2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
18 /* A private structure to keep track of a mapping together with
19 * a user-specified identifier and a boolean indicating whether
20 * the map represents a must or may access/dependence.
22 struct isl_labeled_map {
28 /* A structure containing the input for dependence analysis:
30 * - n_must + n_may (<= max_source) sources
31 * - a function for determining the relative order of sources and sink
32 * The must sources are placed before the may sources.
34 struct isl_access_info {
35 struct isl_labeled_map sink;
36 isl_access_level_before level_before;
40 struct isl_labeled_map source[1];
43 /* A structure containing the output of dependence analysis:
44 * - n_source dependences
45 * - a subset of the sink for which definitely no source could be found
46 * - a subset of the sink for which possibly no source could be found
49 isl_set *must_no_source;
50 isl_set *may_no_source;
52 struct isl_labeled_map *dep;
55 /* Construct an isl_access_info structure and fill it up with
56 * the given data. The number of sources is set to 0.
58 __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
59 void *sink_user, isl_access_level_before fn, int max_source)
61 struct isl_access_info *acc;
66 isl_assert(sink->ctx, max_source >= 0, goto error);
68 acc = isl_alloc(sink->ctx, struct isl_access_info,
69 sizeof(struct isl_access_info) +
70 (max_source - 1) * sizeof(struct isl_labeled_map));
75 acc->sink.data = sink_user;
76 acc->level_before = fn;
77 acc->max_source = max_source;
87 /* Free the given isl_access_info structure.
89 void isl_access_info_free(__isl_take isl_access_info *acc)
95 isl_map_free(acc->sink.map);
96 for (i = 0; i < acc->n_must + acc->n_may; ++i)
97 isl_map_free(acc->source[i].map);
101 /* Add another source to an isl_access_info structure, making
102 * sure the "must" sources are placed before the "may" sources.
103 * This function may be called at most max_source times on a
104 * given isl_access_info structure, with max_source as specified
105 * in the call to isl_access_info_alloc that constructed the structure.
107 __isl_give isl_access_info *isl_access_info_add_source(
108 __isl_take isl_access_info *acc, __isl_take isl_map *source,
109 int must, void *source_user)
113 isl_assert(acc->sink.map->ctx,
114 acc->n_must + acc->n_may < acc->max_source, goto error);
118 acc->source[acc->n_must + acc->n_may] =
119 acc->source[acc->n_must];
120 acc->source[acc->n_must].map = source;
121 acc->source[acc->n_must].data = source_user;
122 acc->source[acc->n_must].must = 1;
125 acc->source[acc->n_must + acc->n_may].map = source;
126 acc->source[acc->n_must + acc->n_may].data = source_user;
127 acc->source[acc->n_must + acc->n_may].must = 0;
133 isl_map_free(source);
134 isl_access_info_free(acc);
138 /* A temporary structure used while sorting the accesses in an isl_access_info.
140 struct isl_access_sort_info {
141 struct isl_map *source_map;
143 struct isl_access_info *acc;
146 /* Return -n, 0 or n (with n a positive value), depending on whether
147 * the source access identified by p1 should be sorted before, together
148 * or after that identified by p2.
150 * If p1 and p2 share a different number of levels with the sink,
151 * then the one with the lowest number of shared levels should be
153 * If they both share no levels, then the order is irrelevant.
154 * Otherwise, if p1 appears before p2, then it should be sorted first.
156 static int access_sort_cmp(const void *p1, const void *p2)
158 const struct isl_access_sort_info *i1, *i2;
160 i1 = (const struct isl_access_sort_info *) p1;
161 i2 = (const struct isl_access_sort_info *) p2;
163 level1 = i1->acc->level_before(i1->source_data, i1->acc->sink.data);
164 level2 = i2->acc->level_before(i2->source_data, i2->acc->sink.data);
166 if (level1 != level2 || !level1)
167 return level1 - level2;
169 level1 = i1->acc->level_before(i1->source_data, i2->source_data);
171 return (level1 % 2) ? -1 : 1;
174 /* Sort the must source accesses in order of increasing number of shared
175 * levels with the sink access.
176 * Source accesses with the same number of shared levels are sorted
177 * in their textual order.
179 static __isl_give isl_access_info *isl_access_info_sort_sources(
180 __isl_take isl_access_info *acc)
183 struct isl_access_sort_info *array;
187 if (acc->n_must <= 1)
190 array = isl_alloc_array(acc->sink.map->ctx,
191 struct isl_access_sort_info, acc->n_must);
195 for (i = 0; i < acc->n_must; ++i) {
196 array[i].source_map = acc->source[i].map;
197 array[i].source_data = acc->source[i].data;
201 qsort(array, acc->n_must, sizeof(struct isl_access_sort_info),
204 for (i = 0; i < acc->n_must; ++i) {
205 acc->source[i].map = array[i].source_map;
206 acc->source[i].data = array[i].source_data;
213 isl_access_info_free(acc);
217 /* Initialize an empty isl_flow structure corresponding to a given
218 * isl_access_info structure.
219 * For each must access, two dependences are created (initialized
220 * to the empty relation), one for the resulting must dependences
221 * and one for the resulting may dependences. May accesses can
222 * only lead to may dependences, so only one dependence is created
224 * This function is private as isl_flow structures are only supposed
225 * to be created by isl_access_info_compute_flow.
227 static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
231 struct isl_flow *dep;
236 ctx = acc->sink.map->ctx;
237 dep = isl_calloc_type(ctx, struct isl_flow);
241 dep->dep = isl_calloc_array(ctx, struct isl_labeled_map,
242 2 * acc->n_must + acc->n_may);
246 dep->n_source = 2 * acc->n_must + acc->n_may;
247 for (i = 0; i < acc->n_must; ++i) {
249 dim = isl_dim_join(isl_map_get_dim(acc->source[i].map),
250 isl_dim_reverse(isl_map_get_dim(acc->sink.map)));
251 dep->dep[2 * i].map = isl_map_empty(dim);
252 dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
253 dep->dep[2 * i].data = acc->source[i].data;
254 dep->dep[2 * i + 1].data = acc->source[i].data;
255 dep->dep[2 * i].must = 1;
256 dep->dep[2 * i + 1].must = 0;
257 if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
260 for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
262 dim = isl_dim_join(isl_map_get_dim(acc->source[i].map),
263 isl_dim_reverse(isl_map_get_dim(acc->sink.map)));
264 dep->dep[acc->n_must + i].map = isl_map_empty(dim);
265 dep->dep[acc->n_must + i].data = acc->source[i].data;
266 dep->dep[acc->n_must + i].must = 0;
267 if (!dep->dep[acc->n_must + i].map)
277 /* Iterate over all sources and for each resulting flow dependence
278 * that is not empty, call the user specfied function.
279 * The second argument in this function call identifies the source,
280 * while the third argument correspond to the final argument of
281 * the isl_flow_foreach call.
283 int isl_flow_foreach(__isl_keep isl_flow *deps,
284 int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user),
292 for (i = 0; i < deps->n_source; ++i) {
293 if (isl_map_fast_is_empty(deps->dep[i].map))
295 if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
296 deps->dep[i].data, user) < 0)
303 /* Return a copy of the subset of the sink for which no source could be found.
305 __isl_give isl_set *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
311 return isl_set_copy(deps->must_no_source);
313 return isl_set_copy(deps->may_no_source);
316 void isl_flow_free(__isl_take isl_flow *deps)
322 isl_set_free(deps->must_no_source);
323 isl_set_free(deps->may_no_source);
325 for (i = 0; i < deps->n_source; ++i)
326 isl_map_free(deps->dep[i].map);
332 /* Return a map that enforces that the domain iteration occurs after
333 * the range iteration at the given level.
334 * If level is odd, then the domain iteration should occur after
335 * the target iteration in their shared level/2 outermost loops.
336 * In this case we simply need to enforce that these outermost
337 * loop iterations are the same.
338 * If level is even, then the loop iterator of the domain should
339 * be greater than the loop iterator of the range at the last
340 * of the level/2 shared loops, i.e., loop level/2 - 1.
342 static __isl_give isl_map *after_at_level(struct isl_dim *dim, int level)
344 struct isl_basic_map *bmap;
347 bmap = isl_basic_map_equal(dim, level/2);
349 bmap = isl_basic_map_more_at(dim, level/2 - 1);
351 return isl_map_from_basic_map(bmap);
354 /* Compute the last iteration of must source j that precedes the sink
355 * at the given level for sink iterations in set_C.
356 * The subset of set_C for which no such iteration can be found is returned
359 static struct isl_map *last_source(struct isl_access_info *acc,
360 struct isl_set *set_C,
361 int j, int level, struct isl_set **empty)
363 struct isl_map *read_map;
364 struct isl_map *write_map;
365 struct isl_map *dep_map;
366 struct isl_map *after;
367 struct isl_map *result;
369 read_map = isl_map_copy(acc->sink.map);
370 write_map = isl_map_copy(acc->source[j].map);
371 write_map = isl_map_reverse(write_map);
372 dep_map = isl_map_apply_range(read_map, write_map);
373 after = after_at_level(isl_map_get_dim(dep_map), level);
374 dep_map = isl_map_intersect(dep_map, after);
375 result = isl_map_partial_lexmax(dep_map, set_C, empty);
376 result = isl_map_reverse(result);
381 /* For a given mapping between iterations of must source j and iterations
382 * of the sink, compute the last iteration of must source k preceding
383 * the sink at level before_level for any of the sink iterations,
384 * but following the corresponding iteration of must source j at level
387 static struct isl_map *last_later_source(struct isl_access_info *acc,
388 struct isl_map *old_map,
389 int j, int before_level,
390 int k, int after_level,
391 struct isl_set **empty)
394 struct isl_set *set_C;
395 struct isl_map *read_map;
396 struct isl_map *write_map;
397 struct isl_map *dep_map;
398 struct isl_map *after_write;
399 struct isl_map *before_read;
400 struct isl_map *result;
402 set_C = isl_map_range(isl_map_copy(old_map));
403 read_map = isl_map_copy(acc->sink.map);
404 write_map = isl_map_copy(acc->source[k].map);
406 write_map = isl_map_reverse(write_map);
407 dep_map = isl_map_apply_range(read_map, write_map);
408 dim = isl_dim_join(isl_map_get_dim(acc->source[k].map),
409 isl_dim_reverse(isl_map_get_dim(acc->source[j].map)));
410 after_write = after_at_level(dim, after_level);
411 after_write = isl_map_apply_range(after_write, old_map);
412 after_write = isl_map_reverse(after_write);
413 dep_map = isl_map_intersect(dep_map, after_write);
414 before_read = after_at_level(isl_map_get_dim(dep_map), before_level);
415 dep_map = isl_map_intersect(dep_map, before_read);
416 result = isl_map_partial_lexmax(dep_map, set_C, empty);
417 result = isl_map_reverse(result);
422 /* Given a shared_level between two accesses, return 1 if the
423 * the first can precede the second at the requested target_level.
424 * If the target level is odd, i.e., refers to a statement level
425 * dimension, then first needs to precede second at the requested
426 * level, i.e., shared_level must be equal to target_level.
427 * If the target level is odd, then the two loops should share
428 * at least the requested number of outer loops.
430 static int can_precede_at_level(int shared_level, int target_level)
432 if (shared_level < target_level)
434 if ((target_level % 2) && shared_level > target_level)
439 /* Given a possible flow dependence temp_rel[j] between source j and the sink
440 * at level sink_level, remove those elements for which
441 * there is an iteration of another source k < j that is closer to the sink.
442 * The flow dependences temp_rel[k] are updated with the improved sources.
443 * Any improved source needs to precede the sink at the same level
444 * and needs to follow source j at the same or a deeper level.
445 * The lower this level, the later the execution date of source k.
446 * We therefore consider lower levels first.
448 * If temp_rel[j] is empty, then there can be no improvement and
449 * we return immediately.
451 static int intermediate_sources(__isl_keep isl_access_info *acc,
452 struct isl_map **temp_rel, int j, int sink_level)
455 int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1;
457 if (isl_map_fast_is_empty(temp_rel[j]))
460 for (k = j - 1; k >= 0; --k) {
462 plevel = acc->level_before(acc->source[k].data, acc->sink.data);
463 if (!can_precede_at_level(plevel, sink_level))
466 plevel2 = acc->level_before(acc->source[j].data,
467 acc->source[k].data);
469 for (level = sink_level; level <= depth; ++level) {
471 struct isl_set *trest;
472 struct isl_map *copy;
474 if (!can_precede_at_level(plevel2, level))
477 copy = isl_map_copy(temp_rel[j]);
478 T = last_later_source(acc, copy, j, sink_level, k,
480 if (isl_map_fast_is_empty(T)) {
485 temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
486 temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
493 /* Compute all iterations of may source j that precedes the sink at the given
494 * level for sink iterations in set_C.
496 static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
497 __isl_take isl_set *set_C, int j, int level)
504 read_map = isl_map_copy(acc->sink.map);
505 read_map = isl_map_intersect_domain(read_map, set_C);
506 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
507 write_map = isl_map_reverse(write_map);
508 dep_map = isl_map_apply_range(read_map, write_map);
509 after = after_at_level(isl_map_get_dim(dep_map), level);
510 dep_map = isl_map_intersect(dep_map, after);
512 return isl_map_reverse(dep_map);
515 /* For a given mapping between iterations of must source k and iterations
516 * of the sink, compute the all iteration of may source j preceding
517 * the sink at level before_level for any of the sink iterations,
518 * but following the corresponding iteration of must source k at level
521 static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
522 __isl_keep isl_map *old_map,
523 int j, int before_level, int k, int after_level)
530 isl_map *after_write;
531 isl_map *before_read;
533 set_C = isl_map_range(isl_map_copy(old_map));
534 read_map = isl_map_copy(acc->sink.map);
535 read_map = isl_map_intersect_domain(read_map, set_C);
536 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
538 write_map = isl_map_reverse(write_map);
539 dep_map = isl_map_apply_range(read_map, write_map);
540 dim = isl_dim_join(isl_map_get_dim(acc->source[acc->n_must + j].map),
541 isl_dim_reverse(isl_map_get_dim(acc->source[k].map)));
542 after_write = after_at_level(dim, after_level);
543 after_write = isl_map_apply_range(after_write, old_map);
544 after_write = isl_map_reverse(after_write);
545 dep_map = isl_map_intersect(dep_map, after_write);
546 before_read = after_at_level(isl_map_get_dim(dep_map), before_level);
547 dep_map = isl_map_intersect(dep_map, before_read);
548 return isl_map_reverse(dep_map);
551 /* Given the must and may dependence relations for the must accesses
552 * for level sink_level, check if there are any accesses of may access j
553 * that occur in between and return their union.
554 * If some of these accesses are intermediate with respect to
555 * (previously thought to be) must dependences, then these
556 * must dependences are turned into may dependences.
558 static __isl_give isl_map *all_intermediate_sources(
559 __isl_keep isl_access_info *acc, __isl_take isl_map *map,
560 struct isl_map **must_rel, struct isl_map **may_rel,
561 int j, int sink_level)
564 int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map,
567 for (k = 0; k < acc->n_must; ++k) {
570 if (isl_map_fast_is_empty(may_rel[k]) &&
571 isl_map_fast_is_empty(must_rel[k]))
574 plevel = acc->level_before(acc->source[k].data,
575 acc->source[acc->n_must + j].data);
577 for (level = sink_level; level <= depth; ++level) {
582 if (!can_precede_at_level(plevel, level))
585 copy = isl_map_copy(may_rel[k]);
586 T = all_later_sources(acc, copy, j, sink_level, k, level);
587 map = isl_map_union(map, T);
589 copy = isl_map_copy(must_rel[k]);
590 T = all_later_sources(acc, copy, j, sink_level, k, level);
591 ran = isl_map_range(isl_map_copy(T));
592 map = isl_map_union(map, T);
593 may_rel[k] = isl_map_union_disjoint(may_rel[k],
594 isl_map_intersect_range(isl_map_copy(must_rel[k]),
596 T = isl_map_from_domain_and_range(
598 isl_dim_domain(isl_map_get_dim(must_rel[k]))),
600 must_rel[k] = isl_map_subtract(must_rel[k], T);
607 /* Compute dependences for the case where all accesses are "may"
608 * accesses, which boils down to computing memory based dependences.
609 * The generic algorithm would also work in this case, but it would
610 * be overkill to use it.
612 static __isl_give isl_flow *compute_mem_based_dependences(
613 __isl_take isl_access_info *acc)
620 res = isl_flow_alloc(acc);
624 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
625 maydo = isl_set_copy(mustdo);
627 for (i = 0; i < acc->n_may; ++i) {
634 plevel = acc->level_before(acc->source[i].data, acc->sink.data);
635 is_before = plevel & 1;
638 dim = isl_map_get_dim(res->dep[i].map);
640 before = isl_map_lex_le_first(dim, plevel);
642 before = isl_map_lex_lt_first(dim, plevel);
643 dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
644 isl_map_reverse(isl_map_copy(acc->sink.map)));
645 dep = isl_map_intersect(dep, before);
646 mustdo = isl_set_subtract(mustdo,
647 isl_map_range(isl_map_copy(dep)));
648 res->dep[i].map = isl_map_union(res->dep[i].map, dep);
651 res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
652 res->must_no_source = mustdo;
654 isl_access_info_free(acc);
658 isl_access_info_free(acc);
662 /* Compute dependences for the case where there is at least one
665 * The core algorithm considers all levels in which a source may precede
666 * the sink, where a level may either be a statement level or a loop level.
667 * The outermost statement level is 1, the first loop level is 2, etc...
668 * The algorithm basically does the following:
669 * for all levels l of the read access from innermost to outermost
670 * for all sources w that may precede the sink access at that level
671 * compute the last iteration of the source that precedes the sink access
673 * add result to possible last accesses at level l of source w
674 * for all sources w2 that we haven't considered yet at this level that may
675 * also precede the sink access
676 * for all levels l2 of w from l to innermost
677 * for all possible last accesses dep of w at l
678 * compute last iteration of w2 between the source and sink
680 * add result to possible last accesses at level l of write w2
681 * and replace possible last accesses dep by the remainder
684 * The above algorithm is applied to the must access. During the course
685 * of the algorithm, we keep track of sink iterations that still
686 * need to be considered. These iterations are split into those that
687 * haven't been matched to any source access (mustdo) and those that have only
688 * been matched to may accesses (maydo).
689 * At the end of each level, we also consider the may accesses.
690 * In particular, we consider may accesses that precede the remaining
691 * sink iterations, moving elements from mustdo to maydo when appropriate,
692 * and may accesses that occur between a must source and a sink of any
693 * dependences found at the current level, turning must dependences into
694 * may dependences when appropriate.
697 static __isl_give isl_flow *compute_val_based_dependences(
698 __isl_take isl_access_info *acc)
702 isl_set *mustdo = NULL;
703 isl_set *maydo = NULL;
706 isl_map **must_rel = NULL;
707 isl_map **may_rel = NULL;
709 acc = isl_access_info_sort_sources(acc);
713 res = isl_flow_alloc(acc);
716 ctx = acc->sink.map->ctx;
718 depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1;
719 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
720 maydo = isl_set_empty_like(mustdo);
721 if (!mustdo || !maydo)
723 if (isl_set_fast_is_empty(mustdo))
726 must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
727 may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
728 if (!must_rel || !may_rel)
731 for (level = depth; level >= 1; --level) {
732 for (j = acc->n_must-1; j >=0; --j) {
733 must_rel[j] = isl_map_empty_like(res->dep[j].map);
734 may_rel[j] = isl_map_copy(must_rel[j]);
737 for (j = acc->n_must - 1; j >= 0; --j) {
739 struct isl_set *rest;
742 plevel = acc->level_before(acc->source[j].data,
744 if (!can_precede_at_level(plevel, level))
747 T = last_source(acc, mustdo, j, level, &rest);
748 must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
751 intermediate_sources(acc, must_rel, j, level);
753 T = last_source(acc, maydo, j, level, &rest);
754 may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
757 intermediate_sources(acc, may_rel, j, level);
759 if (isl_set_fast_is_empty(mustdo) &&
760 isl_set_fast_is_empty(maydo))
763 for (j = j - 1; j >= 0; --j) {
766 plevel = acc->level_before(acc->source[j].data,
768 if (!can_precede_at_level(plevel, level))
771 intermediate_sources(acc, must_rel, j, level);
772 intermediate_sources(acc, may_rel, j, level);
775 for (j = 0; j < acc->n_may; ++j) {
780 plevel = acc->level_before(acc->source[acc->n_must + j].data,
782 if (!can_precede_at_level(plevel, level))
785 T = all_sources(acc, isl_set_copy(maydo), j, level);
786 res->dep[2 * acc->n_must + j].map =
787 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
788 T = all_sources(acc, isl_set_copy(mustdo), j, level);
789 ran = isl_map_range(isl_map_copy(T));
790 res->dep[2 * acc->n_must + j].map =
791 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
792 mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
793 maydo = isl_set_union_disjoint(maydo, ran);
795 T = res->dep[2 * acc->n_must + j].map;
796 T = all_intermediate_sources(acc, T, must_rel, may_rel,
798 res->dep[2 * acc->n_must + j].map = T;
801 for (j = acc->n_must - 1; j >= 0; --j) {
802 res->dep[2 * j].map =
803 isl_map_union_disjoint(res->dep[2 * j].map,
805 res->dep[2 * j + 1].map =
806 isl_map_union_disjoint(res->dep[2 * j + 1].map,
810 if (isl_set_fast_is_empty(mustdo) &&
811 isl_set_fast_is_empty(maydo))
818 res->must_no_source = mustdo;
819 res->may_no_source = maydo;
820 isl_access_info_free(acc);
823 isl_access_info_free(acc);
825 isl_set_free(mustdo);
832 /* Given a "sink" access, a list of n "source" accesses,
833 * compute for each iteration of the sink access
834 * and for each element accessed by that iteration,
835 * the source access in the list that last accessed the
836 * element accessed by the sink access before this sink access.
837 * Each access is given as a map from the loop iterators
838 * to the array indices.
839 * The result is a list of n relations between source and sink
840 * iterations and a subset of the domain of the sink access,
841 * corresponding to those iterations that access an element
842 * not previously accessed.
844 * To deal with multi-valued sink access relations, the sink iteration
845 * domain is first extended with dimensions that correspond to the data
846 * space. After the computation is finished, these extra dimensions are
847 * projected out again.
849 __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
852 struct isl_flow *res;
853 isl_map *domain_map = NULL;
858 domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
859 acc->sink.map = isl_map_range_map(acc->sink.map);
863 if (acc->n_must == 0)
864 res = compute_mem_based_dependences(acc);
866 res = compute_val_based_dependences(acc);
870 for (j = 0; j < res->n_source; ++j) {
871 res->dep[j].map = isl_map_apply_range(res->dep[j].map,
872 isl_map_copy(domain_map));
873 if (!res->dep[j].map)
876 res->must_no_source = isl_set_apply(res->must_no_source,
877 isl_map_copy(domain_map));
878 res->may_no_source = isl_set_apply(res->may_no_source,
879 isl_map_copy(domain_map));
880 if (!res->must_no_source || !res->may_no_source)
883 isl_map_free(domain_map);
886 isl_map_free(domain_map);
887 isl_access_info_free(acc);
890 isl_map_free(domain_map);
896 struct isl_compute_flow_data {
897 isl_union_map *must_source;
898 isl_union_map *may_source;
899 isl_union_map *must_dep;
900 isl_union_map *may_dep;
901 isl_union_set *must_no_source;
902 isl_union_set *may_no_source;
908 isl_dim **source_dim;
909 isl_access_info *accesses;
912 static int count_matching_array(__isl_take isl_map *map, void *user)
916 struct isl_compute_flow_data *data;
918 data = (struct isl_compute_flow_data *)user;
920 dim = isl_dim_range(isl_map_get_dim(map));
922 eq = isl_dim_equal(dim, data->dim);
935 static int collect_matching_array(__isl_take isl_map *map, void *user)
939 struct isl_compute_flow_data *data;
941 data = (struct isl_compute_flow_data *)user;
943 dim = isl_dim_range(isl_map_get_dim(map));
945 eq = isl_dim_equal(dim, data->dim);
956 dim = isl_dim_unwrap(isl_dim_domain(isl_map_get_dim(map)));
957 data->source_dim[data->count] = dim;
959 data->accesses = isl_access_info_add_source(data->accesses,
960 map, data->must, dim);
970 static int before(void *first, void *second)
972 isl_dim *dim1 = first;
973 isl_dim *dim2 = second;
976 n1 = isl_dim_size(dim1, isl_dim_in);
977 n2 = isl_dim_size(dim2, isl_dim_in);
982 return 2 * n1 + (dim1 < dim2);
985 /* Given a sink access, look for all the source accesses that access
986 * the same array and perform dataflow analysis on them using
987 * isl_access_info_compute_flow.
989 static int compute_flow(__isl_take isl_map *map, void *user)
993 struct isl_compute_flow_data *data;
996 data = (struct isl_compute_flow_data *)user;
998 ctx = isl_map_get_ctx(map);
1000 data->accesses = NULL;
1001 data->sink_dim = NULL;
1002 data->source_dim = NULL;
1004 data->dim = isl_dim_range(isl_map_get_dim(map));
1006 if (isl_union_map_foreach_map(data->must_source,
1007 &count_matching_array, data) < 0)
1009 if (isl_union_map_foreach_map(data->may_source,
1010 &count_matching_array, data) < 0)
1013 data->sink_dim = isl_dim_unwrap(isl_dim_domain(isl_map_get_dim(map)));
1014 data->source_dim = isl_calloc_array(ctx, isl_dim *, data->count);
1016 data->accesses = isl_access_info_alloc(isl_map_copy(map),
1017 data->sink_dim, &before, data->count);
1020 if (isl_union_map_foreach_map(data->must_source,
1021 &collect_matching_array, data) < 0)
1024 if (isl_union_map_foreach_map(data->may_source,
1025 &collect_matching_array, data) < 0)
1028 flow = isl_access_info_compute_flow(data->accesses);
1029 data->accesses = NULL;
1034 data->must_no_source = isl_union_set_union(data->must_no_source,
1035 isl_union_set_from_set(isl_set_copy(flow->must_no_source)));
1036 data->may_no_source = isl_union_set_union(data->may_no_source,
1037 isl_union_set_from_set(isl_set_copy(flow->may_no_source)));
1039 for (i = 0; i < flow->n_source; ++i) {
1041 dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
1042 if (flow->dep[i].must)
1043 data->must_dep = isl_union_map_union(data->must_dep, dep);
1045 data->may_dep = isl_union_map_union(data->may_dep, dep);
1048 isl_flow_free(flow);
1050 isl_dim_free(data->sink_dim);
1051 if (data->source_dim) {
1052 for (i = 0; i < data->count; ++i)
1053 isl_dim_free(data->source_dim[i]);
1054 free(data->source_dim);
1056 isl_dim_free(data->dim);
1061 isl_access_info_free(data->accesses);
1062 isl_dim_free(data->sink_dim);
1063 if (data->source_dim) {
1064 for (i = 0; i < data->count; ++i)
1065 isl_dim_free(data->source_dim[i]);
1066 free(data->source_dim);
1068 isl_dim_free(data->dim);
1074 /* Given a collection of "sink" and "source" accesses,
1075 * compute for each iteration of a sink access
1076 * and for each element accessed by that iteration,
1077 * the source access in the list that last accessed the
1078 * element accessed by the sink access before this sink access.
1079 * Each access is given as a map from the loop iterators
1080 * to the array indices.
1081 * The result is a relations between source and sink
1082 * iterations and a subset of the domain of the sink accesses,
1083 * corresponding to those iterations that access an element
1084 * not previously accessed.
1086 * We first prepend the schedule dimensions to the domain
1087 * of the accesses so that we can easily compare their relative order.
1088 * Then we consider each sink access individually in compute_flow.
1090 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
1091 __isl_take isl_union_map *must_source,
1092 __isl_take isl_union_map *may_source,
1093 __isl_take isl_union_map *schedule,
1094 __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
1095 __isl_give isl_union_set **must_no_source,
1096 __isl_give isl_union_set **may_no_source)
1099 isl_union_map *range_map = NULL;
1100 struct isl_compute_flow_data data;
1102 sink = isl_union_map_align_params(sink,
1103 isl_union_map_get_dim(must_source));
1104 sink = isl_union_map_align_params(sink,
1105 isl_union_map_get_dim(may_source));
1106 sink = isl_union_map_align_params(sink,
1107 isl_union_map_get_dim(schedule));
1108 dim = isl_union_map_get_dim(sink);
1109 must_source = isl_union_map_align_params(must_source, isl_dim_copy(dim));
1110 may_source = isl_union_map_align_params(may_source, isl_dim_copy(dim));
1111 schedule = isl_union_map_align_params(schedule, isl_dim_copy(dim));
1113 schedule = isl_union_map_reverse(schedule);
1114 range_map = isl_union_map_range_map(schedule);
1115 schedule = isl_union_map_reverse(isl_union_map_copy(range_map));
1116 sink = isl_union_map_apply_domain(sink, isl_union_map_copy(schedule));
1117 must_source = isl_union_map_apply_domain(must_source,
1118 isl_union_map_copy(schedule));
1119 may_source = isl_union_map_apply_domain(may_source, schedule);
1121 data.must_source = must_source;
1122 data.may_source = may_source;
1123 data.must_dep = must_dep ?
1124 isl_union_map_empty(isl_dim_copy(dim)) : NULL;
1125 data.may_dep = may_dep ? isl_union_map_empty(isl_dim_copy(dim)) : NULL;
1126 data.must_no_source = must_no_source ?
1127 isl_union_set_empty(isl_dim_copy(dim)) : NULL;
1128 data.may_no_source = may_no_source ?
1129 isl_union_set_empty(isl_dim_copy(dim)) : NULL;
1133 if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
1136 isl_union_map_free(sink);
1137 isl_union_map_free(must_source);
1138 isl_union_map_free(may_source);
1141 data.must_dep = isl_union_map_apply_domain(data.must_dep,
1142 isl_union_map_copy(range_map));
1143 data.must_dep = isl_union_map_apply_range(data.must_dep,
1144 isl_union_map_copy(range_map));
1145 *must_dep = data.must_dep;
1148 data.may_dep = isl_union_map_apply_domain(data.may_dep,
1149 isl_union_map_copy(range_map));
1150 data.may_dep = isl_union_map_apply_range(data.may_dep,
1151 isl_union_map_copy(range_map));
1152 *may_dep = data.may_dep;
1154 if (must_no_source) {
1155 data.must_no_source = isl_union_set_apply(data.must_no_source,
1156 isl_union_map_copy(range_map));
1157 *must_no_source = data.must_no_source;
1159 if (may_no_source) {
1160 data.may_no_source = isl_union_set_apply(data.may_no_source,
1161 isl_union_map_copy(range_map));
1162 *may_no_source = data.may_no_source;
1165 isl_union_map_free(range_map);
1169 isl_union_map_free(range_map);
1170 isl_union_map_free(sink);
1171 isl_union_map_free(must_source);
1172 isl_union_map_free(may_source);
1173 isl_union_map_free(data.must_dep);
1174 isl_union_map_free(data.may_dep);
1175 isl_union_set_free(data.must_no_source);
1176 isl_union_set_free(data.may_no_source);
1183 *must_no_source = NULL;
1185 *may_no_source = NULL;