2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
18 /* A private structure to keep track of a mapping together with
19 * a user-specified identifier and a boolean indicating whether
20 * the map represents a must or may access/dependence.
22 struct isl_labeled_map {
28 /* A structure containing the input for dependence analysis:
30 * - n_must + n_may (<= max_source) sources
31 * - a function for determining the relative order of sources and sink
32 * The must sources are placed before the may sources.
34 struct isl_access_info {
35 struct isl_labeled_map sink;
36 isl_access_level_before level_before;
40 struct isl_labeled_map source[1];
43 /* A structure containing the output of dependence analysis:
44 * - n_source dependences
45 * - a subset of the sink for which definitely no source could be found
46 * - a subset of the sink for which possibly no source could be found
49 isl_set *must_no_source;
50 isl_set *may_no_source;
52 struct isl_labeled_map *dep;
55 /* Construct an isl_access_info structure and fill it up with
56 * the given data. The number of sources is set to 0.
58 __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
59 void *sink_user, isl_access_level_before fn, int max_source)
61 struct isl_access_info *acc;
66 isl_assert(sink->ctx, max_source >= 0, goto error);
68 acc = isl_alloc(sink->ctx, struct isl_access_info,
69 sizeof(struct isl_access_info) +
70 (max_source - 1) * sizeof(struct isl_labeled_map));
75 acc->sink.data = sink_user;
76 acc->level_before = fn;
77 acc->max_source = max_source;
87 /* Free the given isl_access_info structure.
88 * This function is static because the user is expected to call
89 * isl_access_info_compute_flow on any isl_access_info structure
92 static void isl_access_info_free(__isl_take isl_access_info *acc)
98 isl_map_free(acc->sink.map);
99 for (i = 0; i < acc->n_must + acc->n_may; ++i)
100 isl_map_free(acc->source[i].map);
104 /* Add another source to an isl_access_info structure, making
105 * sure the "must" sources are placed before the "may" sources.
106 * This function may be called at most max_source times on a
107 * given isl_access_info structure, with max_source as specified
108 * in the call to isl_access_info_alloc that constructed the structure.
110 __isl_give isl_access_info *isl_access_info_add_source(
111 __isl_take isl_access_info *acc, __isl_take isl_map *source,
112 int must, void *source_user)
116 isl_assert(acc->sink.map->ctx,
117 acc->n_must + acc->n_may < acc->max_source, goto error);
121 acc->source[acc->n_must + acc->n_may] =
122 acc->source[acc->n_must];
123 acc->source[acc->n_must].map = source;
124 acc->source[acc->n_must].data = source_user;
125 acc->source[acc->n_must].must = 1;
128 acc->source[acc->n_must + acc->n_may].map = source;
129 acc->source[acc->n_must + acc->n_may].data = source_user;
130 acc->source[acc->n_must + acc->n_may].must = 0;
136 isl_map_free(source);
137 isl_access_info_free(acc);
141 /* A temporary structure used while sorting the accesses in an isl_access_info.
143 struct isl_access_sort_info {
144 struct isl_map *source_map;
146 struct isl_access_info *acc;
149 /* Return -n, 0 or n (with n a positive value), depending on whether
150 * the source access identified by p1 should be sorted before, together
151 * or after that identified by p2.
153 * If p1 and p2 share a different number of levels with the sink,
154 * then the one with the lowest number of shared levels should be
156 * If they both share no levels, then the order is irrelevant.
157 * Otherwise, if p1 appears before p2, then it should be sorted first.
159 static int access_sort_cmp(const void *p1, const void *p2)
161 const struct isl_access_sort_info *i1, *i2;
163 i1 = (const struct isl_access_sort_info *) p1;
164 i2 = (const struct isl_access_sort_info *) p2;
166 level1 = i1->acc->level_before(i1->source_data, i1->acc->sink.data);
167 level2 = i2->acc->level_before(i2->source_data, i2->acc->sink.data);
169 if (level1 != level2 || !level1)
170 return level1 - level2;
172 level1 = i1->acc->level_before(i1->source_data, i2->source_data);
174 return (level1 % 2) ? -1 : 1;
177 /* Sort the must source accesses in order of increasing number of shared
178 * levels with the sink access.
179 * Source accesses with the same number of shared levels are sorted
180 * in their textual order.
182 static __isl_give isl_access_info *isl_access_info_sort_sources(
183 __isl_take isl_access_info *acc)
186 struct isl_access_sort_info *array;
190 if (acc->n_must <= 1)
193 array = isl_alloc_array(acc->sink.map->ctx,
194 struct isl_access_sort_info, acc->n_must);
198 for (i = 0; i < acc->n_must; ++i) {
199 array[i].source_map = acc->source[i].map;
200 array[i].source_data = acc->source[i].data;
204 qsort(array, acc->n_must, sizeof(struct isl_access_sort_info),
207 for (i = 0; i < acc->n_must; ++i) {
208 acc->source[i].map = array[i].source_map;
209 acc->source[i].data = array[i].source_data;
216 isl_access_info_free(acc);
220 /* Initialize an empty isl_flow structure corresponding to a given
221 * isl_access_info structure.
222 * For each must access, two dependences are created (initialized
223 * to the empty relation), one for the resulting must dependences
224 * and one for the resulting may dependences. May accesses can
225 * only lead to may dependences, so only one dependence is created
227 * This function is private as isl_flow structures are only supposed
228 * to be created by isl_access_info_compute_flow.
230 static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
234 struct isl_flow *dep;
239 ctx = acc->sink.map->ctx;
240 dep = isl_calloc_type(ctx, struct isl_flow);
244 dep->dep = isl_calloc_array(ctx, struct isl_labeled_map,
245 2 * acc->n_must + acc->n_may);
249 dep->n_source = 2 * acc->n_must + acc->n_may;
250 for (i = 0; i < acc->n_must; ++i) {
252 dim = isl_dim_join(isl_map_get_dim(acc->source[i].map),
253 isl_dim_reverse(isl_map_get_dim(acc->sink.map)));
254 dep->dep[2 * i].map = isl_map_empty(dim);
255 dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
256 dep->dep[2 * i].data = acc->source[i].data;
257 dep->dep[2 * i + 1].data = acc->source[i].data;
258 dep->dep[2 * i].must = 1;
259 dep->dep[2 * i + 1].must = 0;
260 if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
263 for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
265 dim = isl_dim_join(isl_map_get_dim(acc->source[i].map),
266 isl_dim_reverse(isl_map_get_dim(acc->sink.map)));
267 dep->dep[acc->n_must + i].map = isl_map_empty(dim);
268 dep->dep[acc->n_must + i].data = acc->source[i].data;
269 dep->dep[acc->n_must + i].must = 0;
270 if (!dep->dep[acc->n_must + i].map)
280 /* Iterate over all sources and for each resulting flow dependence
281 * that is not empty, call the user specfied function.
282 * The second argument in this function call identifies the source,
283 * while the third argument correspond to the final argument of
284 * the isl_flow_foreach call.
286 int isl_flow_foreach(__isl_keep isl_flow *deps,
287 int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user),
295 for (i = 0; i < deps->n_source; ++i) {
296 if (isl_map_fast_is_empty(deps->dep[i].map))
298 if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
299 deps->dep[i].data, user) < 0)
306 /* Return a copy of the subset of the sink for which no source could be found.
308 __isl_give isl_set *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
314 return isl_set_copy(deps->must_no_source);
316 return isl_set_copy(deps->may_no_source);
319 void isl_flow_free(__isl_take isl_flow *deps)
325 isl_set_free(deps->must_no_source);
326 isl_set_free(deps->may_no_source);
328 for (i = 0; i < deps->n_source; ++i)
329 isl_map_free(deps->dep[i].map);
335 /* Return a map that enforces that the domain iteration occurs after
336 * the range iteration at the given level.
337 * If level is odd, then the domain iteration should occur after
338 * the target iteration in their shared level/2 outermost loops.
339 * In this case we simply need to enforce that these outermost
340 * loop iterations are the same.
341 * If level is even, then the loop iterator of the domain should
342 * be greater than the loop iterator of the range at the last
343 * of the level/2 shared loops, i.e., loop level/2 - 1.
345 static __isl_give isl_map *after_at_level(struct isl_dim *dim, int level)
347 struct isl_basic_map *bmap;
350 bmap = isl_basic_map_equal(dim, level/2);
352 bmap = isl_basic_map_more_at(dim, level/2 - 1);
354 return isl_map_from_basic_map(bmap);
357 /* Compute the last iteration of must source j that precedes the sink
358 * at the given level for sink iterations in set_C.
359 * The subset of set_C for which no such iteration can be found is returned
362 static struct isl_map *last_source(struct isl_access_info *acc,
363 struct isl_set *set_C,
364 int j, int level, struct isl_set **empty)
366 struct isl_map *read_map;
367 struct isl_map *write_map;
368 struct isl_map *dep_map;
369 struct isl_map *after;
370 struct isl_map *result;
372 read_map = isl_map_copy(acc->sink.map);
373 write_map = isl_map_copy(acc->source[j].map);
374 write_map = isl_map_reverse(write_map);
375 dep_map = isl_map_apply_range(read_map, write_map);
376 after = after_at_level(isl_map_get_dim(dep_map), level);
377 dep_map = isl_map_intersect(dep_map, after);
378 result = isl_map_partial_lexmax(dep_map, set_C, empty);
379 result = isl_map_reverse(result);
384 /* For a given mapping between iterations of must source j and iterations
385 * of the sink, compute the last iteration of must source k preceding
386 * the sink at level before_level for any of the sink iterations,
387 * but following the corresponding iteration of must source j at level
390 static struct isl_map *last_later_source(struct isl_access_info *acc,
391 struct isl_map *old_map,
392 int j, int before_level,
393 int k, int after_level,
394 struct isl_set **empty)
397 struct isl_set *set_C;
398 struct isl_map *read_map;
399 struct isl_map *write_map;
400 struct isl_map *dep_map;
401 struct isl_map *after_write;
402 struct isl_map *before_read;
403 struct isl_map *result;
405 set_C = isl_map_range(isl_map_copy(old_map));
406 read_map = isl_map_copy(acc->sink.map);
407 write_map = isl_map_copy(acc->source[k].map);
409 write_map = isl_map_reverse(write_map);
410 dep_map = isl_map_apply_range(read_map, write_map);
411 dim = isl_dim_join(isl_map_get_dim(acc->source[k].map),
412 isl_dim_reverse(isl_map_get_dim(acc->source[j].map)));
413 after_write = after_at_level(dim, after_level);
414 after_write = isl_map_apply_range(after_write, old_map);
415 after_write = isl_map_reverse(after_write);
416 dep_map = isl_map_intersect(dep_map, after_write);
417 before_read = after_at_level(isl_map_get_dim(dep_map), before_level);
418 dep_map = isl_map_intersect(dep_map, before_read);
419 result = isl_map_partial_lexmax(dep_map, set_C, empty);
420 result = isl_map_reverse(result);
425 /* Given a shared_level between two accesses, return 1 if the
426 * the first can precede the second at the requested target_level.
427 * If the target level is odd, i.e., refers to a statement level
428 * dimension, then first needs to precede second at the requested
429 * level, i.e., shared_level must be equal to target_level.
430 * If the target level is odd, then the two loops should share
431 * at least the requested number of outer loops.
433 static int can_precede_at_level(int shared_level, int target_level)
435 if (shared_level < target_level)
437 if ((target_level % 2) && shared_level > target_level)
442 /* Given a possible flow dependence temp_rel[j] between source j and the sink
443 * at level sink_level, remove those elements for which
444 * there is an iteration of another source k < j that is closer to the sink.
445 * The flow dependences temp_rel[k] are updated with the improved sources.
446 * Any improved source needs to precede the sink at the same level
447 * and needs to follow source j at the same or a deeper level.
448 * The lower this level, the later the execution date of source k.
449 * We therefore consider lower levels first.
451 * If temp_rel[j] is empty, then there can be no improvement and
452 * we return immediately.
454 static int intermediate_sources(__isl_keep isl_access_info *acc,
455 struct isl_map **temp_rel, int j, int sink_level)
458 int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1;
460 if (isl_map_fast_is_empty(temp_rel[j]))
463 for (k = j - 1; k >= 0; --k) {
465 plevel = acc->level_before(acc->source[k].data, acc->sink.data);
466 if (!can_precede_at_level(plevel, sink_level))
469 plevel2 = acc->level_before(acc->source[j].data,
470 acc->source[k].data);
472 for (level = sink_level; level <= depth; ++level) {
474 struct isl_set *trest;
475 struct isl_map *copy;
477 if (!can_precede_at_level(plevel2, level))
480 copy = isl_map_copy(temp_rel[j]);
481 T = last_later_source(acc, copy, j, sink_level, k,
483 if (isl_map_fast_is_empty(T)) {
488 temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
489 temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
496 /* Compute all iterations of may source j that precedes the sink at the given
497 * level for sink iterations in set_C.
499 static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
500 __isl_take isl_set *set_C, int j, int level)
507 read_map = isl_map_copy(acc->sink.map);
508 read_map = isl_map_intersect_domain(read_map, set_C);
509 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
510 write_map = isl_map_reverse(write_map);
511 dep_map = isl_map_apply_range(read_map, write_map);
512 after = after_at_level(isl_map_get_dim(dep_map), level);
513 dep_map = isl_map_intersect(dep_map, after);
515 return isl_map_reverse(dep_map);
518 /* For a given mapping between iterations of must source k and iterations
519 * of the sink, compute the all iteration of may source j preceding
520 * the sink at level before_level for any of the sink iterations,
521 * but following the corresponding iteration of must source k at level
524 static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
525 __isl_keep isl_map *old_map,
526 int j, int before_level, int k, int after_level)
533 isl_map *after_write;
534 isl_map *before_read;
536 set_C = isl_map_range(isl_map_copy(old_map));
537 read_map = isl_map_copy(acc->sink.map);
538 read_map = isl_map_intersect_domain(read_map, set_C);
539 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
541 write_map = isl_map_reverse(write_map);
542 dep_map = isl_map_apply_range(read_map, write_map);
543 dim = isl_dim_join(isl_map_get_dim(acc->source[acc->n_must + j].map),
544 isl_dim_reverse(isl_map_get_dim(acc->source[k].map)));
545 after_write = after_at_level(dim, after_level);
546 after_write = isl_map_apply_range(after_write, old_map);
547 after_write = isl_map_reverse(after_write);
548 dep_map = isl_map_intersect(dep_map, after_write);
549 before_read = after_at_level(isl_map_get_dim(dep_map), before_level);
550 dep_map = isl_map_intersect(dep_map, before_read);
551 return isl_map_reverse(dep_map);
554 /* Given the must and may dependence relations for the must accesses
555 * for level sink_level, check if there are any accesses of may access j
556 * that occur in between and return their union.
557 * If some of these accesses are intermediate with respect to
558 * (previously thought to be) must dependences, then these
559 * must dependences are turned into may dependences.
561 static __isl_give isl_map *all_intermediate_sources(
562 __isl_keep isl_access_info *acc, __isl_take isl_map *map,
563 struct isl_map **must_rel, struct isl_map **may_rel,
564 int j, int sink_level)
567 int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map,
570 for (k = 0; k < acc->n_must; ++k) {
573 if (isl_map_fast_is_empty(may_rel[k]) &&
574 isl_map_fast_is_empty(must_rel[k]))
577 plevel = acc->level_before(acc->source[k].data,
578 acc->source[acc->n_must + j].data);
580 for (level = sink_level; level <= depth; ++level) {
585 if (!can_precede_at_level(plevel, level))
588 copy = isl_map_copy(may_rel[k]);
589 T = all_later_sources(acc, copy, j, sink_level, k, level);
590 map = isl_map_union(map, T);
592 copy = isl_map_copy(must_rel[k]);
593 T = all_later_sources(acc, copy, j, sink_level, k, level);
594 ran = isl_map_range(isl_map_copy(T));
595 map = isl_map_union(map, T);
596 may_rel[k] = isl_map_union_disjoint(may_rel[k],
597 isl_map_intersect_range(isl_map_copy(must_rel[k]),
599 T = isl_map_from_domain_and_range(
601 isl_dim_domain(isl_map_get_dim(must_rel[k]))),
603 must_rel[k] = isl_map_subtract(must_rel[k], T);
610 /* Compute dependences for the case where all accesses are "may"
611 * accesses, which boils down to computing memory based dependences.
612 * The generic algorithm would also work in this case, but it would
613 * be overkill to use it.
615 static __isl_give isl_flow *compute_mem_based_dependences(
616 __isl_take isl_access_info *acc)
623 res = isl_flow_alloc(acc);
627 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
628 maydo = isl_set_copy(mustdo);
630 for (i = 0; i < acc->n_may; ++i) {
637 plevel = acc->level_before(acc->source[i].data, acc->sink.data);
638 is_before = plevel & 1;
641 dim = isl_map_get_dim(res->dep[i].map);
643 before = isl_map_lex_le_first(dim, plevel);
645 before = isl_map_lex_lt_first(dim, plevel);
646 dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
647 isl_map_reverse(isl_map_copy(acc->sink.map)));
648 dep = isl_map_intersect(dep, before);
649 mustdo = isl_set_subtract(mustdo,
650 isl_map_range(isl_map_copy(dep)));
651 res->dep[i].map = isl_map_union(res->dep[i].map, dep);
654 res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
655 res->must_no_source = mustdo;
657 isl_access_info_free(acc);
661 isl_access_info_free(acc);
665 /* Compute dependences for the case where there is at least one
668 * The core algorithm considers all levels in which a source may precede
669 * the sink, where a level may either be a statement level or a loop level.
670 * The outermost statement level is 1, the first loop level is 2, etc...
671 * The algorithm basically does the following:
672 * for all levels l of the read access from innermost to outermost
673 * for all sources w that may precede the sink access at that level
674 * compute the last iteration of the source that precedes the sink access
676 * add result to possible last accesses at level l of source w
677 * for all sources w2 that we haven't considered yet at this level that may
678 * also precede the sink access
679 * for all levels l2 of w from l to innermost
680 * for all possible last accesses dep of w at l
681 * compute last iteration of w2 between the source and sink
683 * add result to possible last accesses at level l of write w2
684 * and replace possible last accesses dep by the remainder
687 * The above algorithm is applied to the must access. During the course
688 * of the algorithm, we keep track of sink iterations that still
689 * need to be considered. These iterations are split into those that
690 * haven't been matched to any source access (mustdo) and those that have only
691 * been matched to may accesses (maydo).
692 * At the end of each level, we also consider the may accesses.
693 * In particular, we consider may accesses that precede the remaining
694 * sink iterations, moving elements from mustdo to maydo when appropriate,
695 * and may accesses that occur between a must source and a sink of any
696 * dependences found at the current level, turning must dependences into
697 * may dependences when appropriate.
700 static __isl_give isl_flow *compute_val_based_dependences(
701 __isl_take isl_access_info *acc)
705 isl_set *mustdo = NULL;
706 isl_set *maydo = NULL;
709 isl_map **must_rel = NULL;
710 isl_map **may_rel = NULL;
712 acc = isl_access_info_sort_sources(acc);
716 res = isl_flow_alloc(acc);
719 ctx = acc->sink.map->ctx;
721 depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1;
722 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
723 maydo = isl_set_empty_like(mustdo);
724 if (!mustdo || !maydo)
726 if (isl_set_fast_is_empty(mustdo))
729 must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
730 may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
731 if (!must_rel || !may_rel)
734 for (level = depth; level >= 1; --level) {
735 for (j = acc->n_must-1; j >=0; --j) {
736 must_rel[j] = isl_map_empty_like(res->dep[j].map);
737 may_rel[j] = isl_map_copy(must_rel[j]);
740 for (j = acc->n_must - 1; j >= 0; --j) {
742 struct isl_set *rest;
745 plevel = acc->level_before(acc->source[j].data,
747 if (!can_precede_at_level(plevel, level))
750 T = last_source(acc, mustdo, j, level, &rest);
751 must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
754 intermediate_sources(acc, must_rel, j, level);
756 T = last_source(acc, maydo, j, level, &rest);
757 may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
760 intermediate_sources(acc, may_rel, j, level);
762 if (isl_set_fast_is_empty(mustdo) &&
763 isl_set_fast_is_empty(maydo))
766 for (j = j - 1; j >= 0; --j) {
769 plevel = acc->level_before(acc->source[j].data,
771 if (!can_precede_at_level(plevel, level))
774 intermediate_sources(acc, must_rel, j, level);
775 intermediate_sources(acc, may_rel, j, level);
778 for (j = 0; j < acc->n_may; ++j) {
783 plevel = acc->level_before(acc->source[acc->n_must + j].data,
785 if (!can_precede_at_level(plevel, level))
788 T = all_sources(acc, isl_set_copy(maydo), j, level);
789 res->dep[2 * acc->n_must + j].map =
790 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
791 T = all_sources(acc, isl_set_copy(mustdo), j, level);
792 ran = isl_map_range(isl_map_copy(T));
793 res->dep[2 * acc->n_must + j].map =
794 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
795 mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
796 maydo = isl_set_union_disjoint(maydo, ran);
798 T = res->dep[2 * acc->n_must + j].map;
799 T = all_intermediate_sources(acc, T, must_rel, may_rel,
801 res->dep[2 * acc->n_must + j].map = T;
804 for (j = acc->n_must - 1; j >= 0; --j) {
805 res->dep[2 * j].map =
806 isl_map_union_disjoint(res->dep[2 * j].map,
808 res->dep[2 * j + 1].map =
809 isl_map_union_disjoint(res->dep[2 * j + 1].map,
813 if (isl_set_fast_is_empty(mustdo) &&
814 isl_set_fast_is_empty(maydo))
821 res->must_no_source = mustdo;
822 res->may_no_source = maydo;
823 isl_access_info_free(acc);
826 isl_access_info_free(acc);
828 isl_set_free(mustdo);
835 /* Given a "sink" access, a list of n "source" accesses,
836 * compute for each iteration of the sink access
837 * and for each element accessed by that iteration,
838 * the source access in the list that last accessed the
839 * element accessed by the sink access before this sink access.
840 * Each access is given as a map from the loop iterators
841 * to the array indices.
842 * The result is a list of n relations between source and sink
843 * iterations and a subset of the domain of the sink access,
844 * corresponding to those iterations that access an element
845 * not previously accessed.
847 * To deal with multi-valued sink access relations, the sink iteration
848 * domain is first extended with dimensions that correspond to the data
849 * space. After the computation is finished, these extra dimensions are
850 * projected out again.
852 __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
855 struct isl_flow *res;
864 n_sink = isl_map_dim(acc->sink.map, isl_dim_in);
865 n_data = isl_map_dim(acc->sink.map, isl_dim_out);
866 dim = isl_dim_range(isl_map_get_dim(acc->sink.map));
867 id = isl_map_identity(dim);
868 id = isl_map_insert(id, isl_dim_in, 0, n_sink);
869 acc->sink.map = isl_map_insert(acc->sink.map, isl_dim_in,
871 acc->sink.map = isl_map_intersect(acc->sink.map, id);
875 if (acc->n_must == 0)
876 res = compute_mem_based_dependences(acc);
878 res = compute_val_based_dependences(acc);
882 for (j = 0; j < res->n_source; ++j) {
883 res->dep[j].map = isl_map_project_out(res->dep[j].map,
884 isl_dim_out, n_sink, n_data);
885 if (!res->dep[j].map)
888 res->must_no_source = isl_set_project_out(res->must_no_source, isl_dim_set, n_sink, n_data);
889 res->may_no_source = isl_set_project_out(res->may_no_source, isl_dim_set, n_sink, n_data);
890 if (!res->must_no_source || !res->may_no_source)
895 isl_access_info_free(acc);