1 #include "isl_equalities.h"
3 #include "isl_map_private.h"
6 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
8 isl_int *t = bmap->eq[a];
9 bmap->eq[a] = bmap->eq[b];
13 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
16 isl_int *t = bmap->ineq[a];
17 bmap->ineq[a] = bmap->ineq[b];
22 static void set_swap_inequality(struct isl_basic_set *bset, int a, int b)
24 swap_inequality((struct isl_basic_map *)bset, a, b);
27 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
29 isl_seq_cpy(c, c + n, rem);
30 isl_seq_clr(c + rem, n);
33 /* Drop n dimensions starting at first.
35 * In principle, this frees up some extra variables as the number
36 * of columns remains constant, but we would have to extend
37 * the div array too as the number of rows in this array is assumed
38 * to be equal to extra.
40 struct isl_basic_set *isl_basic_set_drop_dims(
41 struct isl_basic_set *bset, unsigned first, unsigned n)
48 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
53 bset = isl_basic_set_cow(bset);
57 for (i = 0; i < bset->n_eq; ++i)
58 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
59 (bset->dim->n_out-first-n)+bset->extra);
61 for (i = 0; i < bset->n_ineq; ++i)
62 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
63 (bset->dim->n_out-first-n)+bset->extra);
65 for (i = 0; i < bset->n_div; ++i)
66 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
67 (bset->dim->n_out-first-n)+bset->extra);
69 bset->dim = isl_dim_drop_outputs(bset->dim, first, n);
73 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
74 bset = isl_basic_set_simplify(bset);
75 return isl_basic_set_finalize(bset);
77 isl_basic_set_free(bset);
81 struct isl_set *isl_set_drop_dims(
82 struct isl_set *set, unsigned first, unsigned n)
89 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
93 set = isl_set_cow(set);
96 set->dim = isl_dim_drop_outputs(set->dim, first, n);
100 for (i = 0; i < set->n; ++i) {
101 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
106 ISL_F_CLR(set, ISL_SET_NORMALIZED);
113 /* Move "n" divs starting at "first" to the end of the list of divs.
115 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
116 unsigned first, unsigned n)
121 if (first + n == bmap->n_div)
124 div = isl_alloc_array(bmap->ctx, isl_int *, n);
127 for (i = 0; i < n; ++i)
128 div[i] = bmap->div[first + i];
129 for (i = 0; i < bmap->n_div - first - n; ++i)
130 bmap->div[first + i] = bmap->div[first + n + i];
131 for (i = 0; i < n; ++i)
132 bmap->div[bmap->n_div - n + i] = div[i];
136 isl_basic_map_free(bmap);
140 /* Drop "n" dimensions of type "type" starting at "first".
142 * In principle, this frees up some extra variables as the number
143 * of columns remains constant, but we would have to extend
144 * the div array too as the number of rows in this array is assumed
145 * to be equal to extra.
147 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
148 enum isl_dim_type type, unsigned first, unsigned n)
158 dim = isl_basic_map_dim(bmap, type);
159 isl_assert(bmap->ctx, first + n <= dim, goto error);
164 bmap = isl_basic_map_cow(bmap);
168 offset = isl_basic_map_offset(bmap, type) + first;
169 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
170 for (i = 0; i < bmap->n_eq; ++i)
171 constraint_drop_vars(bmap->eq[i]+offset, n, left);
173 for (i = 0; i < bmap->n_ineq; ++i)
174 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
176 for (i = 0; i < bmap->n_div; ++i)
177 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
179 if (type == isl_dim_div) {
180 bmap = move_divs_last(bmap, first, n);
183 isl_basic_map_free_div(bmap, n);
185 bmap->dim = isl_dim_drop(bmap->dim, type, first, n);
189 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
190 bmap = isl_basic_map_simplify(bmap);
191 return isl_basic_map_finalize(bmap);
193 isl_basic_map_free(bmap);
197 struct isl_basic_map *isl_basic_map_drop_inputs(
198 struct isl_basic_map *bmap, unsigned first, unsigned n)
200 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
203 struct isl_map *isl_map_drop(struct isl_map *map,
204 enum isl_dim_type type, unsigned first, unsigned n)
211 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
215 map = isl_map_cow(map);
218 map->dim = isl_dim_drop(map->dim, type, first, n);
222 for (i = 0; i < map->n; ++i) {
223 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
227 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
235 struct isl_map *isl_map_drop_inputs(
236 struct isl_map *map, unsigned first, unsigned n)
238 return isl_map_drop(map, isl_dim_in, first, n);
242 * We don't cow, as the div is assumed to be redundant.
244 static struct isl_basic_map *isl_basic_map_drop_div(
245 struct isl_basic_map *bmap, unsigned div)
253 pos = 1 + isl_dim_total(bmap->dim) + div;
255 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
257 for (i = 0; i < bmap->n_eq; ++i)
258 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
260 for (i = 0; i < bmap->n_ineq; ++i) {
261 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
262 isl_basic_map_drop_inequality(bmap, i);
266 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
269 for (i = 0; i < bmap->n_div; ++i)
270 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
272 if (div != bmap->n_div - 1) {
274 isl_int *t = bmap->div[div];
276 for (j = div; j < bmap->n_div - 1; ++j)
277 bmap->div[j] = bmap->div[j+1];
279 bmap->div[bmap->n_div - 1] = t;
281 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
282 isl_basic_map_free_div(bmap, 1);
286 isl_basic_map_free(bmap);
290 struct isl_basic_map *isl_basic_map_normalize_constraints(
291 struct isl_basic_map *bmap)
295 unsigned total = isl_basic_map_total_dim(bmap);
298 for (i = bmap->n_eq - 1; i >= 0; --i) {
299 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
300 if (isl_int_is_zero(gcd)) {
301 if (!isl_int_is_zero(bmap->eq[i][0])) {
302 bmap = isl_basic_map_set_to_empty(bmap);
305 isl_basic_map_drop_equality(bmap, i);
308 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
309 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
310 if (isl_int_is_one(gcd))
312 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
313 bmap = isl_basic_map_set_to_empty(bmap);
316 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
319 for (i = bmap->n_ineq - 1; i >= 0; --i) {
320 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
321 if (isl_int_is_zero(gcd)) {
322 if (isl_int_is_neg(bmap->ineq[i][0])) {
323 bmap = isl_basic_map_set_to_empty(bmap);
326 isl_basic_map_drop_inequality(bmap, i);
329 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
330 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
331 if (isl_int_is_one(gcd))
333 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
334 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
341 struct isl_basic_set *isl_basic_set_normalize_constraints(
342 struct isl_basic_set *bset)
344 (struct isl_basic_set *)isl_basic_map_normalize_constraints(
345 (struct isl_basic_map *)bset);
348 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq, unsigned div)
351 unsigned pos = 1 + isl_dim_total(bmap->dim) + div;
353 len = 1 + isl_basic_map_total_dim(bmap);
355 for (i = 0; i < bmap->n_eq; ++i)
356 if (bmap->eq[i] != eq)
357 isl_seq_elim(bmap->eq[i], eq, pos, len, NULL);
359 for (i = 0; i < bmap->n_ineq; ++i)
360 isl_seq_elim(bmap->ineq[i], eq, pos, len, NULL);
362 /* We need to be careful about circular definitions,
363 * so for now we just remove the definitions of other divs that
364 * depend on this div and (possibly) recompute them later.
366 for (i = 0; i < bmap->n_div; ++i)
367 if (!isl_int_is_zero(bmap->div[i][0]) &&
368 !isl_int_is_zero(bmap->div[i][1 + pos]))
369 isl_seq_clr(bmap->div[i], 1 + len);
371 isl_basic_map_drop_div(bmap, div);
374 /* Elimininate divs based on equalities
376 static struct isl_basic_map *eliminate_divs_eq(
377 struct isl_basic_map *bmap, int *progress)
387 off = 1 + isl_dim_total(bmap->dim);
389 for (d = bmap->n_div - 1; d >= 0 ; --d) {
390 for (i = 0; i < bmap->n_eq; ++i) {
391 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
392 !isl_int_is_negone(bmap->eq[i][off + d]))
396 eliminate_div(bmap, bmap->eq[i], d);
397 isl_basic_map_drop_equality(bmap, i);
402 return eliminate_divs_eq(bmap, progress);
406 /* Elimininate divs based on inequalities
408 static struct isl_basic_map *eliminate_divs_ineq(
409 struct isl_basic_map *bmap, int *progress)
420 off = 1 + isl_dim_total(bmap->dim);
422 for (d = bmap->n_div - 1; d >= 0 ; --d) {
423 for (i = 0; i < bmap->n_eq; ++i)
424 if (!isl_int_is_zero(bmap->eq[i][off + d]))
428 for (i = 0; i < bmap->n_ineq; ++i)
429 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
431 if (i < bmap->n_ineq)
434 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
435 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
437 bmap = isl_basic_map_drop_div(bmap, d);
444 /* Assumes divs have been ordered if keep_divs is set.
446 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
447 unsigned pos, isl_int *eq, int keep_divs, int *progress)
453 total = isl_basic_map_total_dim(bmap);
454 last_div = isl_seq_last_non_zero(eq + 1 + isl_dim_total(bmap->dim),
456 for (k = 0; k < bmap->n_eq; ++k) {
457 if (bmap->eq[k] == eq)
459 if (isl_int_is_zero(bmap->eq[k][1+pos]))
463 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
466 for (k = 0; k < bmap->n_ineq; ++k) {
467 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
471 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
472 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
475 for (k = 0; k < bmap->n_div; ++k) {
476 if (isl_int_is_zero(bmap->div[k][0]))
478 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
482 /* We need to be careful about circular definitions,
483 * so for now we just remove the definition of div k
484 * if the equality contains any divs.
485 * If keep_divs is set, then the divs have been ordered
486 * and we can keep the definition as long as the result
489 if (last_div == -1 || (keep_divs && last_div < k))
490 isl_seq_elim(bmap->div[k]+1, eq,
491 1+pos, 1+total, &bmap->div[k][0]);
493 isl_seq_clr(bmap->div[k], 1 + total);
494 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
498 struct isl_basic_map *isl_basic_map_gauss(
499 struct isl_basic_map *bmap, int *progress)
507 bmap = isl_basic_map_order_divs(bmap);
512 total = isl_basic_map_total_dim(bmap);
513 total_var = total - bmap->n_div;
515 last_var = total - 1;
516 for (done = 0; done < bmap->n_eq; ++done) {
517 for (; last_var >= 0; --last_var) {
518 for (k = done; k < bmap->n_eq; ++k)
519 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
527 swap_equality(bmap, k, done);
528 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
529 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
531 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
534 if (last_var >= total_var &&
535 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
536 unsigned div = last_var - total_var;
537 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
538 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
539 isl_int_set(bmap->div[div][0],
540 bmap->eq[done][1+last_var]);
541 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
544 if (done == bmap->n_eq)
546 for (k = done; k < bmap->n_eq; ++k) {
547 if (isl_int_is_zero(bmap->eq[k][0]))
549 return isl_basic_map_set_to_empty(bmap);
551 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
555 struct isl_basic_set *isl_basic_set_gauss(
556 struct isl_basic_set *bset, int *progress)
558 return (struct isl_basic_set*)isl_basic_map_gauss(
559 (struct isl_basic_map *)bset, progress);
563 static unsigned int round_up(unsigned int v)
574 static int hash_index(isl_int ***index, unsigned int size, int bits,
575 struct isl_basic_map *bmap, int k)
578 unsigned total = isl_basic_map_total_dim(bmap);
579 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
580 for (h = hash; index[h]; h = (h+1) % size)
581 if (&bmap->ineq[k] != index[h] &&
582 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
587 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
588 struct isl_basic_set *bset, int k)
590 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
593 /* If we can eliminate more than one div, then we need to make
594 * sure we do it from last div to first div, in order not to
595 * change the position of the other divs that still need to
598 static struct isl_basic_map *remove_duplicate_divs(
599 struct isl_basic_map *bmap, int *progress)
607 unsigned total_var = isl_dim_total(bmap->dim);
608 unsigned total = total_var + bmap->n_div;
611 if (bmap->n_div <= 1)
615 for (k = bmap->n_div - 1; k >= 0; --k)
616 if (!isl_int_is_zero(bmap->div[k][0]))
621 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
622 size = round_up(4 * bmap->n_div / 3 - 1);
623 bits = ffs(size) - 1;
624 index = isl_calloc_array(ctx, int, size);
627 eq = isl_blk_alloc(ctx, 1+total);
628 if (isl_blk_is_error(eq))
631 isl_seq_clr(eq.data, 1+total);
632 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
633 for (--k; k >= 0; --k) {
636 if (isl_int_is_zero(bmap->div[k][0]))
639 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
640 for (h = hash; index[h]; h = (h+1) % size)
641 if (isl_seq_eq(bmap->div[k],
642 bmap->div[index[h]-1], 2+total))
651 for (l = bmap->n_div - 1; l >= 0; --l) {
655 isl_int_set_si(eq.data[1+total_var+k], -1);
656 isl_int_set_si(eq.data[1+total_var+l], 1);
657 eliminate_div(bmap, eq.data, l);
658 isl_int_set_si(eq.data[1+total_var+k], 0);
659 isl_int_set_si(eq.data[1+total_var+l], 0);
662 isl_blk_free(ctx, eq);
669 static int n_pure_div_eq(struct isl_basic_map *bmap)
674 total = isl_dim_total(bmap->dim);
675 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
676 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
680 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
686 /* Normalize divs that appear in equalities.
688 * In particular, we assume that bmap contains some equalities
693 * and we want to replace the set of e_i by a minimal set and
694 * such that the new e_i have a canonical representation in terms
696 * If any of the equalities involves more than one divs, then
697 * we currently simply bail out.
699 * Let us first additionally assume that all equalities involve
700 * a div. The equalities then express modulo constraints on the
701 * remaining variables and we can use "parameter compression"
702 * to find a minimal set of constraints. The result is a transformation
704 * x = T(x') = x_0 + G x'
706 * with G a lower-triangular matrix with all elements below the diagonal
707 * non-negative and smaller than the diagonal element on the same row.
708 * We first normalize x_0 by making the same property hold in the affine
710 * The rows i of G with a 1 on the diagonal do not impose any modulo
711 * constraint and simply express x_i = x'_i.
712 * For each of the remaining rows i, we introduce a div and a corresponding
713 * equality. In particular
715 * g_ii e_j = x_i - g_i(x')
717 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
718 * corresponding div (if g_kk != 1).
720 * If there are any equalities not involving any div, then we
721 * first apply a variable compression on the variables x:
723 * x = C x'' x'' = C_2 x
725 * and perform the above parameter compression on A C instead of on A.
726 * The resulting compression is then of the form
728 * x'' = T(x') = x_0 + G x'
730 * and in constructing the new divs and the corresponding equalities,
731 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
732 * by the corresponding row from C_2.
734 static struct isl_basic_map *normalize_divs(
735 struct isl_basic_map *bmap, int *progress)
742 struct isl_mat *T = NULL;
743 struct isl_mat *C = NULL;
744 struct isl_mat *C2 = NULL;
752 if (bmap->n_div == 0)
758 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
761 total = isl_dim_total(bmap->dim);
762 div_eq = n_pure_div_eq(bmap);
766 if (div_eq < bmap->n_eq) {
767 B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, div_eq,
768 bmap->n_eq - div_eq, 0, 1 + total);
769 C = isl_mat_variable_compression(B, &C2);
773 bmap = isl_basic_map_set_to_empty(bmap);
780 d = isl_vec_alloc(bmap->ctx, div_eq);
783 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
784 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
786 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
788 B = isl_mat_sub_alloc(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
791 B = isl_mat_product(B, C);
795 T = isl_mat_parameter_compression(B, d);
799 bmap = isl_basic_map_set_to_empty(bmap);
805 for (i = 0; i < T->n_row - 1; ++i) {
806 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
807 if (isl_int_is_zero(v))
809 isl_mat_col_submul(T, 0, v, 1 + i);
812 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
813 /* We have to be careful because dropping equalities may reorder them */
815 for (j = bmap->n_div - 1; j >= 0; --j) {
816 for (i = 0; i < bmap->n_eq; ++i)
817 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
819 if (i < bmap->n_eq) {
820 bmap = isl_basic_map_drop_div(bmap, j);
821 isl_basic_map_drop_equality(bmap, i);
827 for (i = 1; i < T->n_row; ++i) {
828 if (isl_int_is_one(T->row[i][i]))
833 if (needed > dropped) {
834 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
839 for (i = 1; i < T->n_row; ++i) {
840 if (isl_int_is_one(T->row[i][i]))
842 k = isl_basic_map_alloc_div(bmap);
843 pos[i] = 1 + total + k;
844 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
845 isl_int_set(bmap->div[k][0], T->row[i][i]);
847 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
849 isl_int_set_si(bmap->div[k][1 + i], 1);
850 for (j = 0; j < i; ++j) {
851 if (isl_int_is_zero(T->row[i][j]))
853 if (pos[j] < T->n_row && C2)
854 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
855 C2->row[pos[j]], 1 + total);
857 isl_int_neg(bmap->div[k][1 + pos[j]],
860 j = isl_basic_map_alloc_equality(bmap);
861 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
862 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
871 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
881 static struct isl_basic_map *set_div_from_lower_bound(
882 struct isl_basic_map *bmap, int div, int ineq)
884 unsigned total = 1 + isl_dim_total(bmap->dim);
886 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
887 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
888 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
889 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
890 isl_int_set_si(bmap->div[div][1 + total + div], 0);
895 /* Check whether it is ok to define a div based on an inequality.
896 * To avoid the introduction of circular definitions of divs, we
897 * do not allow such a definition if the resulting expression would refer to
898 * any other undefined divs or if any known div is defined in
899 * terms of the unknown div.
901 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
905 unsigned total = 1 + isl_dim_total(bmap->dim);
907 /* Not defined in terms of unknown divs */
908 for (j = 0; j < bmap->n_div; ++j) {
911 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
913 if (isl_int_is_zero(bmap->div[j][0]))
917 /* No other div defined in terms of this one => avoid loops */
918 for (j = 0; j < bmap->n_div; ++j) {
921 if (isl_int_is_zero(bmap->div[j][0]))
923 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
930 /* Given two constraints "k" and "l" that are opposite to each other,
931 * except for the constant term, check if we can use them
932 * to obtain an expression for one of the hitherto unknown divs.
933 * "sum" is the sum of the constant terms of the constraints.
934 * If this sum is strictly smaller than the coefficient of one
935 * of the divs, then this pair can be used define the div.
936 * To avoid the introduction of circular definitions of divs, we
937 * do not use the pair if the resulting expression would refer to
938 * any other undefined divs or if any known div is defined in
939 * terms of the unknown div.
941 static struct isl_basic_map *check_for_div_constraints(
942 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
945 unsigned total = 1 + isl_dim_total(bmap->dim);
947 for (i = 0; i < bmap->n_div; ++i) {
948 if (!isl_int_is_zero(bmap->div[i][0]))
950 if (isl_int_is_zero(bmap->ineq[k][total + i]))
952 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
954 if (!ok_to_set_div_from_bound(bmap, i, k))
956 if (isl_int_is_pos(bmap->ineq[k][total + i]))
957 bmap = set_div_from_lower_bound(bmap, i, k);
959 bmap = set_div_from_lower_bound(bmap, i, l);
967 static struct isl_basic_map *remove_duplicate_constraints(
968 struct isl_basic_map *bmap, int *progress)
974 unsigned total = isl_basic_map_total_dim(bmap);
977 if (bmap->n_ineq <= 1)
980 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
981 bits = ffs(size) - 1;
982 index = isl_calloc_array(ctx, isl_int **, size);
986 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
987 for (k = 1; k < bmap->n_ineq; ++k) {
988 h = hash_index(index, size, bits, bmap, k);
990 index[h] = &bmap->ineq[k];
995 l = index[h] - &bmap->ineq[0];
996 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
997 swap_inequality(bmap, k, l);
998 isl_basic_map_drop_inequality(bmap, k);
1002 for (k = 0; k < bmap->n_ineq-1; ++k) {
1003 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1004 h = hash_index(index, size, bits, bmap, k);
1005 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1008 l = index[h] - &bmap->ineq[0];
1009 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1010 if (isl_int_is_pos(sum)) {
1011 bmap = check_for_div_constraints(bmap, k, l, sum,
1015 if (isl_int_is_zero(sum)) {
1016 /* We need to break out of the loop after these
1017 * changes since the contents of the hash
1018 * will no longer be valid.
1019 * Plus, we probably we want to regauss first.
1021 isl_basic_map_drop_inequality(bmap, l);
1022 isl_basic_map_inequality_to_equality(bmap, k);
1024 bmap = isl_basic_map_set_to_empty(bmap);
1034 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1041 bmap = isl_basic_map_normalize_constraints(bmap);
1042 bmap = remove_duplicate_divs(bmap, &progress);
1043 bmap = eliminate_divs_eq(bmap, &progress);
1044 bmap = eliminate_divs_ineq(bmap, &progress);
1045 bmap = isl_basic_map_gauss(bmap, &progress);
1046 /* requires equalities in normal form */
1047 bmap = normalize_divs(bmap, &progress);
1048 bmap = remove_duplicate_constraints(bmap, &progress);
1053 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1055 return (struct isl_basic_set *)
1056 isl_basic_map_simplify((struct isl_basic_map *)bset);
1060 /* If the only constraints a div d=floor(f/m)
1061 * appears in are its two defining constraints
1064 * -(f - (m - 1)) + m d >= 0
1066 * then it can safely be removed.
1068 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1071 unsigned pos = 1 + isl_dim_total(bmap->dim) + div;
1073 for (i = 0; i < bmap->n_eq; ++i)
1074 if (!isl_int_is_zero(bmap->eq[i][pos]))
1077 for (i = 0; i < bmap->n_ineq; ++i) {
1078 if (isl_int_is_zero(bmap->ineq[i][pos]))
1080 if (isl_int_eq(bmap->ineq[i][pos], bmap->div[div][0])) {
1082 isl_int_sub(bmap->div[div][1],
1083 bmap->div[div][1], bmap->div[div][0]);
1084 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1085 neg = isl_seq_is_neg(bmap->ineq[i], bmap->div[div]+1, pos);
1086 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1087 isl_int_add(bmap->div[div][1],
1088 bmap->div[div][1], bmap->div[div][0]);
1091 if (isl_seq_first_non_zero(bmap->ineq[i]+pos+1,
1092 bmap->n_div-div-1) != -1)
1094 } else if (isl_int_abs_eq(bmap->ineq[i][pos], bmap->div[div][0])) {
1095 if (!isl_seq_eq(bmap->ineq[i], bmap->div[div]+1, pos))
1097 if (isl_seq_first_non_zero(bmap->ineq[i]+pos+1,
1098 bmap->n_div-div-1) != -1)
1104 for (i = 0; i < bmap->n_div; ++i)
1105 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1112 * Remove divs that don't occur in any of the constraints or other divs.
1113 * These can arise when dropping some of the variables in a quast
1114 * returned by piplib.
1116 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1123 for (i = bmap->n_div-1; i >= 0; --i) {
1124 if (!div_is_redundant(bmap, i))
1126 bmap = isl_basic_map_drop_div(bmap, i);
1131 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1133 bmap = remove_redundant_divs(bmap);
1136 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1140 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1142 return (struct isl_basic_set *)
1143 isl_basic_map_finalize((struct isl_basic_map *)bset);
1146 struct isl_set *isl_set_finalize(struct isl_set *set)
1152 for (i = 0; i < set->n; ++i) {
1153 set->p[i] = isl_basic_set_finalize(set->p[i]);
1163 struct isl_map *isl_map_finalize(struct isl_map *map)
1169 for (i = 0; i < map->n; ++i) {
1170 map->p[i] = isl_basic_map_finalize(map->p[i]);
1174 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1182 /* Remove definition of any div that is defined in terms of the given variable.
1183 * The div itself is not removed. Functions such as
1184 * eliminate_divs_ineq depend on the other divs remaining in place.
1186 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1190 unsigned dim = isl_dim_total(bmap->dim);
1192 for (i = 0; i < bmap->n_div; ++i) {
1193 if (isl_int_is_zero(bmap->div[i][0]))
1195 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1197 isl_int_set_si(bmap->div[i][0], 0);
1202 /* Eliminate the specified variables from the constraints using
1203 * Fourier-Motzkin. The variables themselves are not removed.
1205 struct isl_basic_map *isl_basic_map_eliminate_vars(
1206 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1216 total = isl_basic_map_total_dim(bmap);
1218 bmap = isl_basic_map_cow(bmap);
1219 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1220 bmap = remove_dependent_vars(bmap, d);
1222 for (d = pos + n - 1;
1223 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1224 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1225 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1226 int n_lower, n_upper;
1229 for (i = 0; i < bmap->n_eq; ++i) {
1230 if (isl_int_is_zero(bmap->eq[i][1+d]))
1232 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1233 isl_basic_map_drop_equality(bmap, i);
1240 for (i = 0; i < bmap->n_ineq; ++i) {
1241 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1243 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1246 bmap = isl_basic_map_extend_constraints(bmap,
1247 0, n_lower * n_upper);
1248 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1250 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1253 for (j = 0; j < i; ++j) {
1254 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1257 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1258 isl_int_sgn(bmap->ineq[j][1+d]))
1260 k = isl_basic_map_alloc_inequality(bmap);
1263 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1265 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1266 1+d, 1+total, NULL);
1268 isl_basic_map_drop_inequality(bmap, i);
1271 if (n_lower > 0 && n_upper > 0) {
1272 bmap = isl_basic_map_normalize_constraints(bmap);
1273 bmap = remove_duplicate_constraints(bmap, NULL);
1274 bmap = isl_basic_map_gauss(bmap, NULL);
1275 bmap = isl_basic_map_convex_hull(bmap);
1278 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1282 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1285 isl_basic_map_free(bmap);
1289 struct isl_basic_set *isl_basic_set_eliminate_vars(
1290 struct isl_basic_set *bset, unsigned pos, unsigned n)
1292 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1293 (struct isl_basic_map *)bset, pos, n);
1296 /* Don't assume equalities are in order, because align_divs
1297 * may have changed the order of the divs.
1299 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1304 total = isl_dim_total(bmap->dim);
1305 for (d = 0; d < total; ++d)
1307 for (i = 0; i < bmap->n_eq; ++i) {
1308 for (d = total - 1; d >= 0; --d) {
1309 if (isl_int_is_zero(bmap->eq[i][1+d]))
1317 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1319 return compute_elimination_index((struct isl_basic_map *)bset, elim);
1322 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1323 struct isl_basic_map *bmap, int *elim)
1329 total = isl_dim_total(bmap->dim);
1330 for (d = total - 1; d >= 0; --d) {
1331 if (isl_int_is_zero(src[1+d]))
1336 isl_seq_cpy(dst, src, 1 + total);
1339 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1344 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1345 struct isl_basic_set *bset, int *elim)
1347 return reduced_using_equalities(dst, src,
1348 (struct isl_basic_map *)bset, elim);
1351 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1352 struct isl_basic_set *bset, struct isl_basic_set *context)
1357 if (!bset || !context)
1360 bset = isl_basic_set_cow(bset);
1364 elim = isl_alloc_array(ctx, int, isl_basic_set_n_dim(bset));
1367 set_compute_elimination_index(context, elim);
1368 for (i = 0; i < bset->n_eq; ++i)
1369 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1371 for (i = 0; i < bset->n_ineq; ++i)
1372 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1374 isl_basic_set_free(context);
1376 bset = isl_basic_set_simplify(bset);
1377 bset = isl_basic_set_finalize(bset);
1380 isl_basic_set_free(bset);
1381 isl_basic_set_free(context);
1385 static struct isl_basic_set *remove_shifted_constraints(
1386 struct isl_basic_set *bset, struct isl_basic_set *context)
1396 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1397 bits = ffs(size) - 1;
1398 index = isl_calloc_array(ctx, isl_int **, size);
1402 for (k = 0; k < context->n_ineq; ++k) {
1403 h = set_hash_index(index, size, bits, context, k);
1404 index[h] = &context->ineq[k];
1406 for (k = 0; k < bset->n_ineq; ++k) {
1407 h = set_hash_index(index, size, bits, bset, k);
1410 l = index[h] - &context->ineq[0];
1411 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1413 bset = isl_basic_set_cow(bset);
1416 isl_basic_set_drop_inequality(bset, k);
1426 /* Tighten (decrease) the constant terms of the inequalities based
1427 * on the equalities, without removing any integer points.
1428 * For example, if there is an equality
1436 * then we want to replace the inequality by
1440 * We do this by computing a variable compression and translating
1441 * the constraints to the compressed space.
1442 * If any constraint has coefficients (except the contant term)
1443 * with a common factor "f", then we can replace the constant term "c"
1450 * f * floor(c/f) - c = -fract(c/f)
1452 * and we can add the same value to the original constraint.
1454 * In the example, the compressed space only contains "j",
1455 * and the inequality translates to
1459 * We add -fract(-1/3) = -2 to the original constraint to obtain
1463 static struct isl_basic_set *normalize_constraints_in_compressed_space(
1464 struct isl_basic_set *bset)
1468 struct isl_mat *B, *C;
1474 if (ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL))
1480 bset = isl_basic_set_cow(bset);
1484 total = isl_basic_set_total_dim(bset);
1485 B = isl_mat_sub_alloc(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + total);
1486 C = isl_mat_variable_compression(B, NULL);
1489 if (C->n_col == 0) {
1491 return isl_basic_set_set_to_empty(bset);
1493 B = isl_mat_sub_alloc(bset->ctx, bset->ineq,
1494 0, bset->n_ineq, 0, 1 + total);
1495 C = isl_mat_product(B, C);
1500 for (i = 0; i < bset->n_ineq; ++i) {
1501 isl_seq_gcd(C->row[i] + 1, C->n_col - 1, &gcd);
1502 if (isl_int_is_one(gcd))
1504 isl_int_fdiv_r(C->row[i][0], C->row[i][0], gcd);
1505 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], C->row[i][0]);
1514 /* Remove all information from bset that is redundant in the context
1515 * of context. In particular, equalities that are linear combinations
1516 * of those in context are removed. Then the inequalities that are
1517 * redundant in the context of the equalities and inequalities of
1518 * context are removed.
1520 * We first simplify the constraints of "bset" in the context of the
1521 * equalities of "context".
1522 * Then we simplify the inequalities of the context in the context
1523 * of the equalities of bset and remove the inequalities from "bset"
1524 * that are obviously redundant with respect to some inequality in "context".
1526 * If there are any inequalities left, we construct a tableau for
1527 * the context and then add the inequalities of "bset".
1528 * Before adding these equalities, we freeze all constraints such that
1529 * they won't be considered redundant in terms of the constraints of "bset".
1530 * Then we detect all equalities and redundant constraints (among the
1531 * constraints that weren't frozen) and update bset according to the results.
1532 * We have to be careful here because we don't want any of the context
1533 * constraints to remain and because we haven't added the equalities of "bset"
1534 * to the tableau so we temporarily have to pretend that there were no
1537 static struct isl_basic_set *uset_gist(struct isl_basic_set *bset,
1538 struct isl_basic_set *context)
1541 struct isl_tab *tab;
1542 unsigned context_ineq;
1543 struct isl_basic_set *combined = NULL;
1545 if (!context || !bset)
1548 if (context->n_eq > 0)
1549 bset = isl_basic_set_reduce_using_equalities(bset,
1550 isl_basic_set_copy(context));
1553 if (isl_basic_set_fast_is_empty(bset))
1558 if (bset->n_eq > 0) {
1559 struct isl_basic_set *affine_hull;
1560 affine_hull = isl_basic_set_copy(bset);
1561 affine_hull = isl_basic_set_cow(affine_hull);
1564 isl_basic_set_free_inequality(affine_hull, affine_hull->n_ineq);
1565 context = isl_basic_set_intersect(context, affine_hull);
1566 context = isl_basic_set_gauss(context, NULL);
1567 context = normalize_constraints_in_compressed_space(context);
1571 if (ISL_F_ISSET(context, ISL_BASIC_SET_EMPTY)) {
1572 isl_basic_set_free(bset);
1575 if (!context->n_ineq)
1577 bset = remove_shifted_constraints(bset, context);
1580 isl_basic_set_free_equality(context, context->n_eq);
1581 context_ineq = context->n_ineq;
1582 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1583 combined = isl_basic_set_extend_constraints(combined,
1584 bset->n_eq, bset->n_ineq);
1585 tab = isl_tab_from_basic_set(combined);
1588 for (i = 0; i < context_ineq; ++i)
1589 tab->con[i].frozen = 1;
1590 tab = isl_tab_extend(tab, bset->n_ineq);
1593 for (i = 0; i < bset->n_ineq; ++i)
1594 tab = isl_tab_add_ineq(tab, bset->ineq[i]);
1595 bset = isl_basic_set_add_constraints(combined, bset, 0);
1596 tab = isl_tab_detect_equalities(tab);
1597 tab = isl_tab_detect_redundant(tab);
1600 for (i = 0; i < context_ineq; ++i) {
1601 tab->con[i].is_zero = 0;
1602 tab->con[i].is_redundant = 1;
1604 bset = isl_basic_set_update_from_tab(bset, tab);
1606 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1607 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1609 bset = isl_basic_set_simplify(bset);
1610 bset = isl_basic_set_finalize(bset);
1611 isl_basic_set_free(context);
1614 isl_basic_set_free(combined);
1616 isl_basic_set_free(bset);
1617 isl_basic_set_free(context);
1621 /* Normalize the divs in "bmap" in the context of the equalities in "context".
1622 * We simply add the equalities in context to bmap and then do a regular
1623 * div normalizations. Better results can be obtained by normalizing
1624 * only the divs in bmap than do not also appear in context.
1625 * We need to be careful to reduce the divs using the equalities
1626 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
1627 * spurious constraints.
1629 static struct isl_basic_map *normalize_divs_in_context(
1630 struct isl_basic_map *bmap, struct isl_basic_map *context)
1633 unsigned total_context;
1636 div_eq = n_pure_div_eq(bmap);
1640 if (context->n_div > 0)
1641 bmap = isl_basic_map_align_divs(bmap, context);
1643 total_context = isl_basic_map_total_dim(context);
1644 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
1645 for (i = 0; i < context->n_eq; ++i) {
1647 k = isl_basic_map_alloc_equality(bmap);
1648 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
1649 isl_seq_clr(bmap->eq[k] + 1 + total_context,
1650 isl_basic_map_total_dim(bmap) - total_context);
1652 bmap = isl_basic_map_gauss(bmap, NULL);
1653 bmap = normalize_divs(bmap, NULL);
1654 bmap = isl_basic_map_gauss(bmap, NULL);
1658 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
1659 struct isl_basic_map *context)
1661 struct isl_basic_set *bset;
1663 if (!bmap || !context)
1666 if (isl_basic_map_is_universe(context)) {
1667 isl_basic_map_free(context);
1670 if (isl_basic_map_is_universe(bmap)) {
1671 isl_basic_map_free(context);
1674 if (isl_basic_map_fast_is_empty(context)) {
1675 struct isl_dim *dim = isl_dim_copy(bmap->dim);
1676 isl_basic_map_free(context);
1677 isl_basic_map_free(bmap);
1678 return isl_basic_map_universe(dim);
1680 if (isl_basic_map_fast_is_empty(bmap)) {
1681 isl_basic_map_free(context);
1685 bmap = isl_basic_map_convex_hull(bmap);
1686 context = isl_basic_map_convex_hull(context);
1689 bmap = normalize_divs_in_context(bmap, context);
1691 context = isl_basic_map_align_divs(context, bmap);
1692 bmap = isl_basic_map_align_divs(bmap, context);
1694 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
1695 isl_basic_map_underlying_set(context));
1697 return isl_basic_map_overlying_set(bset, bmap);
1699 isl_basic_map_free(bmap);
1700 isl_basic_map_free(context);
1705 * Assumes context has no implicit divs.
1707 struct isl_map *isl_map_gist(struct isl_map *map, struct isl_basic_map *context)
1711 if (!map || !context)
1714 if (isl_basic_map_is_universe(context)) {
1715 isl_basic_map_free(context);
1718 if (isl_basic_map_fast_is_empty(context)) {
1719 struct isl_dim *dim = isl_dim_copy(map->dim);
1720 isl_basic_map_free(context);
1722 return isl_map_universe(dim);
1725 context = isl_basic_map_convex_hull(context);
1726 map = isl_map_cow(map);
1727 if (!map || !context)
1729 isl_assert(map->ctx, isl_dim_equal(map->dim, context->dim), goto error);
1730 map = isl_map_compute_divs(map);
1731 for (i = 0; i < map->n; ++i)
1732 context = isl_basic_map_align_divs(context, map->p[i]);
1733 for (i = 0; i < map->n; ++i) {
1734 map->p[i] = isl_basic_map_gist(map->p[i],
1735 isl_basic_map_copy(context));
1739 isl_basic_map_free(context);
1740 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1744 isl_basic_map_free(context);
1748 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
1749 struct isl_basic_set *context)
1751 return (struct isl_basic_set *)isl_basic_map_gist(
1752 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
1755 struct isl_set *isl_set_gist(struct isl_set *set, struct isl_basic_set *context)
1757 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
1758 (struct isl_basic_map *)context);
1761 /* Quick check to see if two basic maps are disjoint.
1762 * In particular, we reduce the equalities and inequalities of
1763 * one basic map in the context of the equalities of the other
1764 * basic map and check if we get a contradiction.
1766 int isl_basic_map_fast_is_disjoint(struct isl_basic_map *bmap1,
1767 struct isl_basic_map *bmap2)
1769 struct isl_vec *v = NULL;
1774 if (!bmap1 || !bmap2)
1776 isl_assert(bmap1->ctx, isl_dim_equal(bmap1->dim, bmap2->dim),
1778 if (bmap1->n_div || bmap2->n_div)
1780 if (!bmap1->n_eq && !bmap2->n_eq)
1783 total = isl_dim_total(bmap1->dim);
1786 v = isl_vec_alloc(bmap1->ctx, 1 + total);
1789 elim = isl_alloc_array(bmap1->ctx, int, total);
1792 compute_elimination_index(bmap1, elim);
1793 for (i = 0; i < bmap2->n_eq; ++i) {
1795 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
1797 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
1798 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1801 for (i = 0; i < bmap2->n_ineq; ++i) {
1803 reduced = reduced_using_equalities(v->block.data,
1804 bmap2->ineq[i], bmap1, elim);
1805 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1806 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1809 compute_elimination_index(bmap2, elim);
1810 for (i = 0; i < bmap1->n_ineq; ++i) {
1812 reduced = reduced_using_equalities(v->block.data,
1813 bmap1->ineq[i], bmap2, elim);
1814 if (reduced && isl_int_is_neg(v->block.data[0]) &&
1815 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
1831 int isl_basic_set_fast_is_disjoint(struct isl_basic_set *bset1,
1832 struct isl_basic_set *bset2)
1834 return isl_basic_map_fast_is_disjoint((struct isl_basic_map *)bset1,
1835 (struct isl_basic_map *)bset2);
1838 int isl_map_fast_is_disjoint(struct isl_map *map1, struct isl_map *map2)
1845 if (isl_map_fast_is_equal(map1, map2))
1848 for (i = 0; i < map1->n; ++i) {
1849 for (j = 0; j < map2->n; ++j) {
1850 int d = isl_basic_map_fast_is_disjoint(map1->p[i],
1859 int isl_set_fast_is_disjoint(struct isl_set *set1, struct isl_set *set2)
1861 return isl_map_fast_is_disjoint((struct isl_map *)set1,
1862 (struct isl_map *)set2);
1865 /* Check if we can combine a given div with lower bound l and upper
1866 * bound u with some other div and if so return that other div.
1867 * Otherwise return -1.
1869 * We first check that
1870 * - the bounds are opposites of each other (except for the constant
1872 * - the bounds do not reference any other div
1873 * - no div is defined in terms of this div
1875 * Let m be the size of the range allowed on the div by the bounds.
1876 * That is, the bounds are of the form
1878 * e <= a <= e + m - 1
1880 * with e some expression in the other variables.
1881 * We look for another div b such that no third div is defined in terms
1882 * of this second div b and such that in any constraint that contains
1883 * a (except for the given lower and upper bound), also contains b
1884 * with a coefficient that is m times that of b.
1885 * That is, all constraints (execpt for the lower and upper bound)
1888 * e + f (a + m b) >= 0
1890 * If so, we return b so that "a + m b" can be replaced by
1891 * a single div "c = a + m b".
1893 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
1894 unsigned div, unsigned l, unsigned u)
1900 if (bmap->n_div <= 1)
1902 dim = isl_dim_total(bmap->dim);
1903 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
1905 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
1906 bmap->n_div - div - 1) != -1)
1908 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
1912 for (i = 0; i < bmap->n_div; ++i) {
1913 if (isl_int_is_zero(bmap->div[i][0]))
1915 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
1919 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
1920 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
1921 for (i = 0; i < bmap->n_div; ++i) {
1926 for (j = 0; j < bmap->n_div; ++j) {
1927 if (isl_int_is_zero(bmap->div[j][0]))
1929 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
1932 if (j < bmap->n_div)
1934 for (j = 0; j < bmap->n_ineq; ++j) {
1936 if (j == l || j == u)
1938 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
1940 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
1942 isl_int_mul(bmap->ineq[j][1 + dim + div],
1943 bmap->ineq[j][1 + dim + div],
1945 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
1946 bmap->ineq[j][1 + dim + i]);
1947 isl_int_divexact(bmap->ineq[j][1 + dim + div],
1948 bmap->ineq[j][1 + dim + div],
1953 if (j < bmap->n_ineq)
1958 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
1959 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
1963 /* Given a lower and an upper bound on div i, construct an inequality
1964 * that when nonnegative ensures that this pair of bounds always allows
1965 * for an integer value of the given div.
1966 * The lower bound is inequality l, while the upper bound is inequality u.
1967 * The constructed inequality is stored in ineq.
1968 * g, fl, fu are temporary scalars.
1970 * Let the upper bound be
1974 * and the lower bound
1978 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
1981 * - f_u e_l <= f_u f_l g a <= f_l e_u
1983 * Since all variables are integer valued, this is equivalent to
1985 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
1987 * If this interval is at least f_u f_l g, then it contains at least
1988 * one integer value for a.
1989 * That is, the test constraint is
1991 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
1993 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
1994 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
1997 dim = isl_dim_total(bmap->dim);
1999 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2000 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2001 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2002 isl_int_neg(fu, fu);
2003 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2004 1 + dim + bmap->n_div);
2005 isl_int_add(ineq[0], ineq[0], fl);
2006 isl_int_add(ineq[0], ineq[0], fu);
2007 isl_int_sub_ui(ineq[0], ineq[0], 1);
2008 isl_int_mul(g, g, fl);
2009 isl_int_mul(g, g, fu);
2010 isl_int_sub(ineq[0], ineq[0], g);
2013 /* Remove more kinds of divs that are not strictly needed.
2014 * In particular, if all pairs of lower and upper bounds on a div
2015 * are such that they allow at least one integer value of the div,
2016 * the we can eliminate the div using Fourier-Motzkin without
2017 * introducing any spurious solutions.
2019 static struct isl_basic_map *drop_more_redundant_divs(
2020 struct isl_basic_map *bmap, int *pairs, int n)
2022 struct isl_tab *tab = NULL;
2023 struct isl_vec *vec = NULL;
2035 dim = isl_dim_total(bmap->dim);
2036 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2040 tab = isl_tab_from_basic_map(bmap);
2045 enum isl_lp_result res;
2047 for (i = 0; i < bmap->n_div; ++i) {
2050 if (best >= 0 && pairs[best] <= pairs[i])
2056 for (l = 0; l < bmap->n_ineq; ++l) {
2057 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2059 for (u = 0; u < bmap->n_ineq; ++u) {
2060 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2062 construct_test_ineq(bmap, i, l, u,
2063 vec->el, g, fl, fu);
2064 res = isl_tab_min(tab, vec->el,
2065 bmap->ctx->one, &g, NULL, 0);
2066 if (res == isl_lp_error)
2068 if (res == isl_lp_empty) {
2069 bmap = isl_basic_map_set_to_empty(bmap);
2072 if (res != isl_lp_ok || isl_int_is_neg(g))
2075 if (u < bmap->n_ineq)
2078 if (l == bmap->n_ineq) {
2098 bmap = isl_basic_map_remove(bmap, isl_dim_div, remove, 1);
2099 return isl_basic_map_drop_redundant_divs(bmap);
2102 isl_basic_map_free(bmap);
2111 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2112 * and the upper bound u, div1 always occurs together with div2 in the form
2113 * (div1 + m div2), where m is the constant range on the variable div1
2114 * allowed by l and u, replace the pair div1 and div2 by a single
2115 * div that is equal to div1 + m div2.
2117 * The new div will appear in the location that contains div2.
2118 * We need to modify all constraints that contain
2119 * div2 = (div - div1) / m
2120 * (If a constraint does not contain div2, it will also not contain div1.)
2121 * If the constraint also contains div1, then we know they appear
2122 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2123 * i.e., the coefficient of div is f.
2125 * Otherwise, we first need to introduce div1 into the constraint.
2134 * A lower bound on div2
2138 * can be replaced by
2140 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2142 * with g = gcd(m,n).
2147 * can be replaced by
2149 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2151 * These constraint are those that we would obtain from eliminating
2152 * div1 using Fourier-Motzkin.
2154 * After all constraints have been modified, we drop the lower and upper
2155 * bound and then drop div1.
2157 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2158 unsigned div1, unsigned div2, unsigned l, unsigned u)
2163 unsigned dim, total;
2166 dim = isl_dim_total(bmap->dim);
2167 total = 1 + dim + bmap->n_div;
2172 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2173 isl_int_add_ui(m, m, 1);
2175 for (i = 0; i < bmap->n_ineq; ++i) {
2176 if (i == l || i == u)
2178 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2180 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2181 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2182 isl_int_divexact(a, m, b);
2183 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2184 if (isl_int_is_pos(b)) {
2185 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2186 b, bmap->ineq[l], total);
2189 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2190 b, bmap->ineq[u], total);
2193 isl_int_set(bmap->ineq[i][1 + dim + div2],
2194 bmap->ineq[i][1 + dim + div1]);
2195 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2202 isl_basic_map_drop_inequality(bmap, l);
2203 isl_basic_map_drop_inequality(bmap, u);
2205 isl_basic_map_drop_inequality(bmap, u);
2206 isl_basic_map_drop_inequality(bmap, l);
2208 bmap = isl_basic_map_drop_div(bmap, div1);
2212 /* First check if we can coalesce any pair of divs and
2213 * then continue with dropping more redundant divs.
2215 * We loop over all pairs of lower and upper bounds on a div
2216 * with coefficient 1 and -1, respectively, check if there
2217 * is any other div "c" with which we can coalesce the div
2218 * and if so, perform the coalescing.
2220 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2221 struct isl_basic_map *bmap, int *pairs, int n)
2226 dim = isl_dim_total(bmap->dim);
2228 for (i = 0; i < bmap->n_div; ++i) {
2231 for (l = 0; l < bmap->n_ineq; ++l) {
2232 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2234 for (u = 0; u < bmap->n_ineq; ++u) {
2237 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2239 c = div_find_coalesce(bmap, pairs, i, l, u);
2243 bmap = coalesce_divs(bmap, i, c, l, u);
2244 return isl_basic_map_drop_redundant_divs(bmap);
2249 return drop_more_redundant_divs(bmap, pairs, n);
2252 /* Remove divs that are not strictly needed.
2253 * In particular, if a div only occurs positively (or negatively)
2254 * in constraints, then it can simply be dropped.
2255 * Also, if a div occurs only occurs in two constraints and if moreover
2256 * those two constraints are opposite to each other, except for the constant
2257 * term and if the sum of the constant terms is such that for any value
2258 * of the other values, there is always at least one integer value of the
2259 * div, i.e., if one plus this sum is greater than or equal to
2260 * the (absolute value) of the coefficent of the div in the constraints,
2261 * then we can also simply drop the div.
2263 * If any divs are left after these simple checks then we move on
2264 * to more complicated cases in drop_more_redundant_divs.
2266 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2267 struct isl_basic_map *bmap)
2277 off = isl_dim_total(bmap->dim);
2278 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2282 for (i = 0; i < bmap->n_div; ++i) {
2284 int last_pos, last_neg;
2288 defined = !isl_int_is_zero(bmap->div[i][0]);
2289 for (j = 0; j < bmap->n_eq; ++j)
2290 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
2296 for (j = 0; j < bmap->n_ineq; ++j) {
2297 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
2301 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
2306 pairs[i] = pos * neg;
2307 if (pairs[i] == 0) {
2308 for (j = bmap->n_ineq - 1; j >= 0; --j)
2309 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
2310 isl_basic_map_drop_inequality(bmap, j);
2311 bmap = isl_basic_map_drop_div(bmap, i);
2313 return isl_basic_map_drop_redundant_divs(bmap);
2317 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
2318 bmap->ineq[last_neg] + 1,
2322 isl_int_add(bmap->ineq[last_pos][0],
2323 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2324 isl_int_add_ui(bmap->ineq[last_pos][0],
2325 bmap->ineq[last_pos][0], 1);
2326 redundant = isl_int_ge(bmap->ineq[last_pos][0],
2327 bmap->ineq[last_pos][1+off+i]);
2328 isl_int_sub_ui(bmap->ineq[last_pos][0],
2329 bmap->ineq[last_pos][0], 1);
2330 isl_int_sub(bmap->ineq[last_pos][0],
2331 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
2334 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
2339 bmap = set_div_from_lower_bound(bmap, i, last_pos);
2340 bmap = isl_basic_map_simplify(bmap);
2342 return isl_basic_map_drop_redundant_divs(bmap);
2344 if (last_pos > last_neg) {
2345 isl_basic_map_drop_inequality(bmap, last_pos);
2346 isl_basic_map_drop_inequality(bmap, last_neg);
2348 isl_basic_map_drop_inequality(bmap, last_neg);
2349 isl_basic_map_drop_inequality(bmap, last_pos);
2351 bmap = isl_basic_map_drop_div(bmap, i);
2353 return isl_basic_map_drop_redundant_divs(bmap);
2357 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
2363 isl_basic_map_free(bmap);
2367 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
2368 struct isl_basic_set *bset)
2370 return (struct isl_basic_set *)
2371 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
2374 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
2380 for (i = 0; i < map->n; ++i) {
2381 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
2385 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2392 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
2394 return (struct isl_set *)
2395 isl_map_drop_redundant_divs((struct isl_map *)set);