3 #include "isl_map_private.h"
7 #include "isl_equalities.h"
10 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
12 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
18 bmap->ineq[i] = bmap->ineq[j];
23 /* Return 1 if constraint c is redundant with respect to the constraints
24 * in bmap. If c is a lower [upper] bound in some variable and bmap
25 * does not have a lower [upper] bound in that variable, then c cannot
26 * be redundant and we do not need solve any lp.
28 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
29 isl_int *c, isl_int *opt_n, isl_int *opt_d)
31 enum isl_lp_result res;
38 total = isl_basic_map_total_dim(*bmap);
39 for (i = 0; i < total; ++i) {
41 if (isl_int_is_zero(c[1+i]))
43 sign = isl_int_sgn(c[1+i]);
44 for (j = 0; j < (*bmap)->n_ineq; ++j)
45 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
47 if (j == (*bmap)->n_ineq)
53 res = isl_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d);
54 if (res == isl_lp_unbounded)
56 if (res == isl_lp_error)
58 if (res == isl_lp_empty) {
59 *bmap = isl_basic_map_set_to_empty(*bmap);
62 return !isl_int_is_neg(*opt_n);
65 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
66 isl_int *c, isl_int *opt_n, isl_int *opt_d)
68 return isl_basic_map_constraint_is_redundant(
69 (struct isl_basic_map **)bset, c, opt_n, opt_d);
72 /* Compute the convex hull of a basic map, by removing the redundant
73 * constraints. If the minimal value along the normal of a constraint
74 * is the same if the constraint is removed, then the constraint is redundant.
76 * Alternatively, we could have intersected the basic map with the
77 * corresponding equality and the checked if the dimension was that
80 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
87 bmap = isl_basic_map_gauss(bmap, NULL);
88 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
90 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
92 if (bmap->n_ineq <= 1)
95 tab = isl_tab_from_basic_map(bmap);
96 tab = isl_tab_detect_equalities(bmap->ctx, tab);
97 tab = isl_tab_detect_redundant(bmap->ctx, tab);
98 bmap = isl_basic_map_update_from_tab(bmap, tab);
99 isl_tab_free(bmap->ctx, tab);
100 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
101 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
105 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
107 return (struct isl_basic_set *)
108 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
111 /* Check if the set set is bound in the direction of the affine
112 * constraint c and if so, set the constant term such that the
113 * resulting constraint is a bounding constraint for the set.
115 static int uset_is_bound(struct isl_ctx *ctx, struct isl_set *set,
116 isl_int *c, unsigned len)
124 isl_int_init(opt_denom);
126 for (j = 0; j < set->n; ++j) {
127 enum isl_lp_result res;
129 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
132 res = isl_solve_lp((struct isl_basic_map*)set->p[j],
133 0, c, ctx->one, &opt, &opt_denom);
134 if (res == isl_lp_unbounded)
136 if (res == isl_lp_error)
138 if (res == isl_lp_empty) {
139 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
144 if (!isl_int_is_one(opt_denom))
145 isl_seq_scale(c, c, opt_denom, len);
146 if (first || isl_int_is_neg(opt))
147 isl_int_sub(c[0], c[0], opt);
151 isl_int_clear(opt_denom);
155 isl_int_clear(opt_denom);
159 /* Check if "c" is a direction that is independent of the previously found "n"
161 * If so, add it to the list, with the negative of the lower bound
162 * in the constant position, i.e., such that c corresponds to a bounding
163 * hyperplane (but not necessarily a facet).
164 * Assumes set "set" is bounded.
166 static int is_independent_bound(struct isl_ctx *ctx,
167 struct isl_set *set, isl_int *c,
168 struct isl_mat *dirs, int n)
173 isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1);
175 int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
178 for (i = 0; i < n; ++i) {
180 pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1);
185 isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos,
186 dirs->n_col-1, NULL);
187 pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
193 is_bound = uset_is_bound(ctx, set, dirs->row[n], dirs->n_col);
198 isl_int *t = dirs->row[n];
199 for (k = n; k > i; --k)
200 dirs->row[k] = dirs->row[k-1];
206 /* Compute and return a maximal set of linearly independent bounds
207 * on the set "set", based on the constraints of the basic sets
210 static struct isl_mat *independent_bounds(struct isl_ctx *ctx,
214 struct isl_mat *dirs = NULL;
215 unsigned dim = isl_set_n_dim(set);
217 dirs = isl_mat_alloc(ctx, dim, 1+dim);
222 for (i = 0; n < dim && i < set->n; ++i) {
224 struct isl_basic_set *bset = set->p[i];
226 for (j = 0; n < dim && j < bset->n_eq; ++j) {
227 f = is_independent_bound(ctx, set, bset->eq[j],
234 for (j = 0; n < dim && j < bset->n_ineq; ++j) {
235 f = is_independent_bound(ctx, set, bset->ineq[j],
246 isl_mat_free(ctx, dirs);
250 static struct isl_basic_set *isl_basic_set_set_rational(
251 struct isl_basic_set *bset)
256 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
259 bset = isl_basic_set_cow(bset);
263 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
265 return isl_basic_set_finalize(bset);
268 static struct isl_set *isl_set_set_rational(struct isl_set *set)
272 set = isl_set_cow(set);
275 for (i = 0; i < set->n; ++i) {
276 set->p[i] = isl_basic_set_set_rational(set->p[i]);
286 static struct isl_basic_set *isl_basic_set_add_equality(struct isl_ctx *ctx,
287 struct isl_basic_set *bset, isl_int *c)
293 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
296 isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
297 isl_assert(ctx, bset->n_div == 0, goto error);
298 dim = isl_basic_set_n_dim(bset);
299 bset = isl_basic_set_cow(bset);
300 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
301 i = isl_basic_set_alloc_equality(bset);
304 isl_seq_cpy(bset->eq[i], c, 1 + dim);
307 isl_basic_set_free(bset);
311 static struct isl_set *isl_set_add_equality(struct isl_ctx *ctx,
312 struct isl_set *set, isl_int *c)
316 set = isl_set_cow(set);
319 for (i = 0; i < set->n; ++i) {
320 set->p[i] = isl_basic_set_add_equality(ctx, set->p[i], c);
330 /* Given a union of basic sets, construct the constraints for wrapping
331 * a facet around one of its ridges.
332 * In particular, if each of n the d-dimensional basic sets i in "set"
333 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
334 * and is defined by the constraints
338 * then the resulting set is of dimension n*(1+d) and has as contraints
347 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
349 struct isl_basic_set *lp;
353 unsigned dim, lp_dim;
358 dim = 1 + isl_set_n_dim(set);
361 for (i = 0; i < set->n; ++i) {
362 n_eq += set->p[i]->n_eq;
363 n_ineq += set->p[i]->n_ineq;
365 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
368 lp_dim = isl_basic_set_n_dim(lp);
369 k = isl_basic_set_alloc_equality(lp);
370 isl_int_set_si(lp->eq[k][0], -1);
371 for (i = 0; i < set->n; ++i) {
372 isl_int_set_si(lp->eq[k][1+dim*i], 0);
373 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
374 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
376 for (i = 0; i < set->n; ++i) {
377 k = isl_basic_set_alloc_inequality(lp);
378 isl_seq_clr(lp->ineq[k], 1+lp_dim);
379 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
381 for (j = 0; j < set->p[i]->n_eq; ++j) {
382 k = isl_basic_set_alloc_equality(lp);
383 isl_seq_clr(lp->eq[k], 1+dim*i);
384 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
385 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
388 for (j = 0; j < set->p[i]->n_ineq; ++j) {
389 k = isl_basic_set_alloc_inequality(lp);
390 isl_seq_clr(lp->ineq[k], 1+dim*i);
391 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
392 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
398 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
399 * of that facet, compute the other facet of the convex hull that contains
402 * We first transform the set such that the facet constraint becomes
406 * I.e., the facet lies in
410 * and on that facet, the constraint that defines the ridge is
414 * (This transformation is not strictly needed, all that is needed is
415 * that the ridge contains the origin.)
417 * Since the ridge contains the origin, the cone of the convex hull
418 * will be of the form
423 * with this second constraint defining the new facet.
424 * The constant a is obtained by settting x_1 in the cone of the
425 * convex hull to 1 and minimizing x_2.
426 * Now, each element in the cone of the convex hull is the sum
427 * of elements in the cones of the basic sets.
428 * If a_i is the dilation factor of basic set i, then the problem
429 * we need to solve is
442 * the constraints of each (transformed) basic set.
443 * If a = n/d, then the constraint defining the new facet (in the transformed
446 * -n x_1 + d x_2 >= 0
448 * In the original space, we need to take the same combination of the
449 * corresponding constraints "facet" and "ridge".
451 * If a = -infty = "-1/0", then we just return the original facet constraint.
452 * This means that the facet is unbounded, but has a bounded intersection
453 * with the union of sets.
455 static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge)
458 struct isl_mat *T = NULL;
459 struct isl_basic_set *lp = NULL;
461 enum isl_lp_result res;
465 set = isl_set_copy(set);
467 dim = 1 + isl_set_n_dim(set);
468 T = isl_mat_alloc(set->ctx, 3, dim);
471 isl_int_set_si(T->row[0][0], 1);
472 isl_seq_clr(T->row[0]+1, dim - 1);
473 isl_seq_cpy(T->row[1], facet, dim);
474 isl_seq_cpy(T->row[2], ridge, dim);
475 T = isl_mat_right_inverse(set->ctx, T);
476 set = isl_set_preimage(set, T);
480 lp = wrap_constraints(set);
481 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
484 isl_int_set_si(obj->block.data[0], 0);
485 for (i = 0; i < set->n; ++i) {
486 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
487 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
488 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
492 res = isl_solve_lp((struct isl_basic_map *)lp, 0,
493 obj->block.data, set->ctx->one, &num, &den);
494 if (res == isl_lp_ok) {
495 isl_int_neg(num, num);
496 isl_seq_combine(facet, num, facet, den, ridge, dim);
500 isl_vec_free(set->ctx, obj);
501 isl_basic_set_free(lp);
503 isl_assert(set->ctx, res == isl_lp_ok || res == isl_lp_unbounded,
507 isl_basic_set_free(lp);
508 isl_mat_free(set->ctx, T);
513 /* Given a set of d linearly independent bounding constraints of the
514 * convex hull of "set", compute the constraint of a facet of "set".
516 * We first compute the intersection with the first bounding hyperplane
517 * and remove the component corresponding to this hyperplane from
518 * other bounds (in homogeneous space).
519 * We then wrap around one of the remaining bounding constraints
520 * and continue the process until all bounding constraints have been
521 * taken into account.
522 * The resulting linear combination of the bounding constraints will
523 * correspond to a facet of the convex hull.
525 static struct isl_mat *initial_facet_constraint(struct isl_ctx *ctx,
526 struct isl_set *set, struct isl_mat *bounds)
528 struct isl_set *slice = NULL;
529 struct isl_basic_set *face = NULL;
530 struct isl_mat *m, *U, *Q;
532 unsigned dim = isl_set_n_dim(set);
534 isl_assert(ctx, set->n > 0, goto error);
535 isl_assert(ctx, bounds->n_row == dim, goto error);
537 while (bounds->n_row > 1) {
538 slice = isl_set_copy(set);
539 slice = isl_set_add_equality(ctx, slice, bounds->row[0]);
540 face = isl_set_affine_hull(slice);
543 if (face->n_eq == 1) {
544 isl_basic_set_free(face);
547 m = isl_mat_alloc(ctx, 1 + face->n_eq, 1 + dim);
550 isl_int_set_si(m->row[0][0], 1);
551 isl_seq_clr(m->row[0]+1, dim);
552 for (i = 0; i < face->n_eq; ++i)
553 isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim);
554 U = isl_mat_right_inverse(ctx, m);
555 Q = isl_mat_right_inverse(ctx, isl_mat_copy(ctx, U));
556 U = isl_mat_drop_cols(ctx, U, 1 + face->n_eq,
558 Q = isl_mat_drop_rows(ctx, Q, 1 + face->n_eq,
560 U = isl_mat_drop_cols(ctx, U, 0, 1);
561 Q = isl_mat_drop_rows(ctx, Q, 0, 1);
562 bounds = isl_mat_product(ctx, bounds, U);
563 bounds = isl_mat_product(ctx, bounds, Q);
564 while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1],
565 bounds->n_col) == -1) {
567 isl_assert(ctx, bounds->n_row > 1, goto error);
569 if (!wrap_facet(set, bounds->row[0],
570 bounds->row[bounds->n_row-1]))
572 isl_basic_set_free(face);
577 isl_basic_set_free(face);
578 isl_mat_free(ctx, bounds);
582 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
583 * compute a hyperplane description of the facet, i.e., compute the facets
586 * We compute an affine transformation that transforms the constraint
595 * by computing the right inverse U of a matrix that starts with the rows
608 * Since z_1 is zero, we can drop this variable as well as the corresponding
609 * column of U to obtain
617 * with Q' equal to Q, but without the corresponding row.
618 * After computing the facets of the facet in the z' space,
619 * we convert them back to the x space through Q.
621 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
623 struct isl_mat *m, *U, *Q;
624 struct isl_basic_set *facet = NULL;
629 set = isl_set_copy(set);
630 dim = isl_set_n_dim(set);
631 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
634 isl_int_set_si(m->row[0][0], 1);
635 isl_seq_clr(m->row[0]+1, dim);
636 isl_seq_cpy(m->row[1], c, 1+dim);
637 U = isl_mat_right_inverse(set->ctx, m);
638 Q = isl_mat_right_inverse(set->ctx, isl_mat_copy(set->ctx, U));
639 U = isl_mat_drop_cols(set->ctx, U, 1, 1);
640 Q = isl_mat_drop_rows(set->ctx, Q, 1, 1);
641 set = isl_set_preimage(set, U);
642 facet = uset_convex_hull_wrap_bounded(set);
643 facet = isl_basic_set_preimage(facet, Q);
644 isl_assert(ctx, facet->n_eq == 0, goto error);
647 isl_basic_set_free(facet);
652 /* Given an initial facet constraint, compute the remaining facets.
653 * We do this by running through all facets found so far and computing
654 * the adjacent facets through wrapping, adding those facets that we
655 * hadn't already found before.
657 * For each facet we have found so far, we first compute its facets
658 * in the resulting convex hull. That is, we compute the ridges
659 * of the resulting convex hull contained in the facet.
660 * We also compute the corresponding facet in the current approximation
661 * of the convex hull. There is no need to wrap around the ridges
662 * in this facet since that would result in a facet that is already
663 * present in the current approximation.
665 * This function can still be significantly optimized by checking which of
666 * the facets of the basic sets are also facets of the convex hull and
667 * using all the facets so far to help in constructing the facets of the
670 * using the technique in section "3.1 Ridge Generation" of
671 * "Extended Convex Hull" by Fukuda et al.
673 static struct isl_basic_set *extend(struct isl_basic_set *hull,
678 struct isl_basic_set *facet = NULL;
679 struct isl_basic_set *hull_facet = NULL;
683 isl_assert(set->ctx, set->n > 0, goto error);
685 dim = isl_set_n_dim(set);
687 for (i = 0; i < hull->n_ineq; ++i) {
688 facet = compute_facet(set, hull->ineq[i]);
689 facet = isl_basic_set_add_equality(facet->ctx, facet, hull->ineq[i]);
690 facet = isl_basic_set_gauss(facet, NULL);
691 facet = isl_basic_set_normalize_constraints(facet);
692 hull_facet = isl_basic_set_copy(hull);
693 hull_facet = isl_basic_set_add_equality(hull_facet->ctx, hull_facet, hull->ineq[i]);
694 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
695 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
698 hull = isl_basic_set_cow(hull);
699 hull = isl_basic_set_extend_dim(hull,
700 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
701 for (j = 0; j < facet->n_ineq; ++j) {
702 for (f = 0; f < hull_facet->n_ineq; ++f)
703 if (isl_seq_eq(facet->ineq[j],
704 hull_facet->ineq[f], 1 + dim))
706 if (f < hull_facet->n_ineq)
708 k = isl_basic_set_alloc_inequality(hull);
711 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
712 if (!wrap_facet(set, hull->ineq[k], facet->ineq[j]))
715 isl_basic_set_free(hull_facet);
716 isl_basic_set_free(facet);
718 hull = isl_basic_set_simplify(hull);
719 hull = isl_basic_set_finalize(hull);
722 isl_basic_set_free(hull_facet);
723 isl_basic_set_free(facet);
724 isl_basic_set_free(hull);
728 /* Special case for computing the convex hull of a one dimensional set.
729 * We simply collect the lower and upper bounds of each basic set
730 * and the biggest of those.
732 static struct isl_basic_set *convex_hull_1d(struct isl_ctx *ctx,
735 struct isl_mat *c = NULL;
736 isl_int *lower = NULL;
737 isl_int *upper = NULL;
740 struct isl_basic_set *hull;
742 for (i = 0; i < set->n; ++i) {
743 set->p[i] = isl_basic_set_simplify(set->p[i]);
747 set = isl_set_remove_empty_parts(set);
750 isl_assert(ctx, set->n > 0, goto error);
751 c = isl_mat_alloc(ctx, 2, 2);
755 if (set->p[0]->n_eq > 0) {
756 isl_assert(ctx, set->p[0]->n_eq == 1, goto error);
759 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
760 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
761 isl_seq_neg(upper, set->p[0]->eq[0], 2);
763 isl_seq_neg(lower, set->p[0]->eq[0], 2);
764 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
767 for (j = 0; j < set->p[0]->n_ineq; ++j) {
768 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
770 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
773 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
780 for (i = 0; i < set->n; ++i) {
781 struct isl_basic_set *bset = set->p[i];
785 for (j = 0; j < bset->n_eq; ++j) {
789 isl_int_mul(a, lower[0], bset->eq[j][1]);
790 isl_int_mul(b, lower[1], bset->eq[j][0]);
791 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
792 isl_seq_cpy(lower, bset->eq[j], 2);
793 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
794 isl_seq_neg(lower, bset->eq[j], 2);
797 isl_int_mul(a, upper[0], bset->eq[j][1]);
798 isl_int_mul(b, upper[1], bset->eq[j][0]);
799 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
800 isl_seq_neg(upper, bset->eq[j], 2);
801 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
802 isl_seq_cpy(upper, bset->eq[j], 2);
805 for (j = 0; j < bset->n_ineq; ++j) {
806 if (isl_int_is_pos(bset->ineq[j][1]))
808 if (isl_int_is_neg(bset->ineq[j][1]))
810 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
811 isl_int_mul(a, lower[0], bset->ineq[j][1]);
812 isl_int_mul(b, lower[1], bset->ineq[j][0]);
813 if (isl_int_lt(a, b))
814 isl_seq_cpy(lower, bset->ineq[j], 2);
816 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
817 isl_int_mul(a, upper[0], bset->ineq[j][1]);
818 isl_int_mul(b, upper[1], bset->ineq[j][0]);
819 if (isl_int_gt(a, b))
820 isl_seq_cpy(upper, bset->ineq[j], 2);
831 hull = isl_basic_set_alloc(ctx, 0, 1, 0, 0, 2);
832 hull = isl_basic_set_set_rational(hull);
836 k = isl_basic_set_alloc_inequality(hull);
837 isl_seq_cpy(hull->ineq[k], lower, 2);
840 k = isl_basic_set_alloc_inequality(hull);
841 isl_seq_cpy(hull->ineq[k], upper, 2);
843 hull = isl_basic_set_finalize(hull);
845 isl_mat_free(ctx, c);
849 isl_mat_free(ctx, c);
853 /* Project out final n dimensions using Fourier-Motzkin */
854 static struct isl_set *set_project_out(struct isl_ctx *ctx,
855 struct isl_set *set, unsigned n)
857 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
860 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
862 struct isl_basic_set *convex_hull;
867 if (isl_set_is_empty(set))
868 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
870 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
875 /* Compute the convex hull of a pair of basic sets without any parameters or
876 * integer divisions using Fourier-Motzkin elimination.
877 * The convex hull is the set of all points that can be written as
878 * the sum of points from both basic sets (in homogeneous coordinates).
879 * We set up the constraints in a space with dimensions for each of
880 * the three sets and then project out the dimensions corresponding
881 * to the two original basic sets, retaining only those corresponding
882 * to the convex hull.
884 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
885 struct isl_basic_set *bset2)
888 struct isl_basic_set *bset[2];
889 struct isl_basic_set *hull = NULL;
892 if (!bset1 || !bset2)
895 dim = isl_basic_set_n_dim(bset1);
896 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
897 1 + dim + bset1->n_eq + bset2->n_eq,
898 2 + bset1->n_ineq + bset2->n_ineq);
901 for (i = 0; i < 2; ++i) {
902 for (j = 0; j < bset[i]->n_eq; ++j) {
903 k = isl_basic_set_alloc_equality(hull);
906 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
907 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
908 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
911 for (j = 0; j < bset[i]->n_ineq; ++j) {
912 k = isl_basic_set_alloc_inequality(hull);
915 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
916 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
917 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
918 bset[i]->ineq[j], 1+dim);
920 k = isl_basic_set_alloc_inequality(hull);
923 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
924 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
926 for (j = 0; j < 1+dim; ++j) {
927 k = isl_basic_set_alloc_equality(hull);
930 isl_seq_clr(hull->eq[k], 1+2+3*dim);
931 isl_int_set_si(hull->eq[k][j], -1);
932 isl_int_set_si(hull->eq[k][1+dim+j], 1);
933 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
935 hull = isl_basic_set_set_rational(hull);
936 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
937 hull = isl_basic_set_convex_hull(hull);
938 isl_basic_set_free(bset1);
939 isl_basic_set_free(bset2);
942 isl_basic_set_free(bset1);
943 isl_basic_set_free(bset2);
944 isl_basic_set_free(hull);
948 /* Compute the convex hull of a set without any parameters or
949 * integer divisions using Fourier-Motzkin elimination.
950 * In each step, we combined two basic sets until only one
953 static struct isl_basic_set *uset_convex_hull_elim(struct isl_set *set)
955 struct isl_basic_set *convex_hull = NULL;
957 convex_hull = isl_set_copy_basic_set(set);
958 set = isl_set_drop_basic_set(set, convex_hull);
962 struct isl_basic_set *t;
963 t = isl_set_copy_basic_set(set);
966 set = isl_set_drop_basic_set(set, t);
969 convex_hull = convex_hull_pair(convex_hull, t);
975 isl_basic_set_free(convex_hull);
979 /* Compute an initial hull for wrapping containing a single initial
980 * facet by first computing bounds on the set and then using these
981 * bounds to construct an initial facet.
982 * This function is a remnant of an older implementation where the
983 * bounds were also used to check whether the set was bounded.
984 * Since this function will now only be called when we know the
985 * set to be bounded, the initial facet should probably be constructed
986 * by simply using the coordinate directions instead.
988 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
991 struct isl_mat *bounds = NULL;
997 bounds = independent_bounds(set->ctx, set);
1000 isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error);
1001 bounds = initial_facet_constraint(set->ctx, set, bounds);
1004 k = isl_basic_set_alloc_inequality(hull);
1007 dim = isl_set_n_dim(set);
1008 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1009 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1010 isl_mat_free(set->ctx, bounds);
1014 isl_basic_set_free(hull);
1015 isl_mat_free(set->ctx, bounds);
1019 struct max_constraint {
1025 static int max_constraint_equal(const void *entry, const void *val)
1027 struct max_constraint *a = (struct max_constraint *)entry;
1028 isl_int *b = (isl_int *)val;
1030 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1033 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1034 isl_int *con, unsigned len, int n, int ineq)
1036 struct isl_hash_table_entry *entry;
1037 struct max_constraint *c;
1040 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1041 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1047 isl_hash_table_remove(ctx, table, entry);
1051 if (isl_int_gt(c->c->row[0][0], con[0]))
1053 if (isl_int_eq(c->c->row[0][0], con[0])) {
1058 c->c = isl_mat_cow(ctx, c->c);
1059 isl_int_set(c->c->row[0][0], con[0]);
1063 /* Check whether the constraint hash table "table" constains the constraint
1066 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1067 isl_int *con, unsigned len, int n)
1069 struct isl_hash_table_entry *entry;
1070 struct max_constraint *c;
1073 c_hash = isl_seq_hash(con + 1, len, isl_hash_init());
1074 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1081 return isl_int_eq(c->c->row[0][0], con[0]);
1084 /* Check for inequality constraints of a basic set without equalities
1085 * such that the same or more stringent copies of the constraint appear
1086 * in all of the basic sets. Such constraints are necessarily facet
1087 * constraints of the convex hull.
1089 * If the resulting basic set is by chance identical to one of
1090 * the basic sets in "set", then we know that this basic set contains
1091 * all other basic sets and is therefore the convex hull of set.
1092 * In this case we set *is_hull to 1.
1094 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1095 struct isl_set *set, int *is_hull)
1098 int min_constraints;
1100 struct max_constraint *constraints = NULL;
1101 struct isl_hash_table *table = NULL;
1106 for (i = 0; i < set->n; ++i)
1107 if (set->p[i]->n_eq == 0)
1111 min_constraints = set->p[i]->n_ineq;
1113 for (i = best + 1; i < set->n; ++i) {
1114 if (set->p[i]->n_eq != 0)
1116 if (set->p[i]->n_ineq >= min_constraints)
1118 min_constraints = set->p[i]->n_ineq;
1121 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1125 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1126 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1129 total = isl_dim_total(set->dim);
1130 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1131 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1132 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1133 if (!constraints[i].c)
1135 constraints[i].ineq = 1;
1137 for (i = 0; i < min_constraints; ++i) {
1138 struct isl_hash_table_entry *entry;
1140 c_hash = isl_seq_hash(constraints[i].c->row[0] + 1, total,
1142 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1143 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1146 isl_assert(hull->ctx, !entry->data, goto error);
1147 entry->data = &constraints[i];
1151 for (s = 0; s < set->n; ++s) {
1155 for (i = 0; i < set->p[s]->n_eq; ++i) {
1156 isl_int *eq = set->p[s]->eq[i];
1157 for (j = 0; j < 2; ++j) {
1158 isl_seq_neg(eq, eq, 1 + total);
1159 update_constraint(hull->ctx, table,
1163 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1164 isl_int *ineq = set->p[s]->ineq[i];
1165 update_constraint(hull->ctx, table, ineq, total, n,
1166 set->p[s]->n_eq == 0);
1171 for (i = 0; i < min_constraints; ++i) {
1172 if (constraints[i].count < n)
1174 if (!constraints[i].ineq)
1176 j = isl_basic_set_alloc_inequality(hull);
1179 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1182 for (s = 0; s < set->n; ++s) {
1183 if (set->p[s]->n_eq)
1185 if (set->p[s]->n_ineq != hull->n_ineq)
1187 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1188 isl_int *ineq = set->p[s]->ineq[i];
1189 if (!has_constraint(hull->ctx, table, ineq, total, n))
1192 if (i == set->p[s]->n_ineq)
1196 isl_hash_table_clear(table);
1197 for (i = 0; i < min_constraints; ++i)
1198 isl_mat_free(hull->ctx, constraints[i].c);
1203 isl_hash_table_clear(table);
1206 for (i = 0; i < min_constraints; ++i)
1207 isl_mat_free(hull->ctx, constraints[i].c);
1212 /* Create a template for the convex hull of "set" and fill it up
1213 * obvious facet constraints, if any. If the result happens to
1214 * be the convex hull of "set" then *is_hull is set to 1.
1216 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1218 struct isl_basic_set *hull;
1223 for (i = 0; i < set->n; ++i) {
1224 n_ineq += set->p[i]->n_eq;
1225 n_ineq += set->p[i]->n_ineq;
1227 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1228 hull = isl_basic_set_set_rational(hull);
1231 return common_constraints(hull, set, is_hull);
1234 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1236 struct isl_basic_set *hull;
1239 hull = proto_hull(set, &is_hull);
1240 if (hull && !is_hull) {
1241 if (hull->n_ineq == 0)
1242 hull = initial_hull(hull, set);
1243 hull = extend(hull, set);
1250 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
1252 struct isl_tab *tab;
1255 tab = isl_tab_from_recession_cone((struct isl_basic_map *)bset);
1256 bounded = isl_tab_cone_is_bounded(bset->ctx, tab);
1257 isl_tab_free(bset->ctx, tab);
1261 static int isl_set_is_bounded(struct isl_set *set)
1265 for (i = 0; i < set->n; ++i) {
1266 int bounded = isl_basic_set_is_bounded(set->p[i]);
1267 if (!bounded || bounded < 0)
1273 /* Compute the convex hull of a set without any parameters or
1274 * integer divisions. Depending on whether the set is bounded,
1275 * we pass control to the wrapping based convex hull or
1276 * the Fourier-Motzkin elimination based convex hull.
1277 * We also handle a few special cases before checking the boundedness.
1279 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1282 struct isl_basic_set *convex_hull = NULL;
1284 if (isl_set_n_dim(set) == 0)
1285 return convex_hull_0d(set);
1287 set = isl_set_set_rational(set);
1291 set = isl_set_normalize(set);
1295 convex_hull = isl_basic_set_copy(set->p[0]);
1299 if (isl_set_n_dim(set) == 1)
1300 return convex_hull_1d(set->ctx, set);
1302 if (!isl_set_is_bounded(set))
1303 return uset_convex_hull_elim(set);
1305 return uset_convex_hull_wrap(set);
1308 isl_basic_set_free(convex_hull);
1312 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1313 * without parameters or divs and where the convex hull of set is
1314 * known to be full-dimensional.
1316 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1319 struct isl_basic_set *convex_hull = NULL;
1321 if (isl_set_n_dim(set) == 0) {
1322 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1324 convex_hull = isl_basic_set_set_rational(convex_hull);
1328 set = isl_set_set_rational(set);
1332 set = isl_set_normalize(set);
1336 convex_hull = isl_basic_set_copy(set->p[0]);
1340 if (isl_set_n_dim(set) == 1)
1341 return convex_hull_1d(set->ctx, set);
1343 return uset_convex_hull_wrap(set);
1349 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1350 * We first remove the equalities (transforming the set), compute the
1351 * convex hull of the transformed set and then add the equalities back
1352 * (after performing the inverse transformation.
1354 static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx,
1355 struct isl_set *set, struct isl_basic_set *affine_hull)
1359 struct isl_basic_set *dummy;
1360 struct isl_basic_set *convex_hull;
1362 dummy = isl_basic_set_remove_equalities(
1363 isl_basic_set_copy(affine_hull), &T, &T2);
1366 isl_basic_set_free(dummy);
1367 set = isl_set_preimage(set, T);
1368 convex_hull = uset_convex_hull(set);
1369 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1370 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1373 isl_basic_set_free(affine_hull);
1378 /* Compute the convex hull of a map.
1380 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1381 * specifically, the wrapping of facets to obtain new facets.
1383 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1385 struct isl_basic_set *bset;
1386 struct isl_basic_map *model = NULL;
1387 struct isl_basic_set *affine_hull = NULL;
1388 struct isl_basic_map *convex_hull = NULL;
1389 struct isl_set *set = NULL;
1390 struct isl_ctx *ctx;
1397 convex_hull = isl_basic_map_empty_like_map(map);
1402 map = isl_map_align_divs(map);
1403 model = isl_basic_map_copy(map->p[0]);
1404 set = isl_map_underlying_set(map);
1408 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1411 if (affine_hull->n_eq != 0)
1412 bset = modulo_affine_hull(ctx, set, affine_hull);
1414 isl_basic_set_free(affine_hull);
1415 bset = uset_convex_hull(set);
1418 convex_hull = isl_basic_map_overlying_set(bset, model);
1420 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1424 isl_basic_map_free(model);
1428 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1430 return (struct isl_basic_set *)
1431 isl_map_convex_hull((struct isl_map *)set);
1434 struct sh_data_entry {
1435 struct isl_hash_table *table;
1436 struct isl_tab *tab;
1439 /* Holds the data needed during the simple hull computation.
1441 * n the number of basic sets in the original set
1442 * hull_table a hash table of already computed constraints
1443 * in the simple hull
1444 * p for each basic set,
1445 * table a hash table of the constraints
1446 * tab the tableau corresponding to the basic set
1449 struct isl_ctx *ctx;
1451 struct isl_hash_table *hull_table;
1452 struct sh_data_entry p[0];
1455 static void sh_data_free(struct sh_data *data)
1461 isl_hash_table_free(data->ctx, data->hull_table);
1462 for (i = 0; i < data->n; ++i) {
1463 isl_hash_table_free(data->ctx, data->p[i].table);
1464 isl_tab_free(data->ctx, data->p[i].tab);
1469 struct ineq_cmp_data {
1474 static int has_ineq(const void *entry, const void *val)
1476 isl_int *row = (isl_int *)entry;
1477 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1479 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1480 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1483 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1484 isl_int *ineq, unsigned len)
1487 struct ineq_cmp_data v;
1488 struct isl_hash_table_entry *entry;
1492 c_hash = isl_seq_hash(ineq + 1, len, isl_hash_init());
1493 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1500 /* Fill hash table "table" with the constraints of "bset".
1501 * Equalities are added as two inequalities.
1502 * The value in the hash table is a pointer to the (in)equality of "bset".
1504 static int hash_basic_set(struct isl_hash_table *table,
1505 struct isl_basic_set *bset)
1508 unsigned dim = isl_basic_set_total_dim(bset);
1510 for (i = 0; i < bset->n_eq; ++i) {
1511 for (j = 0; j < 2; ++j) {
1512 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
1513 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
1517 for (i = 0; i < bset->n_ineq; ++i) {
1518 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
1524 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
1526 struct sh_data *data;
1529 data = isl_calloc(set->ctx, struct sh_data,
1530 sizeof(struct sh_data) + set->n * sizeof(struct sh_data_entry));
1533 data->ctx = set->ctx;
1535 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
1536 if (!data->hull_table)
1538 for (i = 0; i < set->n; ++i) {
1539 data->p[i].table = isl_hash_table_alloc(set->ctx,
1540 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
1541 if (!data->p[i].table)
1543 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
1552 /* Check if inequality "ineq" is a bound for basic set "j" or if
1553 * it can be relaxed (by increasing the constant term) to become
1554 * a bound for that basic set. In the latter case, the constant
1556 * Return 1 if "ineq" is a bound
1557 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
1558 * -1 if some error occurred
1560 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
1563 enum isl_lp_result res;
1566 if (!data->p[j].tab) {
1567 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
1568 if (!data->p[j].tab)
1574 res = isl_tab_min(data->ctx, data->p[j].tab, ineq, data->ctx->one,
1576 if (res == isl_lp_ok && isl_int_is_neg(opt))
1577 isl_int_sub(ineq[0], ineq[0], opt);
1581 return res == isl_lp_ok ? 1 :
1582 res == isl_lp_unbounded ? 0 : -1;
1585 /* Check if inequality "ineq" from basic set "i" can be relaxed to
1586 * become a bound on the whole set. If so, add the (relaxed) inequality
1589 * We first check if "hull" already contains a translate of the inequality.
1590 * If so, we are done.
1591 * Then, we check if any of the previous basic sets contains a translate
1592 * of the inequality. If so, then we have already considered this
1593 * inequality and we are done.
1594 * Otherwise, for each basic set other than "i", we check if the inequality
1595 * is a bound on the basic set.
1596 * For previous basic sets, we know that they do not contain a translate
1597 * of the inequality, so we directly call is_bound.
1598 * For following basic sets, we first check if a translate of the
1599 * inequality appears in its description and if so directly update
1600 * the inequality accordingly.
1602 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
1603 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
1606 struct ineq_cmp_data v;
1607 struct isl_hash_table_entry *entry;
1613 v.len = isl_basic_set_total_dim(hull);
1615 c_hash = isl_seq_hash(ineq + 1, v.len, isl_hash_init());
1617 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
1622 for (j = 0; j < i; ++j) {
1623 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
1624 c_hash, has_ineq, &v, 0);
1631 k = isl_basic_set_alloc_inequality(hull);
1632 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
1636 for (j = 0; j < i; ++j) {
1638 bound = is_bound(data, set, j, hull->ineq[k]);
1645 isl_basic_set_free_inequality(hull, 1);
1649 for (j = i + 1; j < set->n; ++j) {
1652 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
1653 c_hash, has_ineq, &v, 0);
1655 ineq_j = entry->data;
1656 neg = isl_seq_is_neg(ineq_j + 1,
1657 hull->ineq[k] + 1, v.len);
1659 isl_int_neg(ineq_j[0], ineq_j[0]);
1660 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
1661 isl_int_set(hull->ineq[k][0], ineq_j[0]);
1663 isl_int_neg(ineq_j[0], ineq_j[0]);
1666 bound = is_bound(data, set, j, hull->ineq[k]);
1673 isl_basic_set_free_inequality(hull, 1);
1677 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
1681 entry->data = hull->ineq[k];
1685 isl_basic_set_free(hull);
1689 /* Check if any inequality from basic set "i" can be relaxed to
1690 * become a bound on the whole set. If so, add the (relaxed) inequality
1693 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
1694 struct sh_data *data, struct isl_set *set, int i)
1697 unsigned dim = isl_basic_set_total_dim(bset);
1699 for (j = 0; j < set->p[i]->n_eq; ++j) {
1700 for (k = 0; k < 2; ++k) {
1701 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
1702 add_bound(bset, data, set, i, set->p[i]->eq[j]);
1705 for (j = 0; j < set->p[i]->n_ineq; ++j)
1706 add_bound(bset, data, set, i, set->p[i]->ineq[j]);
1710 /* Compute a superset of the convex hull of set that is described
1711 * by only translates of the constraints in the constituents of set.
1713 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
1715 struct sh_data *data = NULL;
1716 struct isl_basic_set *hull = NULL;
1724 for (i = 0; i < set->n; ++i) {
1727 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
1730 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1734 data = sh_data_alloc(set, n_ineq);
1738 for (i = 0; i < set->n; ++i)
1739 hull = add_bounds(hull, data, set, i);
1747 isl_basic_set_free(hull);
1752 /* Compute a superset of the convex hull of map that is described
1753 * by only translates of the constraints in the constituents of map.
1755 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
1757 struct isl_set *set = NULL;
1758 struct isl_basic_map *model = NULL;
1759 struct isl_basic_map *hull;
1760 struct isl_basic_map *affine_hull;
1761 struct isl_basic_set *bset = NULL;
1766 hull = isl_basic_map_empty_like_map(map);
1771 hull = isl_basic_map_copy(map->p[0]);
1776 map = isl_map_detect_equalities(map);
1777 affine_hull = isl_map_affine_hull(isl_map_copy(map));
1778 map = isl_map_align_divs(map);
1779 model = isl_basic_map_copy(map->p[0]);
1781 set = isl_map_underlying_set(map);
1783 bset = uset_simple_hull(set);
1785 hull = isl_basic_map_overlying_set(bset, model);
1787 hull = isl_basic_map_intersect(hull, affine_hull);
1788 hull = isl_basic_map_convex_hull(hull);
1789 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
1790 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1795 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
1797 return (struct isl_basic_set *)
1798 isl_map_simple_hull((struct isl_map *)set);
1801 /* Given a set "set", return parametric bounds on the dimension "dim".
1803 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
1805 unsigned set_dim = isl_set_dim(set, isl_dim_set);
1806 set = isl_set_copy(set);
1807 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
1808 set = isl_set_eliminate_dims(set, 0, dim);
1809 return isl_set_convex_hull(set);
1812 /* Computes a "simple hull" and then check if each dimension in the
1813 * resulting hull is bounded by a symbolic constant. If not, the
1814 * hull is intersected with the corresponding bounds on the whole set.
1816 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
1819 struct isl_basic_set *hull;
1820 unsigned nparam, left;
1821 int removed_divs = 0;
1823 hull = isl_set_simple_hull(isl_set_copy(set));
1827 nparam = isl_basic_set_dim(hull, isl_dim_param);
1828 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
1829 int lower = 0, upper = 0;
1830 struct isl_basic_set *bounds;
1832 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
1833 for (j = 0; j < hull->n_eq; ++j) {
1834 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
1836 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
1843 for (j = 0; j < hull->n_ineq; ++j) {
1844 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
1846 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
1848 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
1851 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
1862 if (!removed_divs) {
1863 set = isl_set_remove_divs(set);
1868 bounds = set_bounds(set, i);
1869 hull = isl_basic_set_intersect(hull, bounds);