2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
20 /* A private structure to keep track of a mapping together with
21 * a user-specified identifier and a boolean indicating whether
22 * the map represents a must or may access/dependence.
24 struct isl_labeled_map {
30 /* A structure containing the input for dependence analysis:
32 * - n_must + n_may (<= max_source) sources
33 * - a function for determining the relative order of sources and sink
34 * The must sources are placed before the may sources.
36 struct isl_access_info {
37 struct isl_labeled_map sink;
38 isl_access_level_before level_before;
42 struct isl_labeled_map source[1];
45 /* A structure containing the output of dependence analysis:
46 * - n_source dependences
47 * - a wrapped subset of the sink for which definitely no source could be found
48 * - a wrapped subset of the sink for which possibly no source could be found
51 isl_set *must_no_source;
52 isl_set *may_no_source;
54 struct isl_labeled_map *dep;
57 /* Construct an isl_access_info structure and fill it up with
58 * the given data. The number of sources is set to 0.
60 __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
61 void *sink_user, isl_access_level_before fn, int max_source)
64 struct isl_access_info *acc;
69 ctx = isl_map_get_ctx(sink);
70 isl_assert(ctx, max_source >= 0, goto error);
72 acc = isl_alloc(ctx, struct isl_access_info,
73 sizeof(struct isl_access_info) +
74 (max_source - 1) * sizeof(struct isl_labeled_map));
79 acc->sink.data = sink_user;
80 acc->level_before = fn;
81 acc->max_source = max_source;
91 /* Free the given isl_access_info structure.
93 void isl_access_info_free(__isl_take isl_access_info *acc)
99 isl_map_free(acc->sink.map);
100 for (i = 0; i < acc->n_must + acc->n_may; ++i)
101 isl_map_free(acc->source[i].map);
105 isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc)
107 return acc ? isl_map_get_ctx(acc->sink.map) : NULL;
110 /* Add another source to an isl_access_info structure, making
111 * sure the "must" sources are placed before the "may" sources.
112 * This function may be called at most max_source times on a
113 * given isl_access_info structure, with max_source as specified
114 * in the call to isl_access_info_alloc that constructed the structure.
116 __isl_give isl_access_info *isl_access_info_add_source(
117 __isl_take isl_access_info *acc, __isl_take isl_map *source,
118 int must, void *source_user)
124 ctx = isl_map_get_ctx(acc->sink.map);
125 isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
129 acc->source[acc->n_must + acc->n_may] =
130 acc->source[acc->n_must];
131 acc->source[acc->n_must].map = source;
132 acc->source[acc->n_must].data = source_user;
133 acc->source[acc->n_must].must = 1;
136 acc->source[acc->n_must + acc->n_may].map = source;
137 acc->source[acc->n_must + acc->n_may].data = source_user;
138 acc->source[acc->n_must + acc->n_may].must = 0;
144 isl_map_free(source);
145 isl_access_info_free(acc);
149 /* A temporary structure used while sorting the accesses in an isl_access_info.
151 struct isl_access_sort_info {
152 struct isl_map *source_map;
154 struct isl_access_info *acc;
157 /* Return -n, 0 or n (with n a positive value), depending on whether
158 * the source access identified by p1 should be sorted before, together
159 * or after that identified by p2.
161 * If p1 and p2 share a different number of levels with the sink,
162 * then the one with the lowest number of shared levels should be
164 * If they both share no levels, then the order is irrelevant.
165 * Otherwise, if p1 appears before p2, then it should be sorted first.
166 * For more generic initial schedules, it is possible that neither
167 * p1 nor p2 appears before the other, or at least not in any obvious way.
168 * We therefore also check if p2 appears before p1, in which case p2
169 * should be sorted first.
170 * If not, we try to order the two statements based on the description
171 * of the iteration domains. This results in an arbitrary, but fairly
174 static int access_sort_cmp(const void *p1, const void *p2)
176 const struct isl_access_sort_info *i1, *i2;
179 i1 = (const struct isl_access_sort_info *) p1;
180 i2 = (const struct isl_access_sort_info *) p2;
182 level1 = i1->acc->level_before(i1->source_data, i1->acc->sink.data);
183 level2 = i2->acc->level_before(i2->source_data, i2->acc->sink.data);
185 if (level1 != level2 || !level1)
186 return level1 - level2;
188 level1 = i1->acc->level_before(i1->source_data, i2->source_data);
192 level2 = i1->acc->level_before(i2->source_data, i1->source_data);
196 h1 = isl_map_get_hash(i1->source_map);
197 h2 = isl_map_get_hash(i2->source_map);
198 return h1 > h2 ? 1 : h1 < h2 ? -1 : 0;
201 /* Sort the must source accesses in order of increasing number of shared
202 * levels with the sink access.
203 * Source accesses with the same number of shared levels are sorted
204 * in their textual order.
206 static __isl_give isl_access_info *isl_access_info_sort_sources(
207 __isl_take isl_access_info *acc)
211 struct isl_access_sort_info *array;
215 if (acc->n_must <= 1)
218 ctx = isl_map_get_ctx(acc->sink.map);
219 array = isl_alloc_array(ctx, struct isl_access_sort_info, acc->n_must);
223 for (i = 0; i < acc->n_must; ++i) {
224 array[i].source_map = acc->source[i].map;
225 array[i].source_data = acc->source[i].data;
229 qsort(array, acc->n_must, sizeof(struct isl_access_sort_info),
232 for (i = 0; i < acc->n_must; ++i) {
233 acc->source[i].map = array[i].source_map;
234 acc->source[i].data = array[i].source_data;
241 isl_access_info_free(acc);
245 /* Align the parameters of the two spaces if needed and then call
248 static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left,
249 __isl_take isl_space *right)
251 if (isl_space_match(left, isl_dim_param, right, isl_dim_param))
252 return isl_space_join(left, right);
254 left = isl_space_align_params(left, isl_space_copy(right));
255 right = isl_space_align_params(right, isl_space_copy(left));
256 return isl_space_join(left, right);
259 /* Initialize an empty isl_flow structure corresponding to a given
260 * isl_access_info structure.
261 * For each must access, two dependences are created (initialized
262 * to the empty relation), one for the resulting must dependences
263 * and one for the resulting may dependences. May accesses can
264 * only lead to may dependences, so only one dependence is created
266 * This function is private as isl_flow structures are only supposed
267 * to be created by isl_access_info_compute_flow.
269 static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
273 struct isl_flow *dep;
278 ctx = isl_map_get_ctx(acc->sink.map);
279 dep = isl_calloc_type(ctx, struct isl_flow);
283 dep->dep = isl_calloc_array(ctx, struct isl_labeled_map,
284 2 * acc->n_must + acc->n_may);
288 dep->n_source = 2 * acc->n_must + acc->n_may;
289 for (i = 0; i < acc->n_must; ++i) {
291 dim = space_align_and_join(
292 isl_map_get_space(acc->source[i].map),
293 isl_space_reverse(isl_map_get_space(acc->sink.map)));
294 dep->dep[2 * i].map = isl_map_empty(dim);
295 dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
296 dep->dep[2 * i].data = acc->source[i].data;
297 dep->dep[2 * i + 1].data = acc->source[i].data;
298 dep->dep[2 * i].must = 1;
299 dep->dep[2 * i + 1].must = 0;
300 if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
303 for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
305 dim = space_align_and_join(
306 isl_map_get_space(acc->source[i].map),
307 isl_space_reverse(isl_map_get_space(acc->sink.map)));
308 dep->dep[acc->n_must + i].map = isl_map_empty(dim);
309 dep->dep[acc->n_must + i].data = acc->source[i].data;
310 dep->dep[acc->n_must + i].must = 0;
311 if (!dep->dep[acc->n_must + i].map)
321 /* Iterate over all sources and for each resulting flow dependence
322 * that is not empty, call the user specfied function.
323 * The second argument in this function call identifies the source,
324 * while the third argument correspond to the final argument of
325 * the isl_flow_foreach call.
327 int isl_flow_foreach(__isl_keep isl_flow *deps,
328 int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user),
336 for (i = 0; i < deps->n_source; ++i) {
337 if (isl_map_plain_is_empty(deps->dep[i].map))
339 if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
340 deps->dep[i].data, user) < 0)
347 /* Return a copy of the subset of the sink for which no source could be found.
349 __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
355 return isl_set_unwrap(isl_set_copy(deps->must_no_source));
357 return isl_set_unwrap(isl_set_copy(deps->may_no_source));
360 void isl_flow_free(__isl_take isl_flow *deps)
366 isl_set_free(deps->must_no_source);
367 isl_set_free(deps->may_no_source);
369 for (i = 0; i < deps->n_source; ++i)
370 isl_map_free(deps->dep[i].map);
376 isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps)
378 return deps ? isl_set_get_ctx(deps->must_no_source) : NULL;
381 /* Return a map that enforces that the domain iteration occurs after
382 * the range iteration at the given level.
383 * If level is odd, then the domain iteration should occur after
384 * the target iteration in their shared level/2 outermost loops.
385 * In this case we simply need to enforce that these outermost
386 * loop iterations are the same.
387 * If level is even, then the loop iterator of the domain should
388 * be greater than the loop iterator of the range at the last
389 * of the level/2 shared loops, i.e., loop level/2 - 1.
391 static __isl_give isl_map *after_at_level(__isl_take isl_space *dim, int level)
393 struct isl_basic_map *bmap;
396 bmap = isl_basic_map_equal(dim, level/2);
398 bmap = isl_basic_map_more_at(dim, level/2 - 1);
400 return isl_map_from_basic_map(bmap);
403 /* Compute the last iteration of must source j that precedes the sink
404 * at the given level for sink iterations in set_C.
405 * The subset of set_C for which no such iteration can be found is returned
408 static struct isl_map *last_source(struct isl_access_info *acc,
409 struct isl_set *set_C,
410 int j, int level, struct isl_set **empty)
412 struct isl_map *read_map;
413 struct isl_map *write_map;
414 struct isl_map *dep_map;
415 struct isl_map *after;
416 struct isl_map *result;
418 read_map = isl_map_copy(acc->sink.map);
419 write_map = isl_map_copy(acc->source[j].map);
420 write_map = isl_map_reverse(write_map);
421 dep_map = isl_map_apply_range(read_map, write_map);
422 after = after_at_level(isl_map_get_space(dep_map), level);
423 dep_map = isl_map_intersect(dep_map, after);
424 result = isl_map_partial_lexmax(dep_map, set_C, empty);
425 result = isl_map_reverse(result);
430 /* For a given mapping between iterations of must source j and iterations
431 * of the sink, compute the last iteration of must source k preceding
432 * the sink at level before_level for any of the sink iterations,
433 * but following the corresponding iteration of must source j at level
436 static struct isl_map *last_later_source(struct isl_access_info *acc,
437 struct isl_map *old_map,
438 int j, int before_level,
439 int k, int after_level,
440 struct isl_set **empty)
443 struct isl_set *set_C;
444 struct isl_map *read_map;
445 struct isl_map *write_map;
446 struct isl_map *dep_map;
447 struct isl_map *after_write;
448 struct isl_map *before_read;
449 struct isl_map *result;
451 set_C = isl_map_range(isl_map_copy(old_map));
452 read_map = isl_map_copy(acc->sink.map);
453 write_map = isl_map_copy(acc->source[k].map);
455 write_map = isl_map_reverse(write_map);
456 dep_map = isl_map_apply_range(read_map, write_map);
457 dim = space_align_and_join(isl_map_get_space(acc->source[k].map),
458 isl_space_reverse(isl_map_get_space(acc->source[j].map)));
459 after_write = after_at_level(dim, after_level);
460 after_write = isl_map_apply_range(after_write, old_map);
461 after_write = isl_map_reverse(after_write);
462 dep_map = isl_map_intersect(dep_map, after_write);
463 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
464 dep_map = isl_map_intersect(dep_map, before_read);
465 result = isl_map_partial_lexmax(dep_map, set_C, empty);
466 result = isl_map_reverse(result);
471 /* Given a shared_level between two accesses, return 1 if the
472 * the first can precede the second at the requested target_level.
473 * If the target level is odd, i.e., refers to a statement level
474 * dimension, then first needs to precede second at the requested
475 * level, i.e., shared_level must be equal to target_level.
476 * If the target level is odd, then the two loops should share
477 * at least the requested number of outer loops.
479 static int can_precede_at_level(int shared_level, int target_level)
481 if (shared_level < target_level)
483 if ((target_level % 2) && shared_level > target_level)
488 /* Given a possible flow dependence temp_rel[j] between source j and the sink
489 * at level sink_level, remove those elements for which
490 * there is an iteration of another source k < j that is closer to the sink.
491 * The flow dependences temp_rel[k] are updated with the improved sources.
492 * Any improved source needs to precede the sink at the same level
493 * and needs to follow source j at the same or a deeper level.
494 * The lower this level, the later the execution date of source k.
495 * We therefore consider lower levels first.
497 * If temp_rel[j] is empty, then there can be no improvement and
498 * we return immediately.
500 static int intermediate_sources(__isl_keep isl_access_info *acc,
501 struct isl_map **temp_rel, int j, int sink_level)
504 int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1;
506 if (isl_map_plain_is_empty(temp_rel[j]))
509 for (k = j - 1; k >= 0; --k) {
511 plevel = acc->level_before(acc->source[k].data, acc->sink.data);
512 if (!can_precede_at_level(plevel, sink_level))
515 plevel2 = acc->level_before(acc->source[j].data,
516 acc->source[k].data);
518 for (level = sink_level; level <= depth; ++level) {
520 struct isl_set *trest;
521 struct isl_map *copy;
523 if (!can_precede_at_level(plevel2, level))
526 copy = isl_map_copy(temp_rel[j]);
527 T = last_later_source(acc, copy, j, sink_level, k,
529 if (isl_map_plain_is_empty(T)) {
534 temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
535 temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
542 /* Compute all iterations of may source j that precedes the sink at the given
543 * level for sink iterations in set_C.
545 static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
546 __isl_take isl_set *set_C, int j, int level)
553 read_map = isl_map_copy(acc->sink.map);
554 read_map = isl_map_intersect_domain(read_map, set_C);
555 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
556 write_map = isl_map_reverse(write_map);
557 dep_map = isl_map_apply_range(read_map, write_map);
558 after = after_at_level(isl_map_get_space(dep_map), level);
559 dep_map = isl_map_intersect(dep_map, after);
561 return isl_map_reverse(dep_map);
564 /* For a given mapping between iterations of must source k and iterations
565 * of the sink, compute the all iteration of may source j preceding
566 * the sink at level before_level for any of the sink iterations,
567 * but following the corresponding iteration of must source k at level
570 static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
571 __isl_keep isl_map *old_map,
572 int j, int before_level, int k, int after_level)
579 isl_map *after_write;
580 isl_map *before_read;
582 set_C = isl_map_range(isl_map_copy(old_map));
583 read_map = isl_map_copy(acc->sink.map);
584 read_map = isl_map_intersect_domain(read_map, set_C);
585 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
587 write_map = isl_map_reverse(write_map);
588 dep_map = isl_map_apply_range(read_map, write_map);
589 dim = isl_space_join(isl_map_get_space(acc->source[acc->n_must + j].map),
590 isl_space_reverse(isl_map_get_space(acc->source[k].map)));
591 after_write = after_at_level(dim, after_level);
592 after_write = isl_map_apply_range(after_write, old_map);
593 after_write = isl_map_reverse(after_write);
594 dep_map = isl_map_intersect(dep_map, after_write);
595 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
596 dep_map = isl_map_intersect(dep_map, before_read);
597 return isl_map_reverse(dep_map);
600 /* Given the must and may dependence relations for the must accesses
601 * for level sink_level, check if there are any accesses of may access j
602 * that occur in between and return their union.
603 * If some of these accesses are intermediate with respect to
604 * (previously thought to be) must dependences, then these
605 * must dependences are turned into may dependences.
607 static __isl_give isl_map *all_intermediate_sources(
608 __isl_keep isl_access_info *acc, __isl_take isl_map *map,
609 struct isl_map **must_rel, struct isl_map **may_rel,
610 int j, int sink_level)
613 int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map,
616 for (k = 0; k < acc->n_must; ++k) {
619 if (isl_map_plain_is_empty(may_rel[k]) &&
620 isl_map_plain_is_empty(must_rel[k]))
623 plevel = acc->level_before(acc->source[k].data,
624 acc->source[acc->n_must + j].data);
626 for (level = sink_level; level <= depth; ++level) {
631 if (!can_precede_at_level(plevel, level))
634 copy = isl_map_copy(may_rel[k]);
635 T = all_later_sources(acc, copy, j, sink_level, k, level);
636 map = isl_map_union(map, T);
638 copy = isl_map_copy(must_rel[k]);
639 T = all_later_sources(acc, copy, j, sink_level, k, level);
640 ran = isl_map_range(isl_map_copy(T));
641 map = isl_map_union(map, T);
642 may_rel[k] = isl_map_union_disjoint(may_rel[k],
643 isl_map_intersect_range(isl_map_copy(must_rel[k]),
645 T = isl_map_from_domain_and_range(
647 isl_space_domain(isl_map_get_space(must_rel[k]))),
649 must_rel[k] = isl_map_subtract(must_rel[k], T);
656 /* Compute dependences for the case where all accesses are "may"
657 * accesses, which boils down to computing memory based dependences.
658 * The generic algorithm would also work in this case, but it would
659 * be overkill to use it.
661 static __isl_give isl_flow *compute_mem_based_dependences(
662 __isl_take isl_access_info *acc)
669 res = isl_flow_alloc(acc);
673 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
674 maydo = isl_set_copy(mustdo);
676 for (i = 0; i < acc->n_may; ++i) {
683 plevel = acc->level_before(acc->source[i].data, acc->sink.data);
684 is_before = plevel & 1;
687 dim = isl_map_get_space(res->dep[i].map);
689 before = isl_map_lex_le_first(dim, plevel);
691 before = isl_map_lex_lt_first(dim, plevel);
692 dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
693 isl_map_reverse(isl_map_copy(acc->sink.map)));
694 dep = isl_map_intersect(dep, before);
695 mustdo = isl_set_subtract(mustdo,
696 isl_map_range(isl_map_copy(dep)));
697 res->dep[i].map = isl_map_union(res->dep[i].map, dep);
700 res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
701 res->must_no_source = mustdo;
703 isl_access_info_free(acc);
707 isl_access_info_free(acc);
711 /* Compute dependences for the case where there is at least one
714 * The core algorithm considers all levels in which a source may precede
715 * the sink, where a level may either be a statement level or a loop level.
716 * The outermost statement level is 1, the first loop level is 2, etc...
717 * The algorithm basically does the following:
718 * for all levels l of the read access from innermost to outermost
719 * for all sources w that may precede the sink access at that level
720 * compute the last iteration of the source that precedes the sink access
722 * add result to possible last accesses at level l of source w
723 * for all sources w2 that we haven't considered yet at this level that may
724 * also precede the sink access
725 * for all levels l2 of w from l to innermost
726 * for all possible last accesses dep of w at l
727 * compute last iteration of w2 between the source and sink
729 * add result to possible last accesses at level l of write w2
730 * and replace possible last accesses dep by the remainder
733 * The above algorithm is applied to the must access. During the course
734 * of the algorithm, we keep track of sink iterations that still
735 * need to be considered. These iterations are split into those that
736 * haven't been matched to any source access (mustdo) and those that have only
737 * been matched to may accesses (maydo).
738 * At the end of each level, we also consider the may accesses.
739 * In particular, we consider may accesses that precede the remaining
740 * sink iterations, moving elements from mustdo to maydo when appropriate,
741 * and may accesses that occur between a must source and a sink of any
742 * dependences found at the current level, turning must dependences into
743 * may dependences when appropriate.
746 static __isl_give isl_flow *compute_val_based_dependences(
747 __isl_take isl_access_info *acc)
751 isl_set *mustdo = NULL;
752 isl_set *maydo = NULL;
755 isl_map **must_rel = NULL;
756 isl_map **may_rel = NULL;
758 acc = isl_access_info_sort_sources(acc);
762 res = isl_flow_alloc(acc);
765 ctx = isl_map_get_ctx(acc->sink.map);
767 depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1;
768 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
769 maydo = isl_set_empty_like(mustdo);
770 if (!mustdo || !maydo)
772 if (isl_set_plain_is_empty(mustdo))
775 must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
776 may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
777 if (!must_rel || !may_rel)
780 for (level = depth; level >= 1; --level) {
781 for (j = acc->n_must-1; j >=0; --j) {
782 must_rel[j] = isl_map_empty_like(res->dep[j].map);
783 may_rel[j] = isl_map_copy(must_rel[j]);
786 for (j = acc->n_must - 1; j >= 0; --j) {
788 struct isl_set *rest;
791 plevel = acc->level_before(acc->source[j].data,
793 if (!can_precede_at_level(plevel, level))
796 T = last_source(acc, mustdo, j, level, &rest);
797 must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
800 intermediate_sources(acc, must_rel, j, level);
802 T = last_source(acc, maydo, j, level, &rest);
803 may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
806 intermediate_sources(acc, may_rel, j, level);
808 if (isl_set_plain_is_empty(mustdo) &&
809 isl_set_plain_is_empty(maydo))
812 for (j = j - 1; j >= 0; --j) {
815 plevel = acc->level_before(acc->source[j].data,
817 if (!can_precede_at_level(plevel, level))
820 intermediate_sources(acc, must_rel, j, level);
821 intermediate_sources(acc, may_rel, j, level);
824 for (j = 0; j < acc->n_may; ++j) {
829 plevel = acc->level_before(acc->source[acc->n_must + j].data,
831 if (!can_precede_at_level(plevel, level))
834 T = all_sources(acc, isl_set_copy(maydo), j, level);
835 res->dep[2 * acc->n_must + j].map =
836 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
837 T = all_sources(acc, isl_set_copy(mustdo), j, level);
838 ran = isl_map_range(isl_map_copy(T));
839 res->dep[2 * acc->n_must + j].map =
840 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
841 mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
842 maydo = isl_set_union_disjoint(maydo, ran);
844 T = res->dep[2 * acc->n_must + j].map;
845 T = all_intermediate_sources(acc, T, must_rel, may_rel,
847 res->dep[2 * acc->n_must + j].map = T;
850 for (j = acc->n_must - 1; j >= 0; --j) {
851 res->dep[2 * j].map =
852 isl_map_union_disjoint(res->dep[2 * j].map,
854 res->dep[2 * j + 1].map =
855 isl_map_union_disjoint(res->dep[2 * j + 1].map,
859 if (isl_set_plain_is_empty(mustdo) &&
860 isl_set_plain_is_empty(maydo))
867 res->must_no_source = mustdo;
868 res->may_no_source = maydo;
869 isl_access_info_free(acc);
872 isl_access_info_free(acc);
874 isl_set_free(mustdo);
881 /* Given a "sink" access, a list of n "source" accesses,
882 * compute for each iteration of the sink access
883 * and for each element accessed by that iteration,
884 * the source access in the list that last accessed the
885 * element accessed by the sink access before this sink access.
886 * Each access is given as a map from the loop iterators
887 * to the array indices.
888 * The result is a list of n relations between source and sink
889 * iterations and a subset of the domain of the sink access,
890 * corresponding to those iterations that access an element
891 * not previously accessed.
893 * To deal with multi-valued sink access relations, the sink iteration
894 * domain is first extended with dimensions that correspond to the data
895 * space. After the computation is finished, these extra dimensions are
896 * projected out again.
898 __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
901 struct isl_flow *res;
902 isl_map *domain_map = NULL;
907 domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
908 acc->sink.map = isl_map_range_map(acc->sink.map);
912 if (acc->n_must == 0)
913 res = compute_mem_based_dependences(acc);
915 res = compute_val_based_dependences(acc);
919 for (j = 0; j < res->n_source; ++j) {
920 res->dep[j].map = isl_map_apply_range(res->dep[j].map,
921 isl_map_copy(domain_map));
922 if (!res->dep[j].map)
925 if (!res->must_no_source || !res->may_no_source)
928 isl_map_free(domain_map);
931 isl_map_free(domain_map);
932 isl_access_info_free(acc);
935 isl_map_free(domain_map);
941 /* Keep track of some information about a schedule for a given
942 * access. In particular, keep track of which dimensions
943 * have a constant value and of the actual constant values.
945 struct isl_sched_info {
950 static void sched_info_free(__isl_take struct isl_sched_info *info)
954 isl_vec_free(info->cst);
959 /* Extract information on the constant dimensions of the schedule
960 * for a given access. The "map" is of the form
964 * with S the schedule domain, D the iteration domain and A the data domain.
966 static __isl_give struct isl_sched_info *sched_info_alloc(
967 __isl_keep isl_map *map)
971 struct isl_sched_info *info;
977 dim = isl_space_unwrap(isl_space_domain(isl_map_get_space(map)));
980 n = isl_space_dim(dim, isl_dim_in);
983 ctx = isl_map_get_ctx(map);
984 info = isl_alloc_type(ctx, struct isl_sched_info);
987 info->is_cst = isl_alloc_array(ctx, int, n);
988 info->cst = isl_vec_alloc(ctx, n);
989 if (!info->is_cst || !info->cst)
992 for (i = 0; i < n; ++i)
993 info->is_cst[i] = isl_map_plain_is_fixed(map, isl_dim_in, i,
998 sched_info_free(info);
1002 struct isl_compute_flow_data {
1003 isl_union_map *must_source;
1004 isl_union_map *may_source;
1005 isl_union_map *must_dep;
1006 isl_union_map *may_dep;
1007 isl_union_map *must_no_source;
1008 isl_union_map *may_no_source;
1013 struct isl_sched_info *sink_info;
1014 struct isl_sched_info **source_info;
1015 isl_access_info *accesses;
1018 static int count_matching_array(__isl_take isl_map *map, void *user)
1022 struct isl_compute_flow_data *data;
1024 data = (struct isl_compute_flow_data *)user;
1026 dim = isl_space_range(isl_map_get_space(map));
1028 eq = isl_space_is_equal(dim, data->dim);
1030 isl_space_free(dim);
1041 static int collect_matching_array(__isl_take isl_map *map, void *user)
1045 struct isl_sched_info *info;
1046 struct isl_compute_flow_data *data;
1048 data = (struct isl_compute_flow_data *)user;
1050 dim = isl_space_range(isl_map_get_space(map));
1052 eq = isl_space_is_equal(dim, data->dim);
1054 isl_space_free(dim);
1063 info = sched_info_alloc(map);
1064 data->source_info[data->count] = info;
1066 data->accesses = isl_access_info_add_source(data->accesses,
1067 map, data->must, info);
1077 /* Determine the shared nesting level and the "textual order" of
1078 * the given accesses.
1080 * We first determine the minimal schedule dimension for both accesses.
1082 * If among those dimensions, we can find one where both have a fixed
1083 * value and if moreover those values are different, then the previous
1084 * dimension is the last shared nesting level and the textual order
1085 * is determined based on the order of the fixed values.
1086 * If no such fixed values can be found, then we set the shared
1087 * nesting level to the minimal schedule dimension, with no textual ordering.
1089 static int before(void *first, void *second)
1091 struct isl_sched_info *info1 = first;
1092 struct isl_sched_info *info2 = second;
1096 n1 = info1->cst->size;
1097 n2 = info2->cst->size;
1102 for (i = 0; i < n1; ++i) {
1103 if (!info1->is_cst[i])
1105 if (!info2->is_cst[i])
1107 if (isl_int_eq(info1->cst->el[i], info2->cst->el[i]))
1109 return 2 * i + isl_int_lt(info1->cst->el[i], info2->cst->el[i]);
1115 /* Given a sink access, look for all the source accesses that access
1116 * the same array and perform dataflow analysis on them using
1117 * isl_access_info_compute_flow.
1119 static int compute_flow(__isl_take isl_map *map, void *user)
1123 struct isl_compute_flow_data *data;
1126 data = (struct isl_compute_flow_data *)user;
1128 ctx = isl_map_get_ctx(map);
1130 data->accesses = NULL;
1131 data->sink_info = NULL;
1132 data->source_info = NULL;
1134 data->dim = isl_space_range(isl_map_get_space(map));
1136 if (isl_union_map_foreach_map(data->must_source,
1137 &count_matching_array, data) < 0)
1139 if (isl_union_map_foreach_map(data->may_source,
1140 &count_matching_array, data) < 0)
1143 data->sink_info = sched_info_alloc(map);
1144 data->source_info = isl_calloc_array(ctx, struct isl_sched_info *,
1147 data->accesses = isl_access_info_alloc(isl_map_copy(map),
1148 data->sink_info, &before, data->count);
1149 if (!data->sink_info || !data->source_info || !data->accesses)
1153 if (isl_union_map_foreach_map(data->must_source,
1154 &collect_matching_array, data) < 0)
1157 if (isl_union_map_foreach_map(data->may_source,
1158 &collect_matching_array, data) < 0)
1161 flow = isl_access_info_compute_flow(data->accesses);
1162 data->accesses = NULL;
1167 data->must_no_source = isl_union_map_union(data->must_no_source,
1168 isl_union_map_from_map(isl_flow_get_no_source(flow, 1)));
1169 data->may_no_source = isl_union_map_union(data->may_no_source,
1170 isl_union_map_from_map(isl_flow_get_no_source(flow, 0)));
1172 for (i = 0; i < flow->n_source; ++i) {
1174 dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
1175 if (flow->dep[i].must)
1176 data->must_dep = isl_union_map_union(data->must_dep, dep);
1178 data->may_dep = isl_union_map_union(data->may_dep, dep);
1181 isl_flow_free(flow);
1183 sched_info_free(data->sink_info);
1184 if (data->source_info) {
1185 for (i = 0; i < data->count; ++i)
1186 sched_info_free(data->source_info[i]);
1187 free(data->source_info);
1189 isl_space_free(data->dim);
1194 isl_access_info_free(data->accesses);
1195 sched_info_free(data->sink_info);
1196 if (data->source_info) {
1197 for (i = 0; i < data->count; ++i)
1198 sched_info_free(data->source_info[i]);
1199 free(data->source_info);
1201 isl_space_free(data->dim);
1207 /* Given a collection of "sink" and "source" accesses,
1208 * compute for each iteration of a sink access
1209 * and for each element accessed by that iteration,
1210 * the source access in the list that last accessed the
1211 * element accessed by the sink access before this sink access.
1212 * Each access is given as a map from the loop iterators
1213 * to the array indices.
1214 * The result is a relations between source and sink
1215 * iterations and a subset of the domain of the sink accesses,
1216 * corresponding to those iterations that access an element
1217 * not previously accessed.
1219 * We first prepend the schedule dimensions to the domain
1220 * of the accesses so that we can easily compare their relative order.
1221 * Then we consider each sink access individually in compute_flow.
1223 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
1224 __isl_take isl_union_map *must_source,
1225 __isl_take isl_union_map *may_source,
1226 __isl_take isl_union_map *schedule,
1227 __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
1228 __isl_give isl_union_map **must_no_source,
1229 __isl_give isl_union_map **may_no_source)
1232 isl_union_map *range_map = NULL;
1233 struct isl_compute_flow_data data;
1235 sink = isl_union_map_align_params(sink,
1236 isl_union_map_get_space(must_source));
1237 sink = isl_union_map_align_params(sink,
1238 isl_union_map_get_space(may_source));
1239 sink = isl_union_map_align_params(sink,
1240 isl_union_map_get_space(schedule));
1241 dim = isl_union_map_get_space(sink);
1242 must_source = isl_union_map_align_params(must_source, isl_space_copy(dim));
1243 may_source = isl_union_map_align_params(may_source, isl_space_copy(dim));
1244 schedule = isl_union_map_align_params(schedule, isl_space_copy(dim));
1246 schedule = isl_union_map_reverse(schedule);
1247 range_map = isl_union_map_range_map(schedule);
1248 schedule = isl_union_map_reverse(isl_union_map_copy(range_map));
1249 sink = isl_union_map_apply_domain(sink, isl_union_map_copy(schedule));
1250 must_source = isl_union_map_apply_domain(must_source,
1251 isl_union_map_copy(schedule));
1252 may_source = isl_union_map_apply_domain(may_source, schedule);
1254 data.must_source = must_source;
1255 data.may_source = may_source;
1256 data.must_dep = must_dep ?
1257 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1258 data.may_dep = may_dep ? isl_union_map_empty(isl_space_copy(dim)) : NULL;
1259 data.must_no_source = must_no_source ?
1260 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1261 data.may_no_source = may_no_source ?
1262 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1264 isl_space_free(dim);
1266 if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
1269 isl_union_map_free(sink);
1270 isl_union_map_free(must_source);
1271 isl_union_map_free(may_source);
1274 data.must_dep = isl_union_map_apply_domain(data.must_dep,
1275 isl_union_map_copy(range_map));
1276 data.must_dep = isl_union_map_apply_range(data.must_dep,
1277 isl_union_map_copy(range_map));
1278 *must_dep = data.must_dep;
1281 data.may_dep = isl_union_map_apply_domain(data.may_dep,
1282 isl_union_map_copy(range_map));
1283 data.may_dep = isl_union_map_apply_range(data.may_dep,
1284 isl_union_map_copy(range_map));
1285 *may_dep = data.may_dep;
1287 if (must_no_source) {
1288 data.must_no_source = isl_union_map_apply_domain(
1289 data.must_no_source, isl_union_map_copy(range_map));
1290 *must_no_source = data.must_no_source;
1292 if (may_no_source) {
1293 data.may_no_source = isl_union_map_apply_domain(
1294 data.may_no_source, isl_union_map_copy(range_map));
1295 *may_no_source = data.may_no_source;
1298 isl_union_map_free(range_map);
1302 isl_union_map_free(range_map);
1303 isl_union_map_free(sink);
1304 isl_union_map_free(must_source);
1305 isl_union_map_free(may_source);
1306 isl_union_map_free(data.must_dep);
1307 isl_union_map_free(data.may_dep);
1308 isl_union_map_free(data.must_no_source);
1309 isl_union_map_free(data.may_no_source);
1316 *must_no_source = NULL;
1318 *may_no_source = NULL;