2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
5 * Copyright 2012 Universiteit Leiden
7 * Use of this software is governed by the GNU LGPLv2.1 license
9 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
10 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
11 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
12 * B-3001 Leuven, Belgium
13 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
14 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
22 enum isl_restriction_type {
23 isl_restriction_type_empty,
24 isl_restriction_type_none,
25 isl_restriction_type_input,
26 isl_restriction_type_output
29 struct isl_restriction {
30 enum isl_restriction_type type;
36 /* Create a restriction of the given type.
38 static __isl_give isl_restriction *isl_restriction_alloc(
39 __isl_take isl_map *source_map, enum isl_restriction_type type)
42 isl_restriction *restr;
47 ctx = isl_map_get_ctx(source_map);
48 restr = isl_calloc_type(ctx, struct isl_restriction);
54 isl_map_free(source_map);
57 isl_map_free(source_map);
61 /* Create a restriction that doesn't restrict anything.
63 __isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map)
65 return isl_restriction_alloc(source_map, isl_restriction_type_none);
68 /* Create a restriction that removes everything.
70 __isl_give isl_restriction *isl_restriction_empty(
71 __isl_take isl_map *source_map)
73 return isl_restriction_alloc(source_map, isl_restriction_type_empty);
76 /* Create a restriction on the input of the maximization problem
77 * based on the given source and sink restrictions.
79 __isl_give isl_restriction *isl_restriction_input(
80 __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr)
83 isl_restriction *restr;
85 if (!source_restr || !sink_restr)
88 ctx = isl_set_get_ctx(source_restr);
89 restr = isl_calloc_type(ctx, struct isl_restriction);
93 restr->type = isl_restriction_type_input;
94 restr->source = source_restr;
95 restr->sink = sink_restr;
99 isl_set_free(source_restr);
100 isl_set_free(sink_restr);
104 /* Create a restriction on the output of the maximization problem
105 * based on the given source restriction.
107 __isl_give isl_restriction *isl_restriction_output(
108 __isl_take isl_set *source_restr)
111 isl_restriction *restr;
116 ctx = isl_set_get_ctx(source_restr);
117 restr = isl_calloc_type(ctx, struct isl_restriction);
121 restr->type = isl_restriction_type_output;
122 restr->source = source_restr;
126 isl_set_free(source_restr);
130 void *isl_restriction_free(__isl_take isl_restriction *restr)
135 isl_set_free(restr->source);
136 isl_set_free(restr->sink);
141 isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr)
143 return restr ? isl_set_get_ctx(restr->source) : NULL;
146 /* A private structure to keep track of a mapping together with
147 * a user-specified identifier and a boolean indicating whether
148 * the map represents a must or may access/dependence.
150 struct isl_labeled_map {
156 /* A structure containing the input for dependence analysis:
158 * - n_must + n_may (<= max_source) sources
159 * - a function for determining the relative order of sources and sink
160 * The must sources are placed before the may sources.
162 * domain_map is an auxiliary map that maps the sink access relation
163 * to the domain of this access relation.
165 * restrict_fn is a callback that (if not NULL) will be called
166 * right before any lexicographical maximization.
168 struct isl_access_info {
170 struct isl_labeled_map sink;
171 isl_access_level_before level_before;
173 isl_access_restrict restrict_fn;
179 struct isl_labeled_map source[1];
182 /* A structure containing the output of dependence analysis:
183 * - n_source dependences
184 * - a wrapped subset of the sink for which definitely no source could be found
185 * - a wrapped subset of the sink for which possibly no source could be found
188 isl_set *must_no_source;
189 isl_set *may_no_source;
191 struct isl_labeled_map *dep;
194 /* Construct an isl_access_info structure and fill it up with
195 * the given data. The number of sources is set to 0.
197 __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
198 void *sink_user, isl_access_level_before fn, int max_source)
201 struct isl_access_info *acc;
206 ctx = isl_map_get_ctx(sink);
207 isl_assert(ctx, max_source >= 0, goto error);
209 acc = isl_calloc(ctx, struct isl_access_info,
210 sizeof(struct isl_access_info) +
211 (max_source - 1) * sizeof(struct isl_labeled_map));
215 acc->sink.map = sink;
216 acc->sink.data = sink_user;
217 acc->level_before = fn;
218 acc->max_source = max_source;
228 /* Free the given isl_access_info structure.
230 void *isl_access_info_free(__isl_take isl_access_info *acc)
236 isl_map_free(acc->domain_map);
237 isl_map_free(acc->sink.map);
238 for (i = 0; i < acc->n_must + acc->n_may; ++i)
239 isl_map_free(acc->source[i].map);
244 isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc)
246 return acc ? isl_map_get_ctx(acc->sink.map) : NULL;
249 __isl_give isl_access_info *isl_access_info_set_restrict(
250 __isl_take isl_access_info *acc, isl_access_restrict fn, void *user)
254 acc->restrict_fn = fn;
255 acc->restrict_user = user;
259 /* Add another source to an isl_access_info structure, making
260 * sure the "must" sources are placed before the "may" sources.
261 * This function may be called at most max_source times on a
262 * given isl_access_info structure, with max_source as specified
263 * in the call to isl_access_info_alloc that constructed the structure.
265 __isl_give isl_access_info *isl_access_info_add_source(
266 __isl_take isl_access_info *acc, __isl_take isl_map *source,
267 int must, void *source_user)
273 ctx = isl_map_get_ctx(acc->sink.map);
274 isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
278 acc->source[acc->n_must + acc->n_may] =
279 acc->source[acc->n_must];
280 acc->source[acc->n_must].map = source;
281 acc->source[acc->n_must].data = source_user;
282 acc->source[acc->n_must].must = 1;
285 acc->source[acc->n_must + acc->n_may].map = source;
286 acc->source[acc->n_must + acc->n_may].data = source_user;
287 acc->source[acc->n_must + acc->n_may].must = 0;
293 isl_map_free(source);
294 isl_access_info_free(acc);
298 /* Return -n, 0 or n (with n a positive value), depending on whether
299 * the source access identified by p1 should be sorted before, together
300 * or after that identified by p2.
302 * If p1 appears before p2, then it should be sorted first.
303 * For more generic initial schedules, it is possible that neither
304 * p1 nor p2 appears before the other, or at least not in any obvious way.
305 * We therefore also check if p2 appears before p1, in which case p2
306 * should be sorted first.
307 * If not, we try to order the two statements based on the description
308 * of the iteration domains. This results in an arbitrary, but fairly
311 static int access_sort_cmp(const void *p1, const void *p2, void *user)
313 isl_access_info *acc = user;
314 const struct isl_labeled_map *i1, *i2;
317 i1 = (const struct isl_labeled_map *) p1;
318 i2 = (const struct isl_labeled_map *) p2;
320 level1 = acc->level_before(i1->data, i2->data);
324 level2 = acc->level_before(i2->data, i1->data);
328 h1 = isl_map_get_hash(i1->map);
329 h2 = isl_map_get_hash(i2->map);
330 return h1 > h2 ? 1 : h1 < h2 ? -1 : 0;
333 /* Sort the must source accesses in their textual order.
335 static __isl_give isl_access_info *isl_access_info_sort_sources(
336 __isl_take isl_access_info *acc)
340 if (acc->n_must <= 1)
343 if (isl_sort(acc->source, acc->n_must, sizeof(struct isl_labeled_map),
344 access_sort_cmp, acc) < 0)
345 return isl_access_info_free(acc);
350 /* Align the parameters of the two spaces if needed and then call
353 static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left,
354 __isl_take isl_space *right)
356 if (isl_space_match(left, isl_dim_param, right, isl_dim_param))
357 return isl_space_join(left, right);
359 left = isl_space_align_params(left, isl_space_copy(right));
360 right = isl_space_align_params(right, isl_space_copy(left));
361 return isl_space_join(left, right);
364 /* Initialize an empty isl_flow structure corresponding to a given
365 * isl_access_info structure.
366 * For each must access, two dependences are created (initialized
367 * to the empty relation), one for the resulting must dependences
368 * and one for the resulting may dependences. May accesses can
369 * only lead to may dependences, so only one dependence is created
371 * This function is private as isl_flow structures are only supposed
372 * to be created by isl_access_info_compute_flow.
374 static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
378 struct isl_flow *dep;
383 ctx = isl_map_get_ctx(acc->sink.map);
384 dep = isl_calloc_type(ctx, struct isl_flow);
388 dep->dep = isl_calloc_array(ctx, struct isl_labeled_map,
389 2 * acc->n_must + acc->n_may);
393 dep->n_source = 2 * acc->n_must + acc->n_may;
394 for (i = 0; i < acc->n_must; ++i) {
396 dim = space_align_and_join(
397 isl_map_get_space(acc->source[i].map),
398 isl_space_reverse(isl_map_get_space(acc->sink.map)));
399 dep->dep[2 * i].map = isl_map_empty(dim);
400 dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
401 dep->dep[2 * i].data = acc->source[i].data;
402 dep->dep[2 * i + 1].data = acc->source[i].data;
403 dep->dep[2 * i].must = 1;
404 dep->dep[2 * i + 1].must = 0;
405 if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
408 for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
410 dim = space_align_and_join(
411 isl_map_get_space(acc->source[i].map),
412 isl_space_reverse(isl_map_get_space(acc->sink.map)));
413 dep->dep[acc->n_must + i].map = isl_map_empty(dim);
414 dep->dep[acc->n_must + i].data = acc->source[i].data;
415 dep->dep[acc->n_must + i].must = 0;
416 if (!dep->dep[acc->n_must + i].map)
426 /* Iterate over all sources and for each resulting flow dependence
427 * that is not empty, call the user specfied function.
428 * The second argument in this function call identifies the source,
429 * while the third argument correspond to the final argument of
430 * the isl_flow_foreach call.
432 int isl_flow_foreach(__isl_keep isl_flow *deps,
433 int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user),
441 for (i = 0; i < deps->n_source; ++i) {
442 if (isl_map_plain_is_empty(deps->dep[i].map))
444 if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
445 deps->dep[i].data, user) < 0)
452 /* Return a copy of the subset of the sink for which no source could be found.
454 __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
460 return isl_set_unwrap(isl_set_copy(deps->must_no_source));
462 return isl_set_unwrap(isl_set_copy(deps->may_no_source));
465 void isl_flow_free(__isl_take isl_flow *deps)
471 isl_set_free(deps->must_no_source);
472 isl_set_free(deps->may_no_source);
474 for (i = 0; i < deps->n_source; ++i)
475 isl_map_free(deps->dep[i].map);
481 isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps)
483 return deps ? isl_set_get_ctx(deps->must_no_source) : NULL;
486 /* Return a map that enforces that the domain iteration occurs after
487 * the range iteration at the given level.
488 * If level is odd, then the domain iteration should occur after
489 * the target iteration in their shared level/2 outermost loops.
490 * In this case we simply need to enforce that these outermost
491 * loop iterations are the same.
492 * If level is even, then the loop iterator of the domain should
493 * be greater than the loop iterator of the range at the last
494 * of the level/2 shared loops, i.e., loop level/2 - 1.
496 static __isl_give isl_map *after_at_level(__isl_take isl_space *dim, int level)
498 struct isl_basic_map *bmap;
501 bmap = isl_basic_map_equal(dim, level/2);
503 bmap = isl_basic_map_more_at(dim, level/2 - 1);
505 return isl_map_from_basic_map(bmap);
508 /* Compute the partial lexicographic maximum of "dep" on domain "sink",
509 * but first check if the user has set acc->restrict_fn and if so
510 * update either the input or the output of the maximization problem
511 * with respect to the resulting restriction.
513 * Since the user expects a mapping from sink iterations to source iterations,
514 * whereas the domain of "dep" is a wrapped map, mapping sink iterations
515 * to accessed array elements, we first need to project out the accessed
516 * sink array elements by applying acc->domain_map.
517 * Similarly, the sink restriction specified by the user needs to be
518 * converted back to the wrapped map.
520 static __isl_give isl_map *restricted_partial_lexmax(
521 __isl_keep isl_access_info *acc, __isl_take isl_map *dep,
522 int source, __isl_take isl_set *sink, __isl_give isl_set **empty)
525 isl_restriction *restr;
526 isl_set *sink_domain;
530 if (!acc->restrict_fn)
531 return isl_map_partial_lexmax(dep, sink, empty);
533 source_map = isl_map_copy(dep);
534 source_map = isl_map_apply_domain(source_map,
535 isl_map_copy(acc->domain_map));
536 sink_domain = isl_set_copy(sink);
537 sink_domain = isl_set_apply(sink_domain, isl_map_copy(acc->domain_map));
538 restr = acc->restrict_fn(source_map, sink_domain,
539 acc->source[source].data, acc->restrict_user);
540 isl_set_free(sink_domain);
541 isl_map_free(source_map);
545 if (restr->type == isl_restriction_type_input) {
546 dep = isl_map_intersect_range(dep, isl_set_copy(restr->source));
547 sink_restr = isl_set_copy(restr->sink);
548 sink_restr = isl_set_apply(sink_restr,
549 isl_map_reverse(isl_map_copy(acc->domain_map)));
550 sink = isl_set_intersect(sink, sink_restr);
551 } else if (restr->type == isl_restriction_type_empty) {
552 isl_space *space = isl_map_get_space(dep);
554 dep = isl_map_empty(space);
557 res = isl_map_partial_lexmax(dep, sink, empty);
559 if (restr->type == isl_restriction_type_output)
560 res = isl_map_intersect_range(res, isl_set_copy(restr->source));
562 isl_restriction_free(restr);
571 /* Compute the last iteration of must source j that precedes the sink
572 * at the given level for sink iterations in set_C.
573 * The subset of set_C for which no such iteration can be found is returned
576 static struct isl_map *last_source(struct isl_access_info *acc,
577 struct isl_set *set_C,
578 int j, int level, struct isl_set **empty)
580 struct isl_map *read_map;
581 struct isl_map *write_map;
582 struct isl_map *dep_map;
583 struct isl_map *after;
584 struct isl_map *result;
586 read_map = isl_map_copy(acc->sink.map);
587 write_map = isl_map_copy(acc->source[j].map);
588 write_map = isl_map_reverse(write_map);
589 dep_map = isl_map_apply_range(read_map, write_map);
590 after = after_at_level(isl_map_get_space(dep_map), level);
591 dep_map = isl_map_intersect(dep_map, after);
592 result = restricted_partial_lexmax(acc, dep_map, j, set_C, empty);
593 result = isl_map_reverse(result);
598 /* For a given mapping between iterations of must source j and iterations
599 * of the sink, compute the last iteration of must source k preceding
600 * the sink at level before_level for any of the sink iterations,
601 * but following the corresponding iteration of must source j at level
604 static struct isl_map *last_later_source(struct isl_access_info *acc,
605 struct isl_map *old_map,
606 int j, int before_level,
607 int k, int after_level,
608 struct isl_set **empty)
611 struct isl_set *set_C;
612 struct isl_map *read_map;
613 struct isl_map *write_map;
614 struct isl_map *dep_map;
615 struct isl_map *after_write;
616 struct isl_map *before_read;
617 struct isl_map *result;
619 set_C = isl_map_range(isl_map_copy(old_map));
620 read_map = isl_map_copy(acc->sink.map);
621 write_map = isl_map_copy(acc->source[k].map);
623 write_map = isl_map_reverse(write_map);
624 dep_map = isl_map_apply_range(read_map, write_map);
625 dim = space_align_and_join(isl_map_get_space(acc->source[k].map),
626 isl_space_reverse(isl_map_get_space(acc->source[j].map)));
627 after_write = after_at_level(dim, after_level);
628 after_write = isl_map_apply_range(after_write, old_map);
629 after_write = isl_map_reverse(after_write);
630 dep_map = isl_map_intersect(dep_map, after_write);
631 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
632 dep_map = isl_map_intersect(dep_map, before_read);
633 result = restricted_partial_lexmax(acc, dep_map, k, set_C, empty);
634 result = isl_map_reverse(result);
639 /* Given a shared_level between two accesses, return 1 if the
640 * the first can precede the second at the requested target_level.
641 * If the target level is odd, i.e., refers to a statement level
642 * dimension, then first needs to precede second at the requested
643 * level, i.e., shared_level must be equal to target_level.
644 * If the target level is odd, then the two loops should share
645 * at least the requested number of outer loops.
647 static int can_precede_at_level(int shared_level, int target_level)
649 if (shared_level < target_level)
651 if ((target_level % 2) && shared_level > target_level)
656 /* Given a possible flow dependence temp_rel[j] between source j and the sink
657 * at level sink_level, remove those elements for which
658 * there is an iteration of another source k < j that is closer to the sink.
659 * The flow dependences temp_rel[k] are updated with the improved sources.
660 * Any improved source needs to precede the sink at the same level
661 * and needs to follow source j at the same or a deeper level.
662 * The lower this level, the later the execution date of source k.
663 * We therefore consider lower levels first.
665 * If temp_rel[j] is empty, then there can be no improvement and
666 * we return immediately.
668 static int intermediate_sources(__isl_keep isl_access_info *acc,
669 struct isl_map **temp_rel, int j, int sink_level)
672 int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1;
674 if (isl_map_plain_is_empty(temp_rel[j]))
677 for (k = j - 1; k >= 0; --k) {
679 plevel = acc->level_before(acc->source[k].data, acc->sink.data);
680 if (!can_precede_at_level(plevel, sink_level))
683 plevel2 = acc->level_before(acc->source[j].data,
684 acc->source[k].data);
686 for (level = sink_level; level <= depth; ++level) {
688 struct isl_set *trest;
689 struct isl_map *copy;
691 if (!can_precede_at_level(plevel2, level))
694 copy = isl_map_copy(temp_rel[j]);
695 T = last_later_source(acc, copy, j, sink_level, k,
697 if (isl_map_plain_is_empty(T)) {
702 temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
703 temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
710 /* Compute all iterations of may source j that precedes the sink at the given
711 * level for sink iterations in set_C.
713 static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
714 __isl_take isl_set *set_C, int j, int level)
721 read_map = isl_map_copy(acc->sink.map);
722 read_map = isl_map_intersect_domain(read_map, set_C);
723 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
724 write_map = isl_map_reverse(write_map);
725 dep_map = isl_map_apply_range(read_map, write_map);
726 after = after_at_level(isl_map_get_space(dep_map), level);
727 dep_map = isl_map_intersect(dep_map, after);
729 return isl_map_reverse(dep_map);
732 /* For a given mapping between iterations of must source k and iterations
733 * of the sink, compute the all iteration of may source j preceding
734 * the sink at level before_level for any of the sink iterations,
735 * but following the corresponding iteration of must source k at level
738 static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
739 __isl_keep isl_map *old_map,
740 int j, int before_level, int k, int after_level)
747 isl_map *after_write;
748 isl_map *before_read;
750 set_C = isl_map_range(isl_map_copy(old_map));
751 read_map = isl_map_copy(acc->sink.map);
752 read_map = isl_map_intersect_domain(read_map, set_C);
753 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
755 write_map = isl_map_reverse(write_map);
756 dep_map = isl_map_apply_range(read_map, write_map);
757 dim = isl_space_join(isl_map_get_space(acc->source[acc->n_must + j].map),
758 isl_space_reverse(isl_map_get_space(acc->source[k].map)));
759 after_write = after_at_level(dim, after_level);
760 after_write = isl_map_apply_range(after_write, old_map);
761 after_write = isl_map_reverse(after_write);
762 dep_map = isl_map_intersect(dep_map, after_write);
763 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
764 dep_map = isl_map_intersect(dep_map, before_read);
765 return isl_map_reverse(dep_map);
768 /* Given the must and may dependence relations for the must accesses
769 * for level sink_level, check if there are any accesses of may access j
770 * that occur in between and return their union.
771 * If some of these accesses are intermediate with respect to
772 * (previously thought to be) must dependences, then these
773 * must dependences are turned into may dependences.
775 static __isl_give isl_map *all_intermediate_sources(
776 __isl_keep isl_access_info *acc, __isl_take isl_map *map,
777 struct isl_map **must_rel, struct isl_map **may_rel,
778 int j, int sink_level)
781 int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map,
784 for (k = 0; k < acc->n_must; ++k) {
787 if (isl_map_plain_is_empty(may_rel[k]) &&
788 isl_map_plain_is_empty(must_rel[k]))
791 plevel = acc->level_before(acc->source[k].data,
792 acc->source[acc->n_must + j].data);
794 for (level = sink_level; level <= depth; ++level) {
799 if (!can_precede_at_level(plevel, level))
802 copy = isl_map_copy(may_rel[k]);
803 T = all_later_sources(acc, copy, j, sink_level, k, level);
804 map = isl_map_union(map, T);
806 copy = isl_map_copy(must_rel[k]);
807 T = all_later_sources(acc, copy, j, sink_level, k, level);
808 ran = isl_map_range(isl_map_copy(T));
809 map = isl_map_union(map, T);
810 may_rel[k] = isl_map_union_disjoint(may_rel[k],
811 isl_map_intersect_range(isl_map_copy(must_rel[k]),
813 T = isl_map_from_domain_and_range(
815 isl_space_domain(isl_map_get_space(must_rel[k]))),
817 must_rel[k] = isl_map_subtract(must_rel[k], T);
824 /* Compute dependences for the case where all accesses are "may"
825 * accesses, which boils down to computing memory based dependences.
826 * The generic algorithm would also work in this case, but it would
827 * be overkill to use it.
829 static __isl_give isl_flow *compute_mem_based_dependences(
830 __isl_keep isl_access_info *acc)
837 res = isl_flow_alloc(acc);
841 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
842 maydo = isl_set_copy(mustdo);
844 for (i = 0; i < acc->n_may; ++i) {
851 plevel = acc->level_before(acc->source[i].data, acc->sink.data);
852 is_before = plevel & 1;
855 dim = isl_map_get_space(res->dep[i].map);
857 before = isl_map_lex_le_first(dim, plevel);
859 before = isl_map_lex_lt_first(dim, plevel);
860 dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
861 isl_map_reverse(isl_map_copy(acc->sink.map)));
862 dep = isl_map_intersect(dep, before);
863 mustdo = isl_set_subtract(mustdo,
864 isl_map_range(isl_map_copy(dep)));
865 res->dep[i].map = isl_map_union(res->dep[i].map, dep);
868 res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
869 res->must_no_source = mustdo;
874 /* Compute dependences for the case where there is at least one
877 * The core algorithm considers all levels in which a source may precede
878 * the sink, where a level may either be a statement level or a loop level.
879 * The outermost statement level is 1, the first loop level is 2, etc...
880 * The algorithm basically does the following:
881 * for all levels l of the read access from innermost to outermost
882 * for all sources w that may precede the sink access at that level
883 * compute the last iteration of the source that precedes the sink access
885 * add result to possible last accesses at level l of source w
886 * for all sources w2 that we haven't considered yet at this level that may
887 * also precede the sink access
888 * for all levels l2 of w from l to innermost
889 * for all possible last accesses dep of w at l
890 * compute last iteration of w2 between the source and sink
892 * add result to possible last accesses at level l of write w2
893 * and replace possible last accesses dep by the remainder
896 * The above algorithm is applied to the must access. During the course
897 * of the algorithm, we keep track of sink iterations that still
898 * need to be considered. These iterations are split into those that
899 * haven't been matched to any source access (mustdo) and those that have only
900 * been matched to may accesses (maydo).
901 * At the end of each level, we also consider the may accesses.
902 * In particular, we consider may accesses that precede the remaining
903 * sink iterations, moving elements from mustdo to maydo when appropriate,
904 * and may accesses that occur between a must source and a sink of any
905 * dependences found at the current level, turning must dependences into
906 * may dependences when appropriate.
909 static __isl_give isl_flow *compute_val_based_dependences(
910 __isl_keep isl_access_info *acc)
914 isl_set *mustdo = NULL;
915 isl_set *maydo = NULL;
918 isl_map **must_rel = NULL;
919 isl_map **may_rel = NULL;
924 res = isl_flow_alloc(acc);
927 ctx = isl_map_get_ctx(acc->sink.map);
929 depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1;
930 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
931 maydo = isl_set_empty_like(mustdo);
932 if (!mustdo || !maydo)
934 if (isl_set_plain_is_empty(mustdo))
937 must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
938 may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
939 if (!must_rel || !may_rel)
942 for (level = depth; level >= 1; --level) {
943 for (j = acc->n_must-1; j >=0; --j) {
944 must_rel[j] = isl_map_empty_like(res->dep[j].map);
945 may_rel[j] = isl_map_copy(must_rel[j]);
948 for (j = acc->n_must - 1; j >= 0; --j) {
950 struct isl_set *rest;
953 plevel = acc->level_before(acc->source[j].data,
955 if (!can_precede_at_level(plevel, level))
958 T = last_source(acc, mustdo, j, level, &rest);
959 must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
962 intermediate_sources(acc, must_rel, j, level);
964 T = last_source(acc, maydo, j, level, &rest);
965 may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
968 intermediate_sources(acc, may_rel, j, level);
970 if (isl_set_plain_is_empty(mustdo) &&
971 isl_set_plain_is_empty(maydo))
974 for (j = j - 1; j >= 0; --j) {
977 plevel = acc->level_before(acc->source[j].data,
979 if (!can_precede_at_level(plevel, level))
982 intermediate_sources(acc, must_rel, j, level);
983 intermediate_sources(acc, may_rel, j, level);
986 for (j = 0; j < acc->n_may; ++j) {
991 plevel = acc->level_before(acc->source[acc->n_must + j].data,
993 if (!can_precede_at_level(plevel, level))
996 T = all_sources(acc, isl_set_copy(maydo), j, level);
997 res->dep[2 * acc->n_must + j].map =
998 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
999 T = all_sources(acc, isl_set_copy(mustdo), j, level);
1000 ran = isl_map_range(isl_map_copy(T));
1001 res->dep[2 * acc->n_must + j].map =
1002 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
1003 mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
1004 maydo = isl_set_union_disjoint(maydo, ran);
1006 T = res->dep[2 * acc->n_must + j].map;
1007 T = all_intermediate_sources(acc, T, must_rel, may_rel,
1009 res->dep[2 * acc->n_must + j].map = T;
1012 for (j = acc->n_must - 1; j >= 0; --j) {
1013 res->dep[2 * j].map =
1014 isl_map_union_disjoint(res->dep[2 * j].map,
1016 res->dep[2 * j + 1].map =
1017 isl_map_union_disjoint(res->dep[2 * j + 1].map,
1021 if (isl_set_plain_is_empty(mustdo) &&
1022 isl_set_plain_is_empty(maydo))
1029 res->must_no_source = mustdo;
1030 res->may_no_source = maydo;
1034 isl_set_free(mustdo);
1035 isl_set_free(maydo);
1041 /* Given a "sink" access, a list of n "source" accesses,
1042 * compute for each iteration of the sink access
1043 * and for each element accessed by that iteration,
1044 * the source access in the list that last accessed the
1045 * element accessed by the sink access before this sink access.
1046 * Each access is given as a map from the loop iterators
1047 * to the array indices.
1048 * The result is a list of n relations between source and sink
1049 * iterations and a subset of the domain of the sink access,
1050 * corresponding to those iterations that access an element
1051 * not previously accessed.
1053 * To deal with multi-valued sink access relations, the sink iteration
1054 * domain is first extended with dimensions that correspond to the data
1055 * space. After the computation is finished, these extra dimensions are
1056 * projected out again.
1058 __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
1061 struct isl_flow *res = NULL;
1066 acc->domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
1067 acc->sink.map = isl_map_range_map(acc->sink.map);
1071 if (acc->n_must == 0)
1072 res = compute_mem_based_dependences(acc);
1074 acc = isl_access_info_sort_sources(acc);
1075 res = compute_val_based_dependences(acc);
1080 for (j = 0; j < res->n_source; ++j) {
1081 res->dep[j].map = isl_map_apply_range(res->dep[j].map,
1082 isl_map_copy(acc->domain_map));
1083 if (!res->dep[j].map)
1086 if (!res->must_no_source || !res->may_no_source)
1089 isl_access_info_free(acc);
1092 isl_access_info_free(acc);
1098 /* Keep track of some information about a schedule for a given
1099 * access. In particular, keep track of which dimensions
1100 * have a constant value and of the actual constant values.
1102 struct isl_sched_info {
1107 static void sched_info_free(__isl_take struct isl_sched_info *info)
1111 isl_vec_free(info->cst);
1116 /* Extract information on the constant dimensions of the schedule
1117 * for a given access. The "map" is of the form
1121 * with S the schedule domain, D the iteration domain and A the data domain.
1123 static __isl_give struct isl_sched_info *sched_info_alloc(
1124 __isl_keep isl_map *map)
1128 struct isl_sched_info *info;
1135 dim = isl_space_unwrap(isl_space_domain(isl_map_get_space(map)));
1138 n = isl_space_dim(dim, isl_dim_in);
1139 isl_space_free(dim);
1141 ctx = isl_map_get_ctx(map);
1142 info = isl_alloc_type(ctx, struct isl_sched_info);
1145 info->is_cst = isl_alloc_array(ctx, int, n);
1146 info->cst = isl_vec_alloc(ctx, n);
1147 if (!info->is_cst || !info->cst)
1151 for (i = 0; i < n; ++i) {
1152 info->is_cst[i] = isl_map_plain_is_fixed(map, isl_dim_in, i,
1154 info->cst = isl_vec_set_element(info->cst, i, v);
1160 sched_info_free(info);
1164 struct isl_compute_flow_data {
1165 isl_union_map *must_source;
1166 isl_union_map *may_source;
1167 isl_union_map *must_dep;
1168 isl_union_map *may_dep;
1169 isl_union_map *must_no_source;
1170 isl_union_map *may_no_source;
1175 struct isl_sched_info *sink_info;
1176 struct isl_sched_info **source_info;
1177 isl_access_info *accesses;
1180 static int count_matching_array(__isl_take isl_map *map, void *user)
1184 struct isl_compute_flow_data *data;
1186 data = (struct isl_compute_flow_data *)user;
1188 dim = isl_space_range(isl_map_get_space(map));
1190 eq = isl_space_is_equal(dim, data->dim);
1192 isl_space_free(dim);
1203 static int collect_matching_array(__isl_take isl_map *map, void *user)
1207 struct isl_sched_info *info;
1208 struct isl_compute_flow_data *data;
1210 data = (struct isl_compute_flow_data *)user;
1212 dim = isl_space_range(isl_map_get_space(map));
1214 eq = isl_space_is_equal(dim, data->dim);
1216 isl_space_free(dim);
1225 info = sched_info_alloc(map);
1226 data->source_info[data->count] = info;
1228 data->accesses = isl_access_info_add_source(data->accesses,
1229 map, data->must, info);
1239 /* Determine the shared nesting level and the "textual order" of
1240 * the given accesses.
1242 * We first determine the minimal schedule dimension for both accesses.
1244 * If among those dimensions, we can find one where both have a fixed
1245 * value and if moreover those values are different, then the previous
1246 * dimension is the last shared nesting level and the textual order
1247 * is determined based on the order of the fixed values.
1248 * If no such fixed values can be found, then we set the shared
1249 * nesting level to the minimal schedule dimension, with no textual ordering.
1251 static int before(void *first, void *second)
1253 struct isl_sched_info *info1 = first;
1254 struct isl_sched_info *info2 = second;
1259 n1 = isl_vec_size(info1->cst);
1260 n2 = isl_vec_size(info2->cst);
1267 for (i = 0; i < n1; ++i) {
1270 if (!info1->is_cst[i])
1272 if (!info2->is_cst[i])
1274 isl_vec_get_element(info1->cst, i, &v1);
1275 isl_vec_get_element(info2->cst, i, &v2);
1276 if (isl_int_eq(v1, v2))
1279 r = 2 * i + isl_int_lt(v1, v2);
1291 /* Given a sink access, look for all the source accesses that access
1292 * the same array and perform dataflow analysis on them using
1293 * isl_access_info_compute_flow.
1295 static int compute_flow(__isl_take isl_map *map, void *user)
1299 struct isl_compute_flow_data *data;
1302 data = (struct isl_compute_flow_data *)user;
1304 ctx = isl_map_get_ctx(map);
1306 data->accesses = NULL;
1307 data->sink_info = NULL;
1308 data->source_info = NULL;
1310 data->dim = isl_space_range(isl_map_get_space(map));
1312 if (isl_union_map_foreach_map(data->must_source,
1313 &count_matching_array, data) < 0)
1315 if (isl_union_map_foreach_map(data->may_source,
1316 &count_matching_array, data) < 0)
1319 data->sink_info = sched_info_alloc(map);
1320 data->source_info = isl_calloc_array(ctx, struct isl_sched_info *,
1323 data->accesses = isl_access_info_alloc(isl_map_copy(map),
1324 data->sink_info, &before, data->count);
1325 if (!data->sink_info || !data->source_info || !data->accesses)
1329 if (isl_union_map_foreach_map(data->must_source,
1330 &collect_matching_array, data) < 0)
1333 if (isl_union_map_foreach_map(data->may_source,
1334 &collect_matching_array, data) < 0)
1337 flow = isl_access_info_compute_flow(data->accesses);
1338 data->accesses = NULL;
1343 data->must_no_source = isl_union_map_union(data->must_no_source,
1344 isl_union_map_from_map(isl_flow_get_no_source(flow, 1)));
1345 data->may_no_source = isl_union_map_union(data->may_no_source,
1346 isl_union_map_from_map(isl_flow_get_no_source(flow, 0)));
1348 for (i = 0; i < flow->n_source; ++i) {
1350 dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
1351 if (flow->dep[i].must)
1352 data->must_dep = isl_union_map_union(data->must_dep, dep);
1354 data->may_dep = isl_union_map_union(data->may_dep, dep);
1357 isl_flow_free(flow);
1359 sched_info_free(data->sink_info);
1360 if (data->source_info) {
1361 for (i = 0; i < data->count; ++i)
1362 sched_info_free(data->source_info[i]);
1363 free(data->source_info);
1365 isl_space_free(data->dim);
1370 isl_access_info_free(data->accesses);
1371 sched_info_free(data->sink_info);
1372 if (data->source_info) {
1373 for (i = 0; i < data->count; ++i)
1374 sched_info_free(data->source_info[i]);
1375 free(data->source_info);
1377 isl_space_free(data->dim);
1383 /* Given a collection of "sink" and "source" accesses,
1384 * compute for each iteration of a sink access
1385 * and for each element accessed by that iteration,
1386 * the source access in the list that last accessed the
1387 * element accessed by the sink access before this sink access.
1388 * Each access is given as a map from the loop iterators
1389 * to the array indices.
1390 * The result is a relations between source and sink
1391 * iterations and a subset of the domain of the sink accesses,
1392 * corresponding to those iterations that access an element
1393 * not previously accessed.
1395 * We first prepend the schedule dimensions to the domain
1396 * of the accesses so that we can easily compare their relative order.
1397 * Then we consider each sink access individually in compute_flow.
1399 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
1400 __isl_take isl_union_map *must_source,
1401 __isl_take isl_union_map *may_source,
1402 __isl_take isl_union_map *schedule,
1403 __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
1404 __isl_give isl_union_map **must_no_source,
1405 __isl_give isl_union_map **may_no_source)
1408 isl_union_map *range_map = NULL;
1409 struct isl_compute_flow_data data;
1411 sink = isl_union_map_align_params(sink,
1412 isl_union_map_get_space(must_source));
1413 sink = isl_union_map_align_params(sink,
1414 isl_union_map_get_space(may_source));
1415 sink = isl_union_map_align_params(sink,
1416 isl_union_map_get_space(schedule));
1417 dim = isl_union_map_get_space(sink);
1418 must_source = isl_union_map_align_params(must_source, isl_space_copy(dim));
1419 may_source = isl_union_map_align_params(may_source, isl_space_copy(dim));
1420 schedule = isl_union_map_align_params(schedule, isl_space_copy(dim));
1422 schedule = isl_union_map_reverse(schedule);
1423 range_map = isl_union_map_range_map(schedule);
1424 schedule = isl_union_map_reverse(isl_union_map_copy(range_map));
1425 sink = isl_union_map_apply_domain(sink, isl_union_map_copy(schedule));
1426 must_source = isl_union_map_apply_domain(must_source,
1427 isl_union_map_copy(schedule));
1428 may_source = isl_union_map_apply_domain(may_source, schedule);
1430 data.must_source = must_source;
1431 data.may_source = may_source;
1432 data.must_dep = must_dep ?
1433 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1434 data.may_dep = may_dep ? isl_union_map_empty(isl_space_copy(dim)) : NULL;
1435 data.must_no_source = must_no_source ?
1436 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1437 data.may_no_source = may_no_source ?
1438 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1440 isl_space_free(dim);
1442 if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
1445 isl_union_map_free(sink);
1446 isl_union_map_free(must_source);
1447 isl_union_map_free(may_source);
1450 data.must_dep = isl_union_map_apply_domain(data.must_dep,
1451 isl_union_map_copy(range_map));
1452 data.must_dep = isl_union_map_apply_range(data.must_dep,
1453 isl_union_map_copy(range_map));
1454 *must_dep = data.must_dep;
1457 data.may_dep = isl_union_map_apply_domain(data.may_dep,
1458 isl_union_map_copy(range_map));
1459 data.may_dep = isl_union_map_apply_range(data.may_dep,
1460 isl_union_map_copy(range_map));
1461 *may_dep = data.may_dep;
1463 if (must_no_source) {
1464 data.must_no_source = isl_union_map_apply_domain(
1465 data.must_no_source, isl_union_map_copy(range_map));
1466 *must_no_source = data.must_no_source;
1468 if (may_no_source) {
1469 data.may_no_source = isl_union_map_apply_domain(
1470 data.may_no_source, isl_union_map_copy(range_map));
1471 *may_no_source = data.may_no_source;
1474 isl_union_map_free(range_map);
1478 isl_union_map_free(range_map);
1479 isl_union_map_free(sink);
1480 isl_union_map_free(must_source);
1481 isl_union_map_free(may_source);
1482 isl_union_map_free(data.must_dep);
1483 isl_union_map_free(data.may_dep);
1484 isl_union_map_free(data.must_no_source);
1485 isl_union_map_free(data.may_no_source);
1492 *must_no_source = NULL;
1494 *may_no_source = NULL;