1 #include "isl_map_private.h"
4 #define STATUS_ERROR -1
5 #define STATUS_REDUNDANT 1
7 #define STATUS_SEPARATE 3
9 #define STATUS_ADJ_EQ 5
10 #define STATUS_ADJ_INEQ 6
12 static int status_in(struct isl_ctx *ctx, isl_int *ineq, struct isl_tab *tab)
14 enum isl_ineq_type type = isl_tab_ineq_type(ctx, tab, ineq);
16 case isl_ineq_error: return STATUS_ERROR;
17 case isl_ineq_redundant: return STATUS_VALID;
18 case isl_ineq_separate: return STATUS_SEPARATE;
19 case isl_ineq_cut: return STATUS_CUT;
20 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
21 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
25 /* Compute the position of the equalities of basic set "i"
26 * with respect to basic set "j".
27 * The resulting array has twice as many entries as the number
28 * of equalities corresponding to the two inequalties to which
29 * each equality corresponds.
31 static int *eq_status_in(struct isl_set *set, int i, int j,
32 struct isl_tab **tabs)
35 int *eq = isl_calloc_array(set->ctx, int, 2 * set->p[i]->n_eq);
38 dim = isl_basic_set_total_dim(set->p[i]);
39 for (k = 0; k < set->p[i]->n_eq; ++k) {
40 for (l = 0; l < 2; ++l) {
41 isl_seq_neg(set->p[i]->eq[k], set->p[i]->eq[k], 1+dim);
42 eq[2 * k + l] = status_in(set->ctx, set->p[i]->eq[k],
44 if (eq[2 * k + l] == STATUS_ERROR)
47 if (eq[2 * k] == STATUS_SEPARATE ||
48 eq[2 * k + 1] == STATUS_SEPARATE)
58 /* Compute the position of the inequalities of basic set "i"
59 * with respect to basic set "j".
61 static int *ineq_status_in(struct isl_set *set, int i, int j,
62 struct isl_tab **tabs)
65 unsigned n_eq = set->p[i]->n_eq;
66 int *ineq = isl_calloc_array(set->ctx, int, set->p[i]->n_ineq);
68 for (k = 0; k < set->p[i]->n_ineq; ++k) {
69 if (isl_tab_is_redundant(set->ctx, tabs[i], n_eq + k)) {
70 ineq[k] = STATUS_REDUNDANT;
73 ineq[k] = status_in(set->ctx, set->p[i]->ineq[k], tabs[j]);
74 if (ineq[k] == STATUS_ERROR)
76 if (ineq[k] == STATUS_SEPARATE)
86 static int any(int *con, unsigned len, int status)
90 for (i = 0; i < len ; ++i)
96 static int count(int *con, unsigned len, int status)
101 for (i = 0; i < len ; ++i)
102 if (con[i] == status)
107 static int all(int *con, unsigned len, int status)
111 for (i = 0; i < len ; ++i) {
112 if (con[i] == STATUS_REDUNDANT)
114 if (con[i] != status)
120 static void drop(struct isl_set *set, int i, struct isl_tab **tabs)
122 isl_basic_set_free(set->p[i]);
123 isl_tab_free(set->ctx, tabs[i]);
125 if (i != set->n - 1) {
126 set->p[i] = set->p[set->n - 1];
127 tabs[i] = tabs[set->n - 1];
129 tabs[set->n - 1] = NULL;
133 /* Replace the pair of basic sets i and j but the basic set bounded
134 * by the valid constraints in both basic sets.
136 static int fuse(struct isl_set *set, int i, int j, struct isl_tab **tabs,
137 int *ineq_i, int *ineq_j)
140 struct isl_basic_set *fused = NULL;
141 struct isl_tab *fused_tab = NULL;
142 unsigned total = isl_basic_set_total_dim(set->p[i]);
144 fused = isl_basic_set_alloc_dim(isl_dim_copy(set->p[i]->dim),
146 set->p[i]->n_eq + set->p[j]->n_eq,
147 set->p[i]->n_ineq + set->p[j]->n_ineq);
151 for (k = 0; k < set->p[i]->n_eq; ++k) {
152 int l = isl_basic_set_alloc_equality(fused);
153 isl_seq_cpy(fused->eq[l], set->p[i]->eq[k], 1 + total);
156 for (k = 0; k < set->p[j]->n_eq; ++k) {
157 int l = isl_basic_set_alloc_equality(fused);
158 isl_seq_cpy(fused->eq[l], set->p[j]->eq[k], 1 + total);
161 for (k = 0; k < set->p[i]->n_ineq; ++k) {
162 if (ineq_i[k] != STATUS_VALID)
164 l = isl_basic_set_alloc_inequality(fused);
165 isl_seq_cpy(fused->ineq[l], set->p[i]->ineq[k], 1 + total);
168 for (k = 0; k < set->p[j]->n_ineq; ++k) {
169 if (ineq_j[k] != STATUS_VALID)
171 l = isl_basic_set_alloc_inequality(fused);
172 isl_seq_cpy(fused->ineq[l], set->p[j]->ineq[k], 1 + total);
175 for (k = 0; k < set->p[i]->n_div; ++k) {
176 int l = isl_basic_set_alloc_div(fused);
177 isl_seq_cpy(fused->div[l], set->p[i]->div[k], 1 + 1 + total);
180 fused = isl_basic_set_gauss(fused, NULL);
181 ISL_F_SET(fused, ISL_BASIC_SET_FINAL);
183 fused_tab = isl_tab_from_basic_set(fused);
184 fused_tab = isl_tab_detect_redundant(set->ctx, fused_tab);
188 isl_basic_set_free(set->p[i]);
190 isl_tab_free(set->ctx, tabs[i]);
196 isl_basic_set_free(fused);
200 /* Given a pair of basic sets i and j such that all constraints are either
201 * "valid" or "cut", check if the facets corresponding to the "cut"
202 * constraints of i lie entirely within basic set j.
203 * If so, replace the pair by the basic set consisting of the valid
204 * constraints in both basic sets.
206 * To see that we are not introducing any extra points, call the
207 * two basic sets A and B and the resulting set U and let x
208 * be an element of U \setminus ( A \cup B ).
209 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
210 * violates them. Let X be the intersection of U with the opposites
211 * of these constraints. Then x \in X.
212 * The facet corresponding to c_1 contains the corresponding facet of A.
213 * This facet is entirely contained in B, so c_2 is valid on the facet.
214 * However, since it is also (part of) a facet of X, -c_2 is also valid
215 * on the facet. This means c_2 is saturated on the facet, so c_1 and
216 * c_2 must be opposites of each other, but then x could not violate
219 static int check_facets(struct isl_set *set, int i, int j,
220 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
223 struct isl_tab_undo *snap;
224 unsigned n_eq = set->p[i]->n_eq;
226 snap = isl_tab_snap(set->ctx, tabs[i]);
228 for (k = 0; k < set->p[i]->n_ineq; ++k) {
229 if (ineq_i[k] != STATUS_CUT)
231 tabs[i] = isl_tab_select_facet(set->ctx, tabs[i], n_eq + k);
232 for (l = 0; l < set->p[j]->n_ineq; ++l) {
234 if (ineq_j[l] != STATUS_CUT)
236 stat = status_in(set->ctx, set->p[j]->ineq[l], tabs[i]);
237 if (stat != STATUS_VALID)
240 isl_tab_rollback(set->ctx, tabs[i], snap);
241 if (l < set->p[j]->n_ineq)
245 if (k < set->p[i]->n_ineq)
248 return fuse(set, i, j, tabs, ineq_i, ineq_j);
251 /* Both basic sets have at least one inequality with and adjacent
252 * (but opposite) inequality in the other basic set.
253 * Check that there are no cut constraints and that there is only
254 * a single pair of adjacent inequalities.
255 * If so, we can replace the pair by a single basic set described
256 * by all but the pair of adjacent inequalities.
257 * Any additional points introduced lie strictly between the two
258 * adjacent hyperplanes and can therefore be integral.
267 * The test for a single pair of adjancent inequalities is important
268 * for avoiding the combination of two basic sets like the following
278 static int check_adj_ineq(struct isl_set *set, int i, int j,
279 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
283 if (any(ineq_i, set->p[i]->n_ineq, STATUS_CUT) ||
284 any(ineq_j, set->p[j]->n_ineq, STATUS_CUT))
287 else if (count(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
288 count(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
289 changed = fuse(set, i, j, tabs, ineq_i, ineq_j);
290 /* else ADJ INEQ TOO MANY */
295 /* Check if basic set "i" contains the basic set represented
296 * by the tableau "tab".
298 static int contains(struct isl_set *set, int i, int *ineq_i,
304 dim = isl_basic_set_total_dim(set->p[i]);
305 for (k = 0; k < set->p[i]->n_eq; ++k) {
306 for (l = 0; l < 2; ++l) {
308 isl_seq_neg(set->p[i]->eq[k], set->p[i]->eq[k], 1+dim);
309 stat = status_in(set->ctx, set->p[i]->eq[k], tab);
310 if (stat != STATUS_VALID)
315 for (k = 0; k < set->p[i]->n_ineq; ++k) {
317 if (ineq_i[l] == STATUS_REDUNDANT)
319 stat = status_in(set->ctx, set->p[i]->ineq[k], tab);
320 if (stat != STATUS_VALID)
326 /* At least one of the basic sets has an equality that is adjacent
327 * to inequality. Make sure that only one of the basic sets has
328 * such an equality and that the other basic set has exactly one
329 * inequality adjacent to an equality.
330 * We call the basic set that has the inequality "i" and the basic
331 * set that has the equality "j".
332 * If "i" has any "cut" inequality, then relaxing the inequality
333 * by one would not result in a basic set that contains the other
335 * Otherwise, we relax the constraint, compute the corresponding
336 * facet and check whether it is included in the other basic set.
337 * If so, we know that relaxing the constraint extend the basic
338 * set with exactly the other basic set (we already know that this
339 * other basic set is included in the extension, because there
340 * were no "cut" inequalities in "i") and we can replace the
341 * two basic sets by thie extension.
349 static int check_adj_eq(struct isl_set *set, int i, int j,
350 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
355 struct isl_tab_undo *snap, *snap2;
356 unsigned n_eq = set->p[i]->n_eq;
358 if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ADJ_INEQ) &&
359 any(eq_j, 2 * set->p[j]->n_eq, STATUS_ADJ_INEQ))
360 /* ADJ EQ TOO MANY */
363 if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ADJ_INEQ))
364 return check_adj_eq(set, j, i, tabs,
365 eq_j, ineq_j, eq_i, ineq_i);
367 /* j has an equality adjacent to an inequality in i */
369 if (any(ineq_i, set->p[i]->n_ineq, STATUS_CUT))
372 if (count(eq_j, 2 * set->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 ||
373 count(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
374 any(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_EQ) ||
375 any(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
376 any(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_INEQ))
377 /* ADJ EQ TOO MANY */
380 for (k = 0; k < set->p[i]->n_ineq ; ++k)
381 if (ineq_i[k] == STATUS_ADJ_EQ)
384 snap = isl_tab_snap(set->ctx, tabs[i]);
385 tabs[i] = isl_tab_relax(set->ctx, tabs[i], n_eq + k);
386 snap2 = isl_tab_snap(set->ctx, tabs[i]);
387 tabs[i] = isl_tab_select_facet(set->ctx, tabs[i], n_eq + k);
388 super = contains(set, j, ineq_j, tabs[i]);
390 isl_tab_rollback(set->ctx, tabs[i], snap2);
391 set->p[i] = isl_basic_set_cow(set->p[i]);
394 isl_int_add_ui(set->p[i]->ineq[k][0], set->p[i]->ineq[k][0], 1);
395 ISL_F_SET(set->p[i], ISL_BASIC_SET_FINAL);
399 isl_tab_rollback(set->ctx, tabs[i], snap);
404 /* Check if the union of the given pair of basic sets
405 * can be represented by a single basic set.
406 * If so, replace the pair by the single basic set and return 1.
407 * Otherwise, return 0;
409 * We first check the effect of each constraint of one basic set
410 * on the other basic set.
411 * The constraint may be
412 * redundant the constraint is redundant in its own
413 * basic set and should be ignore and removed
415 * valid all (integer) points of the other basic set
416 * satisfy the constraint
417 * separate no (integer) point of the other basic set
418 * satisfies the constraint
419 * cut some but not all points of the other basic set
420 * satisfy the constraint
421 * adj_eq the given constraint is adjacent (on the outside)
422 * to an equality of the other basic set
423 * adj_ineq the given constraint is adjacent (on the outside)
424 * to an inequality of the other basic set
426 * We consider four cases in which we can replace the pair by a single
427 * basic set. We ignore all "redundant" constraints.
429 * 1. all constraints of one basic set are valid
430 * => the other basic set is a subset and can be removed
432 * 2. all constraints of both basic sets are either "valid" or "cut"
433 * and the facets corresponding to the "cut" constraints
434 * of one of the basic sets lies entirely inside the other basic set
435 * => the pair can be replaced by a basic set consisting
436 * of the valid constraints in both basic sets
438 * 3. there is a single pair of adjacent inequalities
439 * (all other constraints are "valid")
440 * => the pair can be replaced by a basic set consisting
441 * of the valid constraints in both basic sets
443 * 4. there is a single adjacent pair of an inequality and an equality,
444 * the other constraints of the basic set containing the inequality are
445 * "valid". Moreover, if the inequality the basic set is relaxed
446 * and then turned into an equality, then resulting facet lies
447 * entirely inside the other basic set
448 * => the pair can be replaced by the basic set containing
449 * the inequality, with the inequality relaxed.
451 * Throughout the computation, we maintain a collection of tableaus
452 * corresponding to the basic sets. When the basic sets are dropped
453 * or combined, the tableaus are modified accordingly.
455 static int coalesce_pair(struct isl_set *set, int i, int j,
456 struct isl_tab **tabs)
464 eq_i = eq_status_in(set, i, j, tabs);
465 if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ERROR))
467 if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_SEPARATE))
470 eq_j = eq_status_in(set, j, i, tabs);
471 if (any(eq_j, 2 * set->p[j]->n_eq, STATUS_ERROR))
473 if (any(eq_j, 2 * set->p[j]->n_eq, STATUS_SEPARATE))
476 ineq_i = ineq_status_in(set, i, j, tabs);
477 if (any(ineq_i, set->p[i]->n_ineq, STATUS_ERROR))
479 if (any(ineq_i, set->p[i]->n_ineq, STATUS_SEPARATE))
482 ineq_j = ineq_status_in(set, j, i, tabs);
483 if (any(ineq_j, set->p[j]->n_ineq, STATUS_ERROR))
485 if (any(ineq_j, set->p[j]->n_ineq, STATUS_SEPARATE))
488 if (all(eq_i, 2 * set->p[i]->n_eq, STATUS_VALID) &&
489 all(ineq_i, set->p[i]->n_ineq, STATUS_VALID)) {
492 } else if (all(eq_j, 2 * set->p[j]->n_eq, STATUS_VALID) &&
493 all(ineq_j, set->p[j]->n_ineq, STATUS_VALID)) {
496 } else if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_CUT) ||
497 any(eq_j, 2 * set->p[j]->n_eq, STATUS_CUT)) {
499 } else if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ADJ_EQ) ||
500 any(eq_j, 2 * set->p[j]->n_eq, STATUS_ADJ_EQ)) {
502 } else if (any(eq_i, 2 * set->p[i]->n_eq, STATUS_ADJ_INEQ) ||
503 any(eq_j, 2 * set->p[j]->n_eq, STATUS_ADJ_INEQ)) {
504 changed = check_adj_eq(set, i, j, tabs,
505 eq_i, ineq_i, eq_j, ineq_j);
506 } else if (any(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_EQ) ||
507 any(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_EQ)) {
510 } else if (any(ineq_i, set->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
511 any(ineq_j, set->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
512 changed = check_adj_ineq(set, i, j, tabs, ineq_i, ineq_j);
514 changed = check_facets(set, i, j, tabs, ineq_i, ineq_j);
530 static struct isl_set *coalesce(struct isl_set *set, struct isl_tab **tabs)
534 for (i = 0; i < set->n - 1; ++i)
535 for (j = i + 1; j < set->n; ++j) {
537 changed = coalesce_pair(set, i, j, tabs);
541 return coalesce(set, tabs);
549 /* For each pair of basic sets in the set, check if the union of the two
550 * can be represented by a single basic set.
551 * If so, replace the pair by the single basic set and start over.
553 struct isl_set *isl_set_coalesce(struct isl_set *set)
558 struct isl_tab **tabs = NULL;
566 set = isl_set_align_divs(set);
568 tabs = isl_calloc_array(set->ctx, struct isl_tab *, set->n);
574 for (i = 0; i < set->n; ++i) {
575 tabs[i] = isl_tab_from_basic_set(set->p[i]);
578 if (!ISL_F_ISSET(set->p[i], ISL_BASIC_SET_NO_IMPLICIT))
579 tabs[i] = isl_tab_detect_equalities(set->ctx, tabs[i]);
580 if (!ISL_F_ISSET(set->p[i], ISL_BASIC_SET_NO_REDUNDANT))
581 tabs[i] = isl_tab_detect_redundant(set->ctx, tabs[i]);
583 for (i = set->n - 1; i >= 0; --i)
587 set = coalesce(set, tabs);
590 for (i = 0; i < set->n; ++i) {
591 set->p[i] = isl_basic_set_update_from_tab(set->p[i],
595 ISL_F_SET(set->p[i], ISL_BASIC_SET_NO_IMPLICIT);
596 ISL_F_SET(set->p[i], ISL_BASIC_SET_NO_REDUNDANT);
599 for (i = 0; i < n; ++i)
600 isl_tab_free(ctx, tabs[i]);
607 for (i = 0; i < n; ++i)
608 isl_tab_free(ctx, tabs[i]);