2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
13 #include "isl_sample.h"
15 #include "isl_equalities.h"
17 /* Given a basic set "bset", construct a basic set U such that for
18 * each element x in U, the whole unit box positioned at x is inside
19 * the given basic set.
20 * Note that U may not contain all points that satisfy this property.
22 * We simply add the sum of all negative coefficients to the constant
23 * term. This ensures that if x satisfies the resulting constraints,
24 * then x plus any sum of unit vectors satisfies the original constraints.
26 static struct isl_basic_set *unit_box_base_points(struct isl_basic_set *bset)
29 struct isl_basic_set *unit_box = NULL;
35 if (bset->n_eq != 0) {
36 unit_box = isl_basic_set_empty_like(bset);
37 isl_basic_set_free(bset);
41 total = isl_basic_set_total_dim(bset);
42 unit_box = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset),
45 for (i = 0; i < bset->n_ineq; ++i) {
46 k = isl_basic_set_alloc_inequality(unit_box);
49 isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total);
50 for (j = 0; j < total; ++j) {
51 if (isl_int_is_nonneg(unit_box->ineq[k][1 + j]))
53 isl_int_add(unit_box->ineq[k][0],
54 unit_box->ineq[k][0], unit_box->ineq[k][1 + j]);
58 isl_basic_set_free(bset);
61 isl_basic_set_free(bset);
62 isl_basic_set_free(unit_box);
66 /* Find an integer point in "bset", preferably one that is
67 * close to minimizing "f".
69 * We first check if we can easily put unit boxes inside bset.
70 * If so, we take the best base point of any of the unit boxes we can find
71 * and round it up to the nearest integer.
72 * If not, we simply pick any integer point in "bset".
74 static struct isl_vec *initial_solution(struct isl_basic_set *bset, isl_int *f)
76 enum isl_lp_result res;
77 struct isl_basic_set *unit_box;
80 unit_box = unit_box_base_points(isl_basic_set_copy(bset));
82 res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one,
84 if (res == isl_lp_ok) {
85 isl_basic_set_free(unit_box);
86 return isl_vec_ceil(sol);
89 isl_basic_set_free(unit_box);
91 return isl_basic_set_sample_vec(isl_basic_set_copy(bset));
94 /* Restrict "bset" to those points with values for f in the interval [l, u].
96 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
97 isl_int *f, isl_int l, isl_int u)
102 total = isl_basic_set_total_dim(bset);
103 bset = isl_basic_set_extend_constraints(bset, 0, 2);
105 k = isl_basic_set_alloc_inequality(bset);
108 isl_seq_cpy(bset->ineq[k], f, 1 + total);
109 isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l);
111 k = isl_basic_set_alloc_inequality(bset);
114 isl_seq_neg(bset->ineq[k], f, 1 + total);
115 isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u);
119 isl_basic_set_free(bset);
123 /* Find an integer point in "bset" that minimizes f (in any) such that
124 * the value of f lies inside the interval [l, u].
125 * Return this integer point if it can be found.
126 * Otherwise, return sol.
128 * We perform a number of steps until l > u.
129 * In each step, we look for an integer point with value in either
130 * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
131 * The choice depends on whether we have found an integer point in the
132 * previous step. If so, we look for the next point in half of the remaining
134 * If we find a point, the current solution is updated and u is set
135 * to its value minus 1.
136 * If no point can be found, we update l to the upper bound of the interval
137 * we checked (u or l+floor(u-l-1/2)) plus 1.
139 static struct isl_vec *solve_ilp_search(struct isl_basic_set *bset,
140 isl_int *f, isl_int *opt, struct isl_vec *sol, isl_int l, isl_int u)
147 while (isl_int_le(l, u)) {
148 struct isl_basic_set *slice;
149 struct isl_vec *sample;
154 isl_int_sub(tmp, u, l);
155 isl_int_fdiv_q_ui(tmp, tmp, 2);
156 isl_int_add(tmp, tmp, l);
158 slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp);
159 sample = isl_basic_set_sample_vec(slice);
165 if (sample->size > 0) {
168 isl_seq_inner_product(f, sol->el, sol->size, opt);
169 isl_int_sub_ui(u, *opt, 1);
172 isl_vec_free(sample);
175 isl_int_add_ui(l, tmp, 1);
185 /* Find an integer point in "bset" that minimizes f (if any).
186 * If sol_p is not NULL then the integer point is returned in *sol_p.
187 * The optimal value of f is returned in *opt.
189 * The algorithm maintains a currently best solution and an interval [l, u]
190 * of values of f for which integer solutions could potentially still be found.
191 * The initial value of the best solution so far is any solution.
192 * The initial value of l is minimal value of f over the rationals
193 * (rounded up to the nearest integer).
194 * The initial value of u is the value of f at the initial solution minus 1.
196 * We then call solve_ilp_search to perform a binary search on the interval.
198 static enum isl_lp_result solve_ilp(struct isl_basic_set *bset,
199 isl_int *f, isl_int *opt,
200 struct isl_vec **sol_p)
202 enum isl_lp_result res;
206 res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one,
208 if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) {
216 if (res == isl_lp_error || res == isl_lp_empty)
219 sol = initial_solution(bset, f);
222 if (sol->size == 0) {
226 if (res == isl_lp_unbounded) {
228 return isl_lp_unbounded;
234 isl_int_set(l, *opt);
236 isl_seq_inner_product(f, sol->el, sol->size, opt);
237 isl_int_sub_ui(u, *opt, 1);
239 sol = solve_ilp_search(bset, f, opt, sol, l, u);
254 static enum isl_lp_result solve_ilp_with_eq(struct isl_basic_set *bset, int max,
255 isl_int *f, isl_int *opt,
256 struct isl_vec **sol_p)
259 enum isl_lp_result res;
260 struct isl_mat *T = NULL;
263 bset = isl_basic_set_copy(bset);
264 dim = isl_basic_set_total_dim(bset);
265 v = isl_vec_alloc(bset->ctx, 1 + dim);
268 isl_seq_cpy(v->el, f, 1 + dim);
269 bset = isl_basic_set_remove_equalities(bset, &T, NULL);
270 v = isl_vec_mat_product(v, isl_mat_copy(T));
273 res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p);
275 if (res == isl_lp_ok && sol_p) {
276 *sol_p = isl_mat_vec_product(T, *sol_p);
281 isl_basic_set_free(bset);
285 isl_basic_set_free(bset);
289 /* Find an integer point in "bset" that minimizes (or maximizes if max is set)
291 * If sol_p is not NULL then the integer point is returned in *sol_p.
292 * The optimal value of f is returned in *opt.
294 * If there is any equality among the points in "bset", then we first
295 * project it out. Otherwise, we continue with solve_ilp above.
297 enum isl_lp_result isl_basic_set_solve_ilp(struct isl_basic_set *bset, int max,
298 isl_int *f, isl_int *opt,
299 struct isl_vec **sol_p)
302 enum isl_lp_result res;
309 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
311 if (isl_basic_set_fast_is_empty(bset))
315 return solve_ilp_with_eq(bset, max, f, opt, sol_p);
317 dim = isl_basic_set_total_dim(bset);
320 isl_seq_neg(f, f, 1 + dim);
322 res = solve_ilp(bset, f, opt, sol_p);
325 isl_seq_neg(f, f, 1 + dim);
326 isl_int_neg(*opt, *opt);
331 isl_basic_set_free(bset);