0; i < T->n_row - 1; ++i) {
851 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
852 if (isl_int_is_zero(v))
854 isl_mat_col_submul(T, 0, v, 1 + i);
857 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
860 /* We have to be careful because dropping equalities may reorder them */
862 for (j = bmap->n_div - 1; j >= 0; --j) {
863 for (i = 0; i < bmap->n_eq; ++i)
864 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
866 if (i < bmap->n_eq) {
867 bmap = isl_basic_map_drop_div(bmap, j);
868 isl_basic_map_drop_equality(bmap, i);
874 for (i = 1; i < T->n_row; ++i) {
875 if (isl_int_is_one(T->row[i][i]))
880 if (needed > dropped) {
881 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
886 for (i = 1; i < T->n_row; ++i) {
887 if (isl_int_is_one(T->row[i][i]))
889 k = isl_basic_map_alloc_div(bmap);
890 pos[i] = 1 + total + k;
891 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
892 isl_int_set(bmap->div[k][0], T->row[i][i]);
894 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
896 isl_int_set_si(bmap->div[k][1 + i], 1);
897 for (j = 0; j < i; ++j) {
898 if (isl_int_is_zero(T->row[i][j]))
900 if (pos[j] < T->n_row && C2)
901 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
902 C2->row[pos[j]], 1 + total);
904 isl_int_neg(bmap->div[k][1 + pos[j]],
907 j = isl_basic_map_alloc_equality(bmap);
908 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
909 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
918 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
928 static struct isl_basic_map *set_div_from_lower_bound(
929 struct isl_basic_map *bmap, int div, int ineq)
931 unsigned total = 1 + isl_dim_total(bmap->dim);
933 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
934 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
935 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
936 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
937 isl_int_set_si(bmap->div[div][1 + total + div], 0);
942 /* Check whether it is ok to define a div based on an inequality.
943 * To avoid the introduction of circular definitions of divs, we
944 * do not allow such a definition if the resulting expression would refer to
945 * any other undefined divs or if any known div is defined in
946 * terms of the unknown div.
948 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
952 unsigned total = 1 + isl_dim_total(bmap->dim);
954 /* Not defined in terms of unknown divs */
955 for (j = 0; j < bmap->n_div; ++j) {
958 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
960 if (isl_int_is_zero(bmap->div[j][0]))
964 /* No other div defined in terms of this one => avoid loops */
965 for (j = 0; j < bmap->n_div; ++j) {
968 if (isl_int_is_zero(bmap->div[j][0]))
970 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
977 /* Given two constraints "k" and "l" that are opposite to each other,
978 * except for the constant term, check if we can use them
979 * to obtain an expression for one of the hitherto unknown divs.
980 * "sum" is the sum of the constant terms of the constraints.
981 * If this sum is strictly smaller than the coefficient of one
982 * of the divs, then this pair can be used define the div.
983 * To avoid the introduction of circular definitions of divs, we
984 * do not use the pair if the resulting expression would refer to
985 * any other undefined divs or if any known div is defined in
986 * terms of the unknown div.
988 static struct isl_basic_map *check_for_div_constraints(
989 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
992 unsigned total = 1 + isl_dim_total(bmap->dim);
994 for (i = 0; i < bmap->n_div; ++i) {
995 if (!isl_int_is_zero(bmap->div[i][0]))
997 if (isl_int_is_zero(bmap->ineq[k][total + i]))
999 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1001 if (!ok_to_set_div_from_bound(bmap, i, k))
1003 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1004 bmap = set_div_from_lower_bound(bmap, i, k);
1006 bmap = set_div_from_lower_bound(bmap, i, l);
1014 static struct isl_basic_map *remove_duplicate_constraints(
1015 struct isl_basic_map *bmap, int *progress)
1021 unsigned total = isl_basic_map_total_dim(bmap);
1024 if (!bmap || bmap->n_ineq <= 1)
1027 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1028 bits = ffs(size) - 1;
1029 index = isl_calloc_array(ctx, isl_int **, size);
1033 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1034 for (k = 1; k < bmap->n_ineq; ++k) {
1035 h = hash_index(index, size, bits, bmap, k);
1037 index[h] = &bmap->ineq[k];
1042 l = index[h] - &bmap->ineq[0];
1043 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1044 swap_inequality(bmap, k, l);
1045 isl_basic_map_drop_inequality(bmap, k);
1049 for (k = 0; k < bmap->n_ineq-1; ++k) {
1050 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1051 h = hash_index(index, size, bits, bmap, k);
1052 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1055 l = index[h] - &bmap->ineq[0];
1056 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1057 if (isl_int_is_pos(sum)) {
1058 bmap = check_for_div_constraints(bmap, k, l, sum,
1062 if (isl_int_is_zero(sum)) {
1063 /* We need to break out of the loop after these
1064 * changes since the contents of the hash
1065 * will no longer be valid.
1066 * Plus, we probably we want to regauss first.
1070 isl_basic_map_drop_inequality(bmap, l);
1071 isl_basic_map_inequality_to_equality(bmap, k);
1073 bmap = isl_basic_map_set_to_empty(bmap);
1083 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1090 bmap = isl_basic_map_normalize_constraints(bmap);
1091 bmap = remove_duplicate_divs(bmap, &progress);
1092 bmap = eliminate_divs_eq(bmap, &progress);
1093 bmap = eliminate_divs_ineq(bmap, &progress);
1094 bmap = isl_basic_map_gauss(bmap, &progress);
1095 /* requires equalities in normal form */
1096 bmap = normalize_divs(bmap, &progress);
1097 bmap = remove_duplicate_constraints(bmap, &progress);
1102 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1104 return (struct isl_basic_set *)
1105 isl_basic_map_simplify((struct isl_basic_map *)bset);
1109 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1110 isl_int *constraint, unsigned div)
1117 pos = 1 + isl_dim_total(bmap->dim) + div;
1119 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1121 isl_int_sub(bmap->div[div][1],
1122 bmap->div[div][1], bmap->div[div][0]);
1123 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1124 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1125 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1126 isl_int_add(bmap->div[div][1],
1127 bmap->div[div][1], bmap->div[div][0]);
1130 if (isl_seq_first_non_zero(constraint+pos+1,
1131 bmap->n_div-div-1) != -1)
1133 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1134 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1136 if (isl_seq_first_non_zero(constraint+pos+1,
1137 bmap->n_div-div-1) != -1)
1146 /* If the only constraints a div d=floor(f/m)
1147 * appears in are its two defining constraints
1150 * -(f - (m - 1)) + m d >= 0
1152 * then it can safely be removed.
1154 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1157 unsigned pos = 1 + isl_dim_total(bmap->dim) + div;
1159 for (i = 0; i < bmap->n_eq; ++i)
1160 if (!isl_int_is_zero(bmap->eq[i][pos]))
1163 for (i = 0; i < bmap->n_ineq; ++i) {
1164 if (isl_int_is_zero(bmap->ineq[i][pos]))
1166 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1170 for (i = 0; i < bmap->n_div; ++i)
1171 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1178 * Remove divs that don't occur in any of the constraints or other divs.
1179 * These can arise when dropping some of the variables in a quast
1180 * returned by piplib.
1182 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1189 for (i = bmap->n_div-1; i >= 0; --i) {
1190 if (!div_is_redundant(bmap, i))
1192 bmap = isl_basic_map_drop_div(bmap, i);
1197 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1199 bmap = remove_redundant_divs(bmap);
1202 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1206 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1208 return (struct isl_basic_set *)
1209 isl_basic_map_finalize((struct isl_basic_map *)bset);
1212 struct isl_set *isl_set_finalize(struct isl_set *set)
1218 for (i = 0; i < set->n; ++i) {
1219 set->p[i] = isl_basic_set_finalize(set->p[i]);
1229 struct isl_map *isl_map_finalize(struct isl_map *map)
1235 for (i = 0; i < map->n; ++i) {
1236 map->p[i] = isl_basic_map_finalize(map->p[i]);
1240 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1248 /* Remove definition of any div that is defined in terms of the given variable.
1249 * The div itself is not removed. Functions such as
1250 * eliminate_divs_ineq depend on the other divs remaining in place.
1252 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1257 for (i = 0; i < bmap->n_div; ++i) {
1258 if (isl_int_is_zero(bmap->div[i][0]))
1260 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1262 isl_int_set_si(bmap->div[i][0], 0);
1267 /* Eliminate the specified variables from the constraints using
1268 * Fourier-Motzkin. The variables themselves are not removed.
1270 struct isl_basic_map *isl_basic_map_eliminate_vars(
1271 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1281 total = isl_basic_map_total_dim(bmap);
1283 bmap = isl_basic_map_cow(bmap);
1284 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1285 bmap = remove_dependent_vars(bmap, d);
1287 for (d = pos + n - 1;
1288 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1289 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1290 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1291 int n_lower, n_upper;
1294 for (i = 0; i < bmap->n_eq; ++i) {
1295 if (isl_int_is_zero(bmap->eq[i][1+d]))
1297 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1298 isl_basic_map_drop_equality(bmap, i);
1305 for (i = 0; i < bmap->n_ineq; ++i) {
1306 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1308 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1311 bmap = isl_basic_map_extend_constraints(bmap,
1312 0, n_lower * n_upper);
1315 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1317 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1320 for (j = 0; j < i; ++j) {
1321 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1324 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1325 isl_int_sgn(bmap->ineq[j][1+d]))
1327 k = isl_basic_map_alloc_inequality(bmap);
1330 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1332 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1333 1+d, 1+total, NULL);
1335 isl_basic_map_drop_inequality(bmap, i);
1338 if (n_lower > 0 && n_upper > 0) {
1339 bmap = isl_basic_map_normalize_constraints(bmap);
1340 bmap = remove_duplicate_constraints(bmap, NULL);
1341 bmap = isl_basic_map_gauss(bmap, NULL);
1342 bmap = isl_basic_map_remove_redundancies(bmap);
1345 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1349 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1352 isl_basic_map_free(bmap);
1356 struct isl_basic_set *isl_basic_set_eliminate_vars(
1357 struct isl_basic_set *bset, unsigned pos, unsigned n)
1359 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1360 (struct isl_basic_map *)bset, pos, n);
1363 /* Don't assume equalities are in order, because align_divs
1364 * may have changed the order of the divs.
1366 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1371 total = isl_dim_total(bmap->dim);
1372 for (d = 0; d < total; ++d)
1374 for (i = 0; i < bmap->n_eq; ++i) {
1375 for (d = total - 1; d >= 0; --d) {
1376 if (isl_int_is_zero(bmap->eq[i][1+d]))
1384 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1386 compute_elimination_index((struct isl_basic_map *)bset, elim);
1389 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1390 struct isl_basic_map *bmap, int *elim)
1396 total = isl_dim_total(bmap->dim);
1397 for (d = total - 1; d >= 0; --d) {
1398 if (isl_int_is_zero(src[1+d]))
1403 isl_seq_cpy(dst, src, 1 + total);
1406 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1411 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1412 struct isl_basic_set *bset, int *elim)
1414 return reduced_using_equalities(dst, src,
1415 (struct isl_basic_map *)bset, elim);
1418 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1419 struct isl_basic_set *bset, struct isl_basic_set *context)
1424 if (!bset || !context)
1427 if (context->n_eq == 0) {
1428 isl_basic_set_free(context);
1432 bset = isl_basic_set_cow(bset);
1436 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1439 set_compute_elimination_index(context, elim);
1440 for (i = 0; i < bset->n_eq; ++i)
1441 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1443 for (i = 0; i < bset->n_ineq; ++i)
1444 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1446 isl_basic_set_free(context);
1448 bset = isl_basic_set_simplify(bset);
1449 bset = isl_basic_set_finalize(bset);
1452 isl_basic_set_free(bset);
1453 isl_basic_set_free(context);
1457 static struct isl_basic_set *remove_shifted_constraints(
1458 struct isl_basic_set *bset, struct isl_basic_set *context)
1468 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1469 bits = ffs(size) - 1;
1470 index = isl_calloc_array(ctx, isl_int **, size);
1474 for (k = 0; k < context->n_ineq; ++k) {
1475 h = set_hash_index(index, size, bits, context, k);
1476 index[h] = &context->ineq[k];
1478 for (k = 0; k < bset->n_ineq; ++k) {
1479 h = set_hash_index(index, size, bits, bset, k);
1482 l = index[h] - &context->ineq[0];
1483 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1485 bset = isl_basic_set_cow(bset);
1488 isl_basic_set_drop_inequality(bset, k);
1498 /* Tighten (decrease) the constant terms of the inequalities based
1499 * on the equalities, without removing any integer points.
1500 * For example, if there is an equality
1508 * then we want to replace the inequality by
1512 * We do this by computing a variable compression and translating
1513 * the constraints to the compressed space.
1514 * If any constraint has coefficients (except the contant term)
1515 * with a common factor "f", then we can replace the constant term "c"
1522 * f * floor(c/f) - c = -fract(c/f)
1524 * and we can add the same value to the original constraint.
1526 * In the example, the compressed space only contains "j",
1527 * and the inequality translates to
1531 * We add -fract(-1/3) = -2 to the original constraint to obtain
1535 static struct isl_basic_set *normalize_constraints_in_compressed_space(
1536 struct isl_basic_set *bset)
1540 struct isl_mat *B, *C;
1546 if (ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL))
1552 bset = isl_basic_set_cow(bset);
1556 total = isl_basic_set_total_dim(bset);
1557 B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + total);
1558 C = isl_mat_variable_compression(B, NULL);
1561 if (C->n_col == 0) {
1563 return isl_basic_set_set_to_empty(bset);
1565 B = isl_mat_sub_alloc(bset->ctx, bset->ineq,
1566 0, bset->n_ineq, 0, 1 + total);
1567 C = isl_mat_product(B, C);
1572 for (i = 0; i < bset->n_ineq; ++i) {
1573 isl_seq_gcd(C->row[i] + 1, C->n_col - 1, &gcd);
1574 if (isl_int_is_one(gcd))
1576 isl_int_fdiv_r(C->row[i][0], C->row[i][0], gcd);
1577 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], C->row[i][0]);
1586 /* Remove all information from bset that is redundant in the context
1587 * of context. Both bset and context are assumed to be full-dimensional.
1589 * We first * remove the inequalities from "bset"
1590 * that are obviously redundant with respect to some inequality in "context".
1592 * If there are any inequalities left, we construct a tableau for
1593 * the context and then add the inequalities of "bset".
1594 * Before adding these inequalities, we freeze all constraints such that
1595 * they won't be considered redundant in terms of the constraints of "bset".
1596 * Then we detect all redundant constraints (among the
1597 * constraints that weren't frozen), first by checking for redundancy in the
1598 * the tableau and then by checking if replacing a constraint by its negation
1599 * would lead to an empty set. This last step is fairly expensive
1600 * and could be optimized by more reuse of the tableau.
1601 * Finally, we update bset according to the results.
1603 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1604 __isl_take isl_basic_set *context)
1607 isl_basic_set *combined = NULL;
1608 struct isl_tab *tab = NULL;
1609 unsigned context_ineq;
1612 if (!bset || !context)
1615 if (isl_basic_set_is_universe(bset)) {
1616 isl_basic_set_free(context);
1620 if (isl_basic_set_is_universe(context)) {
1621 isl_basic_set_free(context);
1625 bset = remove_shifted_constraints(bset, context);
1628 if (bset->n_ineq == 0)
1631 context_ineq = context->n_ineq;
1632 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1633 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1634 tab = isl_tab_from_basic_set(combined);
1635 for (i = 0; i < context_ineq; ++i)
1636 if (isl_tab_freeze_constraint(tab, i) < 0)
1638 tab = isl_tab_extend(tab, bset->n_ineq);
1639 for (i = 0; i < bset->n_ineq; ++i)
1640 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1642 bset = isl_basic_set_add_constraints(combined, bset, 0);
1646 if (isl_tab_detect_redundant(tab) < 0)
1648 total = isl_basic_set_total_dim(bset);
1649 for (i = context_ineq; i < bset->n_ineq; ++i) {
1651 if (tab->con[i].is_redundant)
1653 tab->con[i].is_redundant = 1;
1654 combined = isl_basic_set_dup(bset);
1655 combined = isl_basic_set_update_from_tab(combined, tab);
1656 combined = isl_basic_set_extend_constraints(combined, 0, 1);
1657 k = isl_basic_set_alloc_inequality(combined);
1660 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
1661 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
1662 is_empty = isl_basic_set_is_empty(combined);
1665 isl_basic_set_free(combined);
1668 tab->con[i].is_redundant = 0;
1670 for (i = 0; i < context_ineq; ++i)
1671 tab->con[i].is_redundant = 1;
1672 bset = isl_basic_set_update_from_tab(bset, tab);
1674 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1675 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1680 bset = isl_basic_set_simplify(bset);
1681 bset = isl_basic_set_finalize(bset);
1682 isl_basic_set_free(context);
1686 isl_basic_set_free(combined);
1687 isl_basic_set_free(context);
1688 isl_basic_set_free(bset);
1692 /* Remove all information from bset that is redundant in the context
1693 * of context. In particular, equalities that are linear combinations
1694 * of those in context are removed. Then the inequalities that are
1695 * redundant in the context of the equalities and inequalities of
1696 * context are removed.
1698 * We first compute the integer affine hull of the intersection,
1699 * compute the gist inside this affine hull and then add back
1700 * those equalities that are not implied by the context.
1702 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
1703 __isl_take isl_basic_set *context)
1708 isl_basic_set *aff_context;
1711 if (!bset || !context)
1714 bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
1715 if (isl_basic_set_fast_is_empty(bset)) {
1716 isl_basic_set_free(context);
1719 aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
1722 if (isl_basic_set_fast_is_empty(aff)) {
1723 isl_basic_set_free(aff);
1724 isl_basic_set_free(context);
1727 if (aff->n_eq == 0) {
1728 isl_basic_set_free(aff);
1729 return uset_gist_full(bset, context);
1731 total = isl_basic_set_total_dim(bset);
1732 eq = isl_mat_sub_alloc(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
1733 eq = isl_mat_cow(eq);
1734 T = isl_mat_variable_compression(eq, &T2);
1735 if (T && T->n_col == 0) {
1738 isl_basic_set_free(context);
1739 isl_basic_set_free(aff);
1740 return isl_basic_set_set_to_empty(bset);
1743 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
1745 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
1746 context = isl_basic_set_preimage(context, T);
1748 bset = uset_gist_full(bset, context);
1749 bset = isl_basic_set_preimage(bset, T2);
1750 bset = isl_basic_set_intersect(bset, aff);
1751 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
1754 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1755 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1760 isl_basic_set_free(bset);
1761 isl_basic_set_free(context);
1765 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1766 * We simply add the equalities in context to bmap and then do a regular
1767 * div normalizations. Better results can be obtained by normalizing
1768 * only the divs in bmap than do not also appear in context.
1769 * We need to be careful to reduce the divs using the equalities
1770 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1771 * spurious constraints.
1773 static struct isl_basic_map *normalize_divs_in_context(
1774 struct isl_basic_map *bmap, struct isl_basic_map *context)
1777 unsigned total_context;
1780 div_eq = n_pure_div_eq(bmap);
1784 if (context->n_div > 0)
1785 bmap = isl_basic_map_align_divs(bmap, context);
1787 total_context = isl_basic_map_total_dim(context);
1788 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
1789 for (i = 0; i < context->n_eq; ++i) {
1791 k = isl_basic_map_alloc_equality(bmap);
1792 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
1793 isl_seq_clr(bmap->eq[k] + 1 + total_context,
1794 isl_basic_map_total_dim(bmap) - total_context);
1796 bmap = isl_basic_map_gauss(bmap, NULL);
1797 bmap = normalize_divs(bmap, NULL);
1798 bmap = isl_basic_map_gauss(bmap, NULL);
1802 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
1803 struct isl_basic_map *context)
1805 struct isl_basic_set *bset;
1807 if (!bmap || !context)
1810 if (isl_basic_map_is_universe(bmap)) {
1811 isl_basic_map_free(context);
1814 if (isl_basic_map_fast_is_empty(context)) {
1815 struct isl_dim *dim = isl_dim_copy(bmap->dim);
1816 isl_basic_map_free(context);
1817 isl_basic_map_free(bmap);
1818 return isl_basic_map_universe(dim);
1820 if (isl_basic_map_fast_is_empty(bmap)) {
1821 isl_basic_map_free(context);
1825 bmap = isl_basic_map_remove_redundancies(bmap);
1826 context = isl_basic_map_remove_redundancies(context);
1829 bmap = normalize_divs_in_context(bmap, context);
1831 context = isl_basic_map_align_divs(context, bmap);
1832 bmap = isl_basic_map_align_divs(bmap, context);
1834 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
1835 isl_basic_map_underlying_set(context));
1837 return isl_basic_map_overlying_set(bset, bmap);
1839 isl_basic_map_free(bmap);
1840 isl_basic_map_free(context);
1845 * Assumes context has no implicit divs.
1847 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
1848 __isl_take isl_basic_map *context)
1852 if (!map || !context)
1855 if (isl_basic_map_fast_is_empty(context)) {
1856 struct isl_dim *dim = isl_dim_copy(map->dim);
1857 isl_basic_map_free(context);
1859 return isl_map_universe(dim);
1862 context = isl_basic_map_remove_redundancies(context);
1863 map = isl_map_cow(map);
1864 if (!map || !context)
1866 isl_assert(map->ctx, isl_dim_equal(map->dim, context->dim), goto error);
1867 map = isl_map_compute_divs(map);
1868 for (i = 0; i < map->n; ++i)
1869 context = isl_basic_map_align_divs(context, map->p[i]);
1870 for (i = 0; i < map->n; ++i) {
1871 map->p[i] = isl_basic_map_gist(map->p[i],
1872 isl_basic_map_copy(context));
1876 isl_basic_map_free(context);
1877 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1881 isl_basic_map_free(context);
1885 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
1886 __isl_take isl_map *context)
1888 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
1891 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
1892 struct isl_basic_set *context)
1894 return (struct isl_basic_set *)isl_basic_map_gist(
1895 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
1898 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
1899 __isl_take isl_basic_set *context)
1901 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
1902 (struct isl_basic_map *)context);
1905 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
1906 __isl_take isl_set *context)
1908 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
1909 (struct isl_map *)context);
1912 /* Quick check to see if two basic maps are disjoint.
1913 * In particular, we reduce the equalities and inequalities of
1914 * one basic map in the context of the equalities of the other
1915 * basic map and check if we get a contradiction.
1917 int isl_basic_map_fast_is_disjoint(struct isl_basic_map *bmap1,
1918 struct isl_basic_map *bmap2)
1920 struct isl_vec *v = NULL;
1925 if (!bmap1 || !bmap2)
1927 isl_assert(bmap1->ctx, isl_dim_equal(bmap1->dim, bmap2->dim),
1929 if (bmap1->n_div || bmap2->n_div)
1931 if (!bmap1->n_eq && !bmap2->n_eq)
1934 total = isl_dim_total(bmap1->dim);
1937 v = isl_vec_alloc(bmap1->ctx, 1 + total);
1940 elim = isl_alloc_array(bmap1->ctx, int, total);
1943 compute_elimination_index(bmap1, elim);
1944 for (i = 0; i < bmap2->n_eq; ++i) {
1946 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
1948 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
1949 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1952 for (i = 0; i < bmap2->n_ineq; ++i) {
1954 reduced = reduced_using_equalities(v->block.data,
1955 bmap2->ineq[i], bmap1, elim);
1956 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1957 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1960 compute_elimination_index(bmap2, elim);
1961 for (i = 0; i < bmap1->n_ineq; ++i) {
1963 reduced = reduced_using_equalities(v->block.data,
1964 bmap1->ineq[i], bmap2, elim);
1965 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1966 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1982 int isl_basic_set_fast_is_disjoint(struct isl_basic_set *bset1,
1983 struct isl_basic_set *bset2)
1985 return isl_basic_map_fast_is_disjoint((struct isl_basic_map *)bset1,
1986 (struct isl_basic_map *)bset2);
1989 int isl_map_fast_is_disjoint(struct isl_map *map1, struct isl_map *map2)
1996 if (isl_map_fast_is_equal(map1, map2))
1999 for (i = 0; i < map1->n; ++i) {
2000 for (j = 0; j < map2->n; ++j) {
2001 int d = isl_basic_map_fast_is_disjoint(map1->p[i],
2010 int isl_set_fast_is_disjoint(struct isl_set *set1, struct isl_set *set2)
2012 return isl_map_fast_is_disjoint((struct isl_map *)set1,
2013 (struct isl_map *)set2);
2016 /* Check if we can combine a given div with lower bound l and upper
2017 * bound u with some other div and if so return that other div.
2018 * Otherwise return -1.
2020 * We first check that
2021 * - the bounds are opposites of each other (except for the constant
2023 * - the bounds do not reference any other div
2024 * - no div is defined in terms of this div
2026 * Let m be the size of the range allowed on the div by the bounds.
2027 * That is, the bounds are of the form
2029 * e <= a <= e + m - 1
2031 * with e some expression in the other variables.
2032 * We look for another div b such that no third div is defined in terms
2033 * of this second div b and such that in any constraint that contains
2034 * a (except for the given lower and upper bound), also contains b
2035 * with a coefficient that is m times that of b.
2036 * That is, all constraints (execpt for the lower and upper bound)
2039 * e + f (a + m b) >= 0
2041 * If so, we return b so that "a + m b" can be replaced by
2042 * a single div "c = a + m b".
2044 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2045 unsigned div, unsigned l, unsigned u)
2051 if (bmap->n_div <= 1)
2053 dim = isl_dim_total(bmap->dim);
2054 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2056 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2057 bmap->n_div - div - 1) != -1)
2059 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2063 for (i = 0; i < bmap->n_div; ++i) {
2064 if (isl_int_is_zero(bmap->div[i][0]))
2066 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2070 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2071 if (isl_int_is_neg(bmap->ineq[l][0])) {
2072 isl_int_sub(bmap->ineq[l][0],
2073 bmap->ineq[l][0], bmap->ineq[u][0]);
2074 bmap = isl_basic_map_copy(bmap);
2075 bmap = isl_basic_map_set_to_empty(bmap);
2076 isl_basic_map_free(bmap);
2079 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2080 for (i = 0; i < bmap->n_div; ++i) {
2085 for (j = 0; j < bmap->n_div; ++j) {
2086 if (isl_int_is_zero(bmap->div[j][0]))
2088 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2091 if (j < bmap->n_div)
2093 for (j = 0; j < bmap->n_ineq; ++j) {
2095 if (j == l || j == u)
2097 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2099 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2101 isl_int_mul(bmap->ineq[j][1 + dim + div],
2102 bmap->ineq[j][1 + dim + div],
2104 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2105 bmap->ineq[j][1 + dim + i]);
2106 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2107 bmap->ineq[j][1 + dim + div],
2112 if (j < bmap->n_ineq)
2117 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2118 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2122 /* Given a lower and an upper bound on div i, construct an inequality
2123 * that when nonnegative ensures that this pair of bounds always allows
2124 * for an integer value of the given div.
2125 * The lower bound is inequality l, while the upper bound is inequality u.
2126 * The constructed inequality is stored in ineq.
2127 * g, fl, fu are temporary scalars.
2129 * Let the upper bound be
2133 * and the lower bound
2137 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2140 * - f_u e_l <= f_u f_l g a <= f_l e_u
2142 * Since all variables are integer valued, this is equivalent to
2144 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2146 * If this interval is at least f_u f_l g, then it contains at least
2147 * one integer value for a.
2148 * That is, the test constraint is
2150 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2152 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2153 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2156 dim = isl_dim_total(bmap->dim);
2158 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2159 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2160 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2161 isl_int_neg(fu, fu);
2162 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2163 1 + dim + bmap->n_div);
2164 isl_int_add(ineq[0], ineq[0], fl);
2165 isl_int_add(ineq[0], ineq[0], fu);
2166 isl_int_sub_ui(ineq[0], ineq[0], 1);
2167 isl_int_mul(g, g, fl);
2168 isl_int_mul(g, g, fu);
2169 isl_int_sub(ineq[0], ineq[0], g);
2172 /* Remove more kinds of divs that are not strictly needed.
2173 * In particular, if all pairs of lower and upper bounds on a div
2174 * are such that they allow at least one integer value of the div,
2175 * the we can eliminate the div using Fourier-Motzkin without
2176 * introducing any spurious solutions.
2178 static struct isl_basic_map *drop_more_redundant_divs(
2179 struct isl_basic_map *bmap, int *pairs, int n)
2181 struct isl_tab *tab = NULL;
2182 struct isl_vec *vec = NULL;
2194 dim = isl_dim_total(bmap->dim);
2195 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2199 tab = isl_tab_from_basic_map(bmap);
2204 enum isl_lp_result res;
2206 for (i = 0; i < bmap->n_div; ++i) {
2209 if (best >= 0 && pairs[best] <= pairs[i])
2215 for (l = 0; l < bmap->n_ineq; ++l) {
2216 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2218 for (u = 0; u < bmap->n_ineq; ++u) {
2219 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2221 construct_test_ineq(bmap, i, l, u,
2222 vec->el, g, fl, fu);
2223 res = isl_tab_min(tab, vec->el,
2224 bmap->ctx->one, &g, NULL, 0);
2225 if (res == isl_lp_error)
2227 if (res == isl_lp_empty) {
2228 bmap = isl_basic_map_set_to_empty(bmap);
2231 if (res != isl_lp_ok || isl_int_is_neg(g))
2234 if (u < bmap->n_ineq)
2237 if (l == bmap->n_ineq) {
2257 bmap = isl_basic_map_remove(bmap, isl_dim_div, remove, 1);
2258 return isl_basic_map_drop_redundant_divs(bmap);
2261 isl_basic_map_free(bmap);
2270 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2271 * and the upper bound u, div1 always occurs together with div2 in the form
2272 * (div1 + m div2), where m is the constant range on the variable div1
2273 * allowed by l and u, replace the pair div1 and div2 by a single
2274 * div that is equal to div1 + m div2.
2276 * The new div will appear in the location that contains div2.
2277 * We need to modify all constraints that contain
2278 * div2 = (div - div1) / m
2279 * (If a constraint does not contain div2, it will also not contain div1.)
2280 * If the constraint also contains div1, then we know they appear
2281 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2282 * i.e., the coefficient of div is f.
2284 * Otherwise, we first need to introduce div1 into the constraint.
2293 * A lower bound on div2
2297 * can be replaced by
2299 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2301 * with g = gcd(m,n).
2306 * can be replaced by
2308 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2310 * These constraint are those that we would obtain from eliminating
2311 * div1 using Fourier-Motzkin.
2313 * After all constraints have been modified, we drop the lower and upper
2314 * bound and then drop div1.
2316 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2317 unsigned div1, unsigned div2, unsigned l, unsigned u)
2322 unsigned dim, total;
2325 dim = isl_dim_total(bmap->dim);
2326 total = 1 + dim + bmap->n_div;
2331 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2332 isl_int_add_ui(m, m, 1);
2334 for (i = 0; i < bmap->n_ineq; ++i) {
2335 if (i == l || i == u)
2337 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2339 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2340 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2341 isl_int_divexact(a, m, b);
2342 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2343 if (isl_int_is_pos(b)) {
2344 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2345 b, bmap->ineq[l], total);
2348 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2349 b, bmap->ineq[u], total);
2352 isl_int_set(bmap->ineq[i][1 + dim + div2],
2353 bmap->ineq[i][1 + dim + div1]);
2354 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2361 isl_basic_map_drop_inequality(bmap, l);
2362 isl_basic_map_drop_inequality(bmap, u);
2364 isl_basic_map_drop_inequality(bmap, u);
2365 isl_basic_map_drop_inequality(bmap, l);
2367 bmap = isl_basic_map_drop_div(bmap, div1);
2371 /* First check if we can coalesce any pair of divs and
2372 * then continue with dropping more redundant divs.
2374 * We loop over all pairs of lower and upper bounds on a div
2375 * with coefficient 1 and -1, respectively, check if there
2376 * is any other div "c" with which we can coalesce the div
2377 * and if so, perform the coalescing.
2379 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2380 struct isl_basic_map *bmap, int *pairs, int n)
2385 dim = isl_dim_total(bmap->dim);
2387 for (i = 0; i < bmap->n_div; ++i) {
2390 for (l = 0; l < bmap->n_ineq; ++l) {
2391 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2393 for (u = 0; u < bmap->n_ineq; ++u) {
2396 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2398 c = div_find_coalesce(bmap, pairs, i, l, u);
2402 bmap = coalesce_divs(bmap, i, c, l, u);
2403 return isl_basic_map_drop_redundant_divs(bmap);
2408 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2411 return drop_more_redundant_divs(bmap, pairs, n);
2414 /* Remove divs that are not strictly needed.
2415 * In particular, if a div only occurs positively (or negatively)
2416 * in constraints, then it can simply be dropped.
2417 * Also, if a div occurs only occurs in two constraints and if moreover
2418 * those two constraints are opposite to each other, except for the constant
2419 * term and if the sum of the constant terms is such that for any value
2420 * of the other values, there is always at least one integer value of the
2421 * div, i.e., if one plus this sum is greater than or equal to
2422 * the (absolute value) of the coefficent of the div in the constraints,
2423 * then we can also simply drop the div.
2425 * If any divs are left after these simple checks then we move on
2426 * to more complicated cases in drop_more_redundant_divs.
2428 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2429 struct isl_basic_map *bmap)
2439 off = isl_dim_total(bmap->dim);
2440 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2444 for (i = 0; i < bmap->n_div; ++i) {
2446 int last_pos, last_neg;
2450 defined = !isl_int_is_zero(bmap->div[i][0]);
2451 for (j = 0; j < bmap->n_eq; ++j)
2452 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
2458 for (j = 0; j < bmap->n_ineq; ++j) {
2459 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
2463 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
2468 pairs[i] = pos * neg;
2469 if (pairs[i] == 0) {
2470 for (j = bmap->n_ineq - 1; j >= 0; --j)
2471 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
2472 isl_basic_map_drop_inequality(bmap, j);
2473 bmap = isl_basic_map_drop_div(bmap, i);
2475 return isl_basic_map_drop_redundant_divs(bmap);
2479 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
2480 bmap->ineq[last_neg] + 1,
2484 isl_int_add(bmap->ineq[last_pos][0],
2485 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2486 isl_int_add_ui(bmap->ineq[last_pos][0],
2487 bmap->ineq[last_pos][0], 1);
2488 redundant = isl_int_ge(bmap->ineq[last_pos][0],
2489 bmap->ineq[last_pos][1+off+i]);
2490 isl_int_sub_ui(bmap->ineq[last_pos][0],
2491 bmap->ineq[last_pos][0], 1);
2492 isl_int_sub(bmap->ineq[last_pos][0],
2493 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2496 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
2501 bmap = set_div_from_lower_bound(bmap, i, last_pos);
2502 bmap = isl_basic_map_simplify(bmap);
2504 return isl_basic_map_drop_redundant_divs(bmap);
2506 if (last_pos > last_neg) {
2507 isl_basic_map_drop_inequality(bmap, last_pos);
2508 isl_basic_map_drop_inequality(bmap, last_neg);
2510 isl_basic_map_drop_inequality(bmap, last_neg);
2511 isl_basic_map_drop_inequality(bmap, last_pos);
2513 bmap = isl_basic_map_drop_div(bmap, i);
2515 return isl_basic_map_drop_redundant_divs(bmap);
2519 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
2525 isl_basic_map_free(bmap);
2529 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
2530 struct isl_basic_set *bset)
2532 return (struct isl_basic_set *)
2533 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
2536 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
2542 for (i = 0; i < map->n; ++i) {
2543 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
2547 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2554 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
2556 return (struct isl_set *)
2557 isl_map_drop_redundant_divs((struct isl_map *)set);