2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15 #include "isl_map_private.h"
17 #include <isl/options.h>
19 #include <isl_mat_private.h>
20 #include <isl_local_space_private.h>
22 #define STATUS_ERROR -1
23 #define STATUS_REDUNDANT 1
24 #define STATUS_VALID 2
25 #define STATUS_SEPARATE 3
27 #define STATUS_ADJ_EQ 5
28 #define STATUS_ADJ_INEQ 6
30 static int status_in(isl_int *ineq, struct isl_tab *tab)
32 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
35 case isl_ineq_error: return STATUS_ERROR;
36 case isl_ineq_redundant: return STATUS_VALID;
37 case isl_ineq_separate: return STATUS_SEPARATE;
38 case isl_ineq_cut: return STATUS_CUT;
39 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
40 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
44 /* Compute the position of the equalities of basic map "bmap_i"
45 * with respect to the basic map represented by "tab_j".
46 * The resulting array has twice as many entries as the number
47 * of equalities corresponding to the two inequalties to which
48 * each equality corresponds.
50 static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
51 struct isl_tab *tab_j)
54 int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
57 dim = isl_basic_map_total_dim(bmap_i);
58 for (k = 0; k < bmap_i->n_eq; ++k) {
59 for (l = 0; l < 2; ++l) {
60 isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
61 eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
62 if (eq[2 * k + l] == STATUS_ERROR)
65 if (eq[2 * k] == STATUS_SEPARATE ||
66 eq[2 * k + 1] == STATUS_SEPARATE)
76 /* Compute the position of the inequalities of basic map "bmap_i"
77 * (also represented by "tab_i", if not NULL) with respect to the basic map
78 * represented by "tab_j".
80 static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
81 struct isl_tab *tab_i, struct isl_tab *tab_j)
84 unsigned n_eq = bmap_i->n_eq;
85 int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
87 for (k = 0; k < bmap_i->n_ineq; ++k) {
88 if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
89 ineq[k] = STATUS_REDUNDANT;
92 ineq[k] = status_in(bmap_i->ineq[k], tab_j);
93 if (ineq[k] == STATUS_ERROR)
95 if (ineq[k] == STATUS_SEPARATE)
105 static int any(int *con, unsigned len, int status)
109 for (i = 0; i < len ; ++i)
110 if (con[i] == status)
115 static int count(int *con, unsigned len, int status)
120 for (i = 0; i < len ; ++i)
121 if (con[i] == status)
126 static int all(int *con, unsigned len, int status)
130 for (i = 0; i < len ; ++i) {
131 if (con[i] == STATUS_REDUNDANT)
133 if (con[i] != status)
139 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
141 isl_basic_map_free(map->p[i]);
142 isl_tab_free(tabs[i]);
144 if (i != map->n - 1) {
145 map->p[i] = map->p[map->n - 1];
146 tabs[i] = tabs[map->n - 1];
148 tabs[map->n - 1] = NULL;
152 /* Replace the pair of basic maps i and j by the basic map bounded
153 * by the valid constraints in both basic maps and the constraint
154 * in extra (if not NULL).
156 static int fuse(struct isl_map *map, int i, int j,
157 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
158 __isl_keep isl_mat *extra)
161 struct isl_basic_map *fused = NULL;
162 struct isl_tab *fused_tab = NULL;
163 unsigned total = isl_basic_map_total_dim(map->p[i]);
164 unsigned extra_rows = extra ? extra->n_row : 0;
166 fused = isl_basic_map_alloc_space(isl_space_copy(map->p[i]->dim),
168 map->p[i]->n_eq + map->p[j]->n_eq,
169 map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
173 for (k = 0; k < map->p[i]->n_eq; ++k) {
174 if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
175 eq_i[2 * k + 1] != STATUS_VALID))
177 l = isl_basic_map_alloc_equality(fused);
180 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
183 for (k = 0; k < map->p[j]->n_eq; ++k) {
184 if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
185 eq_j[2 * k + 1] != STATUS_VALID))
187 l = isl_basic_map_alloc_equality(fused);
190 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
193 for (k = 0; k < map->p[i]->n_ineq; ++k) {
194 if (ineq_i[k] != STATUS_VALID)
196 l = isl_basic_map_alloc_inequality(fused);
199 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
202 for (k = 0; k < map->p[j]->n_ineq; ++k) {
203 if (ineq_j[k] != STATUS_VALID)
205 l = isl_basic_map_alloc_inequality(fused);
208 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
211 for (k = 0; k < map->p[i]->n_div; ++k) {
212 int l = isl_basic_map_alloc_div(fused);
215 isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
218 for (k = 0; k < extra_rows; ++k) {
219 l = isl_basic_map_alloc_inequality(fused);
222 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
225 fused = isl_basic_map_gauss(fused, NULL);
226 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
227 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
228 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
229 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
231 fused_tab = isl_tab_from_basic_map(fused, 0);
232 if (isl_tab_detect_redundant(fused_tab) < 0)
235 isl_basic_map_free(map->p[i]);
237 isl_tab_free(tabs[i]);
243 isl_tab_free(fused_tab);
244 isl_basic_map_free(fused);
248 /* Given a pair of basic maps i and j such that all constraints are either
249 * "valid" or "cut", check if the facets corresponding to the "cut"
250 * constraints of i lie entirely within basic map j.
251 * If so, replace the pair by the basic map consisting of the valid
252 * constraints in both basic maps.
254 * To see that we are not introducing any extra points, call the
255 * two basic maps A and B and the resulting map U and let x
256 * be an element of U \setminus ( A \cup B ).
257 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
258 * violates them. Let X be the intersection of U with the opposites
259 * of these constraints. Then x \in X.
260 * The facet corresponding to c_1 contains the corresponding facet of A.
261 * This facet is entirely contained in B, so c_2 is valid on the facet.
262 * However, since it is also (part of) a facet of X, -c_2 is also valid
263 * on the facet. This means c_2 is saturated on the facet, so c_1 and
264 * c_2 must be opposites of each other, but then x could not violate
267 static int check_facets(struct isl_map *map, int i, int j,
268 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
271 struct isl_tab_undo *snap;
272 unsigned n_eq = map->p[i]->n_eq;
274 snap = isl_tab_snap(tabs[i]);
276 for (k = 0; k < map->p[i]->n_ineq; ++k) {
277 if (ineq_i[k] != STATUS_CUT)
279 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
281 for (l = 0; l < map->p[j]->n_ineq; ++l) {
283 if (ineq_j[l] != STATUS_CUT)
285 stat = status_in(map->p[j]->ineq[l], tabs[i]);
286 if (stat != STATUS_VALID)
289 if (isl_tab_rollback(tabs[i], snap) < 0)
291 if (l < map->p[j]->n_ineq)
295 if (k < map->p[i]->n_ineq)
298 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
301 /* Check if basic map "i" contains the basic map represented
302 * by the tableau "tab".
304 static int contains(struct isl_map *map, int i, int *ineq_i,
310 dim = isl_basic_map_total_dim(map->p[i]);
311 for (k = 0; k < map->p[i]->n_eq; ++k) {
312 for (l = 0; l < 2; ++l) {
314 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
315 stat = status_in(map->p[i]->eq[k], tab);
316 if (stat != STATUS_VALID)
321 for (k = 0; k < map->p[i]->n_ineq; ++k) {
323 if (ineq_i[k] == STATUS_REDUNDANT)
325 stat = status_in(map->p[i]->ineq[k], tab);
326 if (stat != STATUS_VALID)
332 /* Basic map "i" has an inequality (say "k") that is adjacent
333 * to some inequality of basic map "j". All the other inequalities
335 * Check if basic map "j" forms an extension of basic map "i".
337 * Note that this function is only called if some of the equalities or
338 * inequalities of basic map "j" do cut basic map "i". The function is
339 * correct even if there are no such cut constraints, but in that case
340 * the additional checks performed by this function are overkill.
342 * In particular, we replace constraint k, say f >= 0, by constraint
343 * f <= -1, add the inequalities of "j" that are valid for "i"
344 * and check if the result is a subset of basic map "j".
345 * If so, then we know that this result is exactly equal to basic map "j"
346 * since all its constraints are valid for basic map "j".
347 * By combining the valid constraints of "i" (all equalities and all
348 * inequalities except "k") and the valid constraints of "j" we therefore
349 * obtain a basic map that is equal to their union.
350 * In this case, there is no need to perform a rollback of the tableau
351 * since it is going to be destroyed in fuse().
357 * |_______| _ |_________\
369 static int is_adj_ineq_extension(__isl_keep isl_map *map, int i, int j,
370 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
373 struct isl_tab_undo *snap;
374 unsigned n_eq = map->p[i]->n_eq;
375 unsigned total = isl_basic_map_total_dim(map->p[i]);
378 if (isl_tab_extend_cons(tabs[i], 1 + map->p[j]->n_ineq) < 0)
381 for (k = 0; k < map->p[i]->n_ineq; ++k)
382 if (ineq_i[k] == STATUS_ADJ_INEQ)
384 if (k >= map->p[i]->n_ineq)
385 isl_die(isl_map_get_ctx(map), isl_error_internal,
386 "ineq_i should have exactly one STATUS_ADJ_INEQ",
389 snap = isl_tab_snap(tabs[i]);
391 if (isl_tab_unrestrict(tabs[i], n_eq + k) < 0)
394 isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total);
395 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
396 r = isl_tab_add_ineq(tabs[i], map->p[i]->ineq[k]);
397 isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total);
398 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
402 for (k = 0; k < map->p[j]->n_ineq; ++k) {
403 if (ineq_j[k] != STATUS_VALID)
405 if (isl_tab_add_ineq(tabs[i], map->p[j]->ineq[k]) < 0)
409 if (contains(map, j, ineq_j, tabs[i]))
410 return fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, NULL);
412 if (isl_tab_rollback(tabs[i], snap) < 0)
419 /* Both basic maps have at least one inequality with and adjacent
420 * (but opposite) inequality in the other basic map.
421 * Check that there are no cut constraints and that there is only
422 * a single pair of adjacent inequalities.
423 * If so, we can replace the pair by a single basic map described
424 * by all but the pair of adjacent inequalities.
425 * Any additional points introduced lie strictly between the two
426 * adjacent hyperplanes and can therefore be integral.
435 * The test for a single pair of adjancent inequalities is important
436 * for avoiding the combination of two basic maps like the following
446 * If there are some cut constraints on one side, then we may
447 * still be able to fuse the two basic maps, but we need to perform
448 * some additional checks in is_adj_ineq_extension.
450 static int check_adj_ineq(struct isl_map *map, int i, int j,
451 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
453 int count_i, count_j;
456 count_i = count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ);
457 count_j = count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ);
459 if (count_i != 1 && count_j != 1)
462 cut_i = any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
463 any(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
464 cut_j = any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT) ||
465 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT);
467 if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
468 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
470 if (count_i == 1 && !cut_i)
471 return is_adj_ineq_extension(map, i, j, tabs,
472 eq_i, ineq_i, eq_j, ineq_j);
474 if (count_j == 1 && !cut_j)
475 return is_adj_ineq_extension(map, j, i, tabs,
476 eq_j, ineq_j, eq_i, ineq_i);
481 /* Basic map "i" has an inequality "k" that is adjacent to some equality
482 * of basic map "j". All the other inequalities are valid for "j".
483 * Check if basic map "j" forms an extension of basic map "i".
485 * In particular, we relax constraint "k", compute the corresponding
486 * facet and check whether it is included in the other basic map.
487 * If so, we know that relaxing the constraint extends the basic
488 * map with exactly the other basic map (we already know that this
489 * other basic map is included in the extension, because there
490 * were no "cut" inequalities in "i") and we can replace the
491 * two basic maps by this extension.
499 static int is_adj_eq_extension(struct isl_map *map, int i, int j, int k,
500 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
504 struct isl_tab_undo *snap, *snap2;
505 unsigned n_eq = map->p[i]->n_eq;
507 if (isl_tab_is_equality(tabs[i], n_eq + k))
510 snap = isl_tab_snap(tabs[i]);
511 tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
512 snap2 = isl_tab_snap(tabs[i]);
513 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
515 super = contains(map, j, ineq_j, tabs[i]);
517 if (isl_tab_rollback(tabs[i], snap2) < 0)
519 map->p[i] = isl_basic_map_cow(map->p[i]);
522 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
523 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
527 if (isl_tab_rollback(tabs[i], snap) < 0)
533 /* Data structure that keeps track of the wrapping constraints
534 * and of information to bound the coefficients of those constraints.
536 * bound is set if we want to apply a bound on the coefficients
537 * mat contains the wrapping constraints
538 * max is the bound on the coefficients (if bound is set)
546 /* Update wraps->max to be greater than or equal to the coefficients
547 * in the equalities and inequalities of bmap that can be removed if we end up
550 static void wraps_update_max(struct isl_wraps *wraps,
551 __isl_keep isl_basic_map *bmap, int *eq, int *ineq)
555 unsigned total = isl_basic_map_total_dim(bmap);
559 for (k = 0; k < bmap->n_eq; ++k) {
560 if (eq[2 * k] == STATUS_VALID &&
561 eq[2 * k + 1] == STATUS_VALID)
563 isl_seq_abs_max(bmap->eq[k] + 1, total, &max_k);
564 if (isl_int_abs_gt(max_k, wraps->max))
565 isl_int_set(wraps->max, max_k);
568 for (k = 0; k < bmap->n_ineq; ++k) {
569 if (ineq[k] == STATUS_VALID || ineq[k] == STATUS_REDUNDANT)
571 isl_seq_abs_max(bmap->ineq[k] + 1, total, &max_k);
572 if (isl_int_abs_gt(max_k, wraps->max))
573 isl_int_set(wraps->max, max_k);
576 isl_int_clear(max_k);
579 /* Initialize the isl_wraps data structure.
580 * If we want to bound the coefficients of the wrapping constraints,
581 * we set wraps->max to the largest coefficient
582 * in the equalities and inequalities that can be removed if we end up
585 static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
586 __isl_keep isl_map *map, int i, int j,
587 int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
595 ctx = isl_mat_get_ctx(mat);
596 wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
599 isl_int_init(wraps->max);
600 isl_int_set_si(wraps->max, 0);
601 wraps_update_max(wraps, map->p[i], eq_i, ineq_i);
602 wraps_update_max(wraps, map->p[j], eq_j, ineq_j);
605 /* Free the contents of the isl_wraps data structure.
607 static void wraps_free(struct isl_wraps *wraps)
609 isl_mat_free(wraps->mat);
611 isl_int_clear(wraps->max);
614 /* Is the wrapping constraint in row "row" allowed?
616 * If wraps->bound is set, we check that none of the coefficients
617 * is greater than wraps->max.
619 static int allow_wrap(struct isl_wraps *wraps, int row)
626 for (i = 1; i < wraps->mat->n_col; ++i)
627 if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
633 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
634 * wrap the constraint around "bound" such that it includes the whole
635 * set "set" and append the resulting constraint to "wraps".
636 * "wraps" is assumed to have been pre-allocated to the appropriate size.
637 * wraps->n_row is the number of actual wrapped constraints that have
639 * If any of the wrapping problems results in a constraint that is
640 * identical to "bound", then this means that "set" is unbounded in such
641 * way that no wrapping is possible. If this happens then wraps->n_row
643 * Similarly, if we want to bound the coefficients of the wrapping
644 * constraints and a newly added wrapping constraint does not
645 * satisfy the bound, then wraps->n_row is also reset to zero.
647 static int add_wraps(struct isl_wraps *wraps, __isl_keep isl_basic_map *bmap,
648 struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
652 unsigned total = isl_basic_map_total_dim(bmap);
654 w = wraps->mat->n_row;
656 for (l = 0; l < bmap->n_ineq; ++l) {
657 if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
659 if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
661 if (isl_tab_is_redundant(tab, bmap->n_eq + l))
664 isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
665 if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->ineq[l]))
667 if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
669 if (!allow_wrap(wraps, w))
673 for (l = 0; l < bmap->n_eq; ++l) {
674 if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
676 if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
679 isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
680 isl_seq_neg(wraps->mat->row[w + 1], bmap->eq[l], 1 + total);
681 if (!isl_set_wrap_facet(set, wraps->mat->row[w],
682 wraps->mat->row[w + 1]))
684 if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
686 if (!allow_wrap(wraps, w))
690 isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
691 if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->eq[l]))
693 if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
695 if (!allow_wrap(wraps, w))
700 wraps->mat->n_row = w;
703 wraps->mat->n_row = 0;
707 /* Check if the constraints in "wraps" from "first" until the last
708 * are all valid for the basic set represented by "tab".
709 * If not, wraps->n_row is set to zero.
711 static int check_wraps(__isl_keep isl_mat *wraps, int first,
716 for (i = first; i < wraps->n_row; ++i) {
717 enum isl_ineq_type type;
718 type = isl_tab_ineq_type(tab, wraps->row[i]);
719 if (type == isl_ineq_error)
721 if (type == isl_ineq_redundant)
730 /* Return a set that corresponds to the non-redudant constraints
731 * (as recorded in tab) of bmap.
733 * It's important to remove the redundant constraints as some
734 * of the other constraints may have been modified after the
735 * constraints were marked redundant.
736 * In particular, a constraint may have been relaxed.
737 * Redundant constraints are ignored when a constraint is relaxed
738 * and should therefore continue to be ignored ever after.
739 * Otherwise, the relaxation might be thwarted by some of
742 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
745 bmap = isl_basic_map_copy(bmap);
746 bmap = isl_basic_map_cow(bmap);
747 bmap = isl_basic_map_update_from_tab(bmap, tab);
748 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap));
751 /* Given a basic set i with a constraint k that is adjacent to either the
752 * whole of basic set j or a facet of basic set j, check if we can wrap
753 * both the facet corresponding to k and the facet of j (or the whole of j)
754 * around their ridges to include the other set.
755 * If so, replace the pair of basic sets by their union.
757 * All constraints of i (except k) are assumed to be valid for j.
759 * However, the constraints of j may not be valid for i and so
760 * we have to check that the wrapping constraints for j are valid for i.
762 * In the case where j has a facet adjacent to i, tab[j] is assumed
763 * to have been restricted to this facet, so that the non-redundant
764 * constraints in tab[j] are the ridges of the facet.
765 * Note that for the purpose of wrapping, it does not matter whether
766 * we wrap the ridges of i around the whole of j or just around
767 * the facet since all the other constraints are assumed to be valid for j.
768 * In practice, we wrap to include the whole of j.
777 static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
778 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
781 struct isl_wraps wraps;
783 struct isl_set *set_i = NULL;
784 struct isl_set *set_j = NULL;
785 struct isl_vec *bound = NULL;
786 unsigned total = isl_basic_map_total_dim(map->p[i]);
787 struct isl_tab_undo *snap;
790 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
791 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
792 mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
793 map->p[i]->n_ineq + map->p[j]->n_ineq,
795 wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
796 bound = isl_vec_alloc(map->ctx, 1 + total);
797 if (!set_i || !set_j || !wraps.mat || !bound)
800 isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
801 isl_int_add_ui(bound->el[0], bound->el[0], 1);
803 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
804 wraps.mat->n_row = 1;
806 if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
808 if (!wraps.mat->n_row)
811 snap = isl_tab_snap(tabs[i]);
813 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k) < 0)
815 if (isl_tab_detect_redundant(tabs[i]) < 0)
818 isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
820 n = wraps.mat->n_row;
821 if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
824 if (isl_tab_rollback(tabs[i], snap) < 0)
826 if (check_wraps(wraps.mat, n, tabs[i]) < 0)
828 if (!wraps.mat->n_row)
831 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
850 /* Set the is_redundant property of the "n" constraints in "cuts",
852 * This is a fairly tricky operation as it bypasses isl_tab.c.
853 * The reason we want to temporarily mark some constraints redundant
854 * is that we want to ignore them in add_wraps.
856 * Initially all cut constraints are non-redundant, but the
857 * selection of a facet right before the call to this function
858 * may have made some of them redundant.
859 * Likewise, the same constraints are marked non-redundant
860 * in the second call to this function, before they are officially
861 * made non-redundant again in the subsequent rollback.
863 static void set_is_redundant(struct isl_tab *tab, unsigned n_eq,
864 int *cuts, int n, int k, int v)
868 for (l = 0; l < n; ++l) {
871 tab->con[n_eq + cuts[l]].is_redundant = v;
875 /* Given a pair of basic maps i and j such that j sticks out
876 * of i at n cut constraints, each time by at most one,
877 * try to compute wrapping constraints and replace the two
878 * basic maps by a single basic map.
879 * The other constraints of i are assumed to be valid for j.
881 * The facets of i corresponding to the cut constraints are
882 * wrapped around their ridges, except those ridges determined
883 * by any of the other cut constraints.
884 * The intersections of cut constraints need to be ignored
885 * as the result of wrapping one cut constraint around another
886 * would result in a constraint cutting the union.
887 * In each case, the facets are wrapped to include the union
888 * of the two basic maps.
890 * The pieces of j that lie at an offset of exactly one from
891 * one of the cut constraints of i are wrapped around their edges.
892 * Here, there is no need to ignore intersections because we
893 * are wrapping around the union of the two basic maps.
895 * If any wrapping fails, i.e., if we cannot wrap to touch
896 * the union, then we give up.
897 * Otherwise, the pair of basic maps is replaced by their union.
899 static int wrap_in_facets(struct isl_map *map, int i, int j,
900 int *cuts, int n, struct isl_tab **tabs,
901 int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
904 struct isl_wraps wraps;
907 isl_vec *bound = NULL;
908 unsigned total = isl_basic_map_total_dim(map->p[i]);
911 struct isl_tab_undo *snap_i, *snap_j;
913 if (isl_tab_extend_cons(tabs[j], 1) < 0)
916 max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
917 map->p[i]->n_ineq + map->p[j]->n_ineq;
920 set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]),
921 set_from_updated_bmap(map->p[j], tabs[j]));
922 mat = isl_mat_alloc(map->ctx, max_wrap, 1 + total);
923 wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
924 bound = isl_vec_alloc(map->ctx, 1 + total);
925 if (!set || !wraps.mat || !bound)
928 snap_i = isl_tab_snap(tabs[i]);
929 snap_j = isl_tab_snap(tabs[j]);
931 wraps.mat->n_row = 0;
933 for (k = 0; k < n; ++k) {
934 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + cuts[k]) < 0)
936 if (isl_tab_detect_redundant(tabs[i]) < 0)
938 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1);
940 isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
941 if (!tabs[i]->empty &&
942 add_wraps(&wraps, map->p[i], tabs[i], bound->el, set) < 0)
945 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0);
946 if (isl_tab_rollback(tabs[i], snap_i) < 0)
951 if (!wraps.mat->n_row)
954 isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
955 isl_int_add_ui(bound->el[0], bound->el[0], 1);
956 if (isl_tab_add_eq(tabs[j], bound->el) < 0)
958 if (isl_tab_detect_redundant(tabs[j]) < 0)
961 if (!tabs[j]->empty &&
962 add_wraps(&wraps, map->p[j], tabs[j], bound->el, set) < 0)
965 if (isl_tab_rollback(tabs[j], snap_j) < 0)
968 if (!wraps.mat->n_row)
973 changed = fuse(map, i, j, tabs,
974 eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
988 /* Given two basic sets i and j such that i has no cut equalities,
989 * check if relaxing all the cut inequalities of i by one turns
990 * them into valid constraint for j and check if we can wrap in
991 * the bits that are sticking out.
992 * If so, replace the pair by their union.
994 * We first check if all relaxed cut inequalities of i are valid for j
995 * and then try to wrap in the intersections of the relaxed cut inequalities
998 * During this wrapping, we consider the points of j that lie at a distance
999 * of exactly 1 from i. In particular, we ignore the points that lie in
1000 * between this lower-dimensional space and the basic map i.
1001 * We can therefore only apply this to integer maps.
1027 * Wrapping can fail if the result of wrapping one of the facets
1028 * around its edges does not produce any new facet constraint.
1029 * In particular, this happens when we try to wrap in unbounded sets.
1031 * _______________________________________________________________________
1035 * |_| |_________________________________________________________________
1038 * The following is not an acceptable result of coalescing the above two
1039 * sets as it includes extra integer points.
1040 * _______________________________________________________________________
1045 * \______________________________________________________________________
1047 static int can_wrap_in_set(struct isl_map *map, int i, int j,
1048 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1055 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) ||
1056 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
1059 n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
1063 cuts = isl_alloc_array(map->ctx, int, n);
1067 for (k = 0, m = 0; m < n; ++k) {
1068 enum isl_ineq_type type;
1070 if (ineq_i[k] != STATUS_CUT)
1073 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
1074 type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]);
1075 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
1076 if (type == isl_ineq_error)
1078 if (type != isl_ineq_redundant)
1085 changed = wrap_in_facets(map, i, j, cuts, n, tabs,
1086 eq_i, ineq_i, eq_j, ineq_j);
1096 /* Check if either i or j has a single cut constraint that can
1097 * be used to wrap in (a facet of) the other basic set.
1098 * if so, replace the pair by their union.
1100 static int check_wrap(struct isl_map *map, int i, int j,
1101 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1105 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
1106 changed = can_wrap_in_set(map, i, j, tabs,
1107 eq_i, ineq_i, eq_j, ineq_j);
1111 if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1112 changed = can_wrap_in_set(map, j, i, tabs,
1113 eq_j, ineq_j, eq_i, ineq_i);
1117 /* At least one of the basic maps has an equality that is adjacent
1118 * to inequality. Make sure that only one of the basic maps has
1119 * such an equality and that the other basic map has exactly one
1120 * inequality adjacent to an equality.
1121 * We call the basic map that has the inequality "i" and the basic
1122 * map that has the equality "j".
1123 * If "i" has any "cut" (in)equality, then relaxing the inequality
1124 * by one would not result in a basic map that contains the other
1127 static int check_adj_eq(struct isl_map *map, int i, int j,
1128 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1133 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
1134 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
1135 /* ADJ EQ TOO MANY */
1138 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
1139 return check_adj_eq(map, j, i, tabs,
1140 eq_j, ineq_j, eq_i, ineq_i);
1142 /* j has an equality adjacent to an inequality in i */
1144 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
1146 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
1149 if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
1150 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
1151 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
1152 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
1153 /* ADJ EQ TOO MANY */
1156 for (k = 0; k < map->p[i]->n_ineq; ++k)
1157 if (ineq_i[k] == STATUS_ADJ_EQ)
1160 changed = is_adj_eq_extension(map, i, j, k, tabs,
1161 eq_i, ineq_i, eq_j, ineq_j);
1165 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1)
1168 changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
1173 /* The two basic maps lie on adjacent hyperplanes. In particular,
1174 * basic map "i" has an equality that lies parallel to basic map "j".
1175 * Check if we can wrap the facets around the parallel hyperplanes
1176 * to include the other set.
1178 * We perform basically the same operations as can_wrap_in_facet,
1179 * except that we don't need to select a facet of one of the sets.
1185 * We only allow one equality of "i" to be adjacent to an equality of "j"
1186 * to avoid coalescing
1188 * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
1189 * x <= 10 and y <= 10;
1190 * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
1191 * y >= 5 and y <= 15 }
1195 * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
1196 * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
1197 * y2 <= 1 + x + y - x2 and y2 >= y and
1198 * y2 >= 1 + x + y - x2 }
1200 static int check_eq_adj_eq(struct isl_map *map, int i, int j,
1201 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1205 struct isl_wraps wraps;
1207 struct isl_set *set_i = NULL;
1208 struct isl_set *set_j = NULL;
1209 struct isl_vec *bound = NULL;
1210 unsigned total = isl_basic_map_total_dim(map->p[i]);
1212 if (count(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) != 1)
1215 for (k = 0; k < 2 * map->p[i]->n_eq ; ++k)
1216 if (eq_i[k] == STATUS_ADJ_EQ)
1219 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
1220 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
1221 mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
1222 map->p[i]->n_ineq + map->p[j]->n_ineq,
1224 wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
1225 bound = isl_vec_alloc(map->ctx, 1 + total);
1226 if (!set_i || !set_j || !wraps.mat || !bound)
1230 isl_seq_neg(bound->el, map->p[i]->eq[k / 2], 1 + total);
1232 isl_seq_cpy(bound->el, map->p[i]->eq[k / 2], 1 + total);
1233 isl_int_add_ui(bound->el[0], bound->el[0], 1);
1235 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
1236 wraps.mat->n_row = 1;
1238 if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
1240 if (!wraps.mat->n_row)
1243 isl_int_sub_ui(bound->el[0], bound->el[0], 1);
1244 isl_seq_neg(bound->el, bound->el, 1 + total);
1246 isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
1249 if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
1251 if (!wraps.mat->n_row)
1254 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
1257 error: changed = -1;
1262 isl_set_free(set_i);
1263 isl_set_free(set_j);
1264 isl_vec_free(bound);
1269 /* Check if the union of the given pair of basic maps
1270 * can be represented by a single basic map.
1271 * If so, replace the pair by the single basic map and return 1.
1272 * Otherwise, return 0;
1273 * The two basic maps are assumed to live in the same local space.
1275 * We first check the effect of each constraint of one basic map
1276 * on the other basic map.
1277 * The constraint may be
1278 * redundant the constraint is redundant in its own
1279 * basic map and should be ignore and removed
1281 * valid all (integer) points of the other basic map
1282 * satisfy the constraint
1283 * separate no (integer) point of the other basic map
1284 * satisfies the constraint
1285 * cut some but not all points of the other basic map
1286 * satisfy the constraint
1287 * adj_eq the given constraint is adjacent (on the outside)
1288 * to an equality of the other basic map
1289 * adj_ineq the given constraint is adjacent (on the outside)
1290 * to an inequality of the other basic map
1292 * We consider seven cases in which we can replace the pair by a single
1293 * basic map. We ignore all "redundant" constraints.
1295 * 1. all constraints of one basic map are valid
1296 * => the other basic map is a subset and can be removed
1298 * 2. all constraints of both basic maps are either "valid" or "cut"
1299 * and the facets corresponding to the "cut" constraints
1300 * of one of the basic maps lies entirely inside the other basic map
1301 * => the pair can be replaced by a basic map consisting
1302 * of the valid constraints in both basic maps
1304 * 3. there is a single pair of adjacent inequalities
1305 * (all other constraints are "valid")
1306 * => the pair can be replaced by a basic map consisting
1307 * of the valid constraints in both basic maps
1309 * 4. one basic map has a single adjacent inequality, while the other
1310 * constraints are "valid". The other basic map has some
1311 * "cut" constraints, but replacing the adjacent inequality by
1312 * its opposite and adding the valid constraints of the other
1313 * basic map results in a subset of the other basic map
1314 * => the pair can be replaced by a basic map consisting
1315 * of the valid constraints in both basic maps
1317 * 5. there is a single adjacent pair of an inequality and an equality,
1318 * the other constraints of the basic map containing the inequality are
1319 * "valid". Moreover, if the inequality the basic map is relaxed
1320 * and then turned into an equality, then resulting facet lies
1321 * entirely inside the other basic map
1322 * => the pair can be replaced by the basic map containing
1323 * the inequality, with the inequality relaxed.
1325 * 6. there is a single adjacent pair of an inequality and an equality,
1326 * the other constraints of the basic map containing the inequality are
1327 * "valid". Moreover, the facets corresponding to both
1328 * the inequality and the equality can be wrapped around their
1329 * ridges to include the other basic map
1330 * => the pair can be replaced by a basic map consisting
1331 * of the valid constraints in both basic maps together
1332 * with all wrapping constraints
1334 * 7. one of the basic maps extends beyond the other by at most one.
1335 * Moreover, the facets corresponding to the cut constraints and
1336 * the pieces of the other basic map at offset one from these cut
1337 * constraints can be wrapped around their ridges to include
1338 * the union of the two basic maps
1339 * => the pair can be replaced by a basic map consisting
1340 * of the valid constraints in both basic maps together
1341 * with all wrapping constraints
1343 * 8. the two basic maps live in adjacent hyperplanes. In principle
1344 * such sets can always be combined through wrapping, but we impose
1345 * that there is only one such pair, to avoid overeager coalescing.
1347 * Throughout the computation, we maintain a collection of tableaus
1348 * corresponding to the basic maps. When the basic maps are dropped
1349 * or combined, the tableaus are modified accordingly.
1351 static int coalesce_local_pair(__isl_keep isl_map *map, int i, int j,
1352 struct isl_tab **tabs)
1360 eq_i = eq_status_in(map->p[i], tabs[j]);
1363 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
1365 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
1368 eq_j = eq_status_in(map->p[j], tabs[i]);
1371 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
1373 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
1376 ineq_i = ineq_status_in(map->p[i], tabs[i], tabs[j]);
1379 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
1381 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
1384 ineq_j = ineq_status_in(map->p[j], tabs[j], tabs[i]);
1387 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
1389 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
1392 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
1393 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
1396 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
1397 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
1400 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ)) {
1401 changed = check_eq_adj_eq(map, i, j, tabs,
1402 eq_i, ineq_i, eq_j, ineq_j);
1403 } else if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
1404 changed = check_eq_adj_eq(map, j, i, tabs,
1405 eq_j, ineq_j, eq_i, ineq_i);
1406 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
1407 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
1408 changed = check_adj_eq(map, i, j, tabs,
1409 eq_i, ineq_i, eq_j, ineq_j);
1410 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
1411 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
1414 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
1415 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
1416 changed = check_adj_ineq(map, i, j, tabs,
1417 eq_i, ineq_i, eq_j, ineq_j);
1419 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1420 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1421 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
1423 changed = check_wrap(map, i, j, tabs,
1424 eq_i, ineq_i, eq_j, ineq_j);
1441 /* Do the two basic maps live in the same local space, i.e.,
1442 * do they have the same (known) divs?
1443 * If either basic map has any unknown divs, then we can only assume
1444 * that they do not live in the same local space.
1446 static int same_divs(__isl_keep isl_basic_map *bmap1,
1447 __isl_keep isl_basic_map *bmap2)
1453 if (!bmap1 || !bmap2)
1455 if (bmap1->n_div != bmap2->n_div)
1458 if (bmap1->n_div == 0)
1461 known = isl_basic_map_divs_known(bmap1);
1462 if (known < 0 || !known)
1464 known = isl_basic_map_divs_known(bmap2);
1465 if (known < 0 || !known)
1468 total = isl_basic_map_total_dim(bmap1);
1469 for (i = 0; i < bmap1->n_div; ++i)
1470 if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
1476 /* Given two basic maps "i" and "j", where the divs of "i" form a subset
1477 * of those of "j", check if basic map "j" is a subset of basic map "i"
1478 * and, if so, drop basic map "j".
1480 * We first expand the divs of basic map "i" to match those of basic map "j",
1481 * using the divs and expansion computed by the caller.
1482 * Then we check if all constraints of the expanded "i" are valid for "j".
1484 static int coalesce_subset(__isl_keep isl_map *map, int i, int j,
1485 struct isl_tab **tabs, __isl_keep isl_mat *div, int *exp)
1487 isl_basic_map *bmap;
1492 bmap = isl_basic_map_copy(map->p[i]);
1493 bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp);
1498 eq_i = eq_status_in(bmap, tabs[j]);
1501 if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR))
1503 if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE))
1506 ineq_i = ineq_status_in(bmap, NULL, tabs[j]);
1509 if (any(ineq_i, bmap->n_ineq, STATUS_ERROR))
1511 if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE))
1514 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
1515 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
1521 isl_basic_map_free(bmap);
1526 isl_basic_map_free(bmap);
1532 /* Check if the basic map "j" is a subset of basic map "i",
1533 * assuming that "i" has fewer divs that "j".
1534 * If not, then we change the order.
1536 * If the two basic maps have the same number of divs, then
1537 * they must necessarily be different. Otherwise, we would have
1538 * called coalesce_local_pair. We therefore don't do try anyhing
1541 * We first check if the divs of "i" are all known and form a subset
1542 * of those of "j". If so, we pass control over to coalesce_subset.
1544 static int check_coalesce_subset(__isl_keep isl_map *map, int i, int j,
1545 struct isl_tab **tabs)
1548 isl_mat *div_i, *div_j, *div;
1554 if (map->p[i]->n_div == map->p[j]->n_div)
1556 if (map->p[j]->n_div < map->p[i]->n_div)
1557 return check_coalesce_subset(map, j, i, tabs);
1559 known = isl_basic_map_divs_known(map->p[i]);
1560 if (known < 0 || !known)
1563 ctx = isl_map_get_ctx(map);
1565 div_i = isl_basic_map_get_divs(map->p[i]);
1566 div_j = isl_basic_map_get_divs(map->p[j]);
1568 if (!div_i || !div_j)
1571 exp1 = isl_alloc_array(ctx, int, div_i->n_row);
1572 exp2 = isl_alloc_array(ctx, int, div_j->n_row);
1576 div = isl_merge_divs(div_i, div_j, exp1, exp2);
1580 if (div->n_row == div_j->n_row)
1581 subset = coalesce_subset(map, i, j, tabs, div, exp1);
1587 isl_mat_free(div_i);
1588 isl_mat_free(div_j);
1595 isl_mat_free(div_i);
1596 isl_mat_free(div_j);
1602 /* Check if the union of the given pair of basic maps
1603 * can be represented by a single basic map.
1604 * If so, replace the pair by the single basic map and return 1.
1605 * Otherwise, return 0;
1607 * We first check if the two basic maps live in the same local space.
1608 * If so, we do the complete check. Otherwise, we check if one is
1609 * an obvious subset of the other.
1611 static int coalesce_pair(__isl_keep isl_map *map, int i, int j,
1612 struct isl_tab **tabs)
1616 same = same_divs(map->p[i], map->p[j]);
1620 return coalesce_local_pair(map, i, j, tabs);
1622 return check_coalesce_subset(map, i, j, tabs);
1625 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
1629 for (i = map->n - 2; i >= 0; --i)
1631 for (j = i + 1; j < map->n; ++j) {
1633 changed = coalesce_pair(map, i, j, tabs);
1645 /* For each pair of basic maps in the map, check if the union of the two
1646 * can be represented by a single basic map.
1647 * If so, replace the pair by the single basic map and start over.
1649 * Since we are constructing the tableaus of the basic maps anyway,
1650 * we exploit them to detect implicit equalities and redundant constraints.
1651 * This also helps the coalescing as it can ignore the redundant constraints.
1652 * In order to avoid confusion, we make all implicit equalities explicit
1653 * in the basic maps. We don't call isl_basic_map_gauss, though,
1654 * as that may affect the number of constraints.
1655 * This means that we have to call isl_basic_map_gauss at the end
1656 * of the computation to ensure that the basic maps are not left
1657 * in an unexpected state.
1659 struct isl_map *isl_map_coalesce(struct isl_map *map)
1663 struct isl_tab **tabs = NULL;
1665 map = isl_map_remove_empty_parts(map);
1672 map = isl_map_sort_divs(map);
1673 map = isl_map_cow(map);
1675 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
1680 for (i = 0; i < map->n; ++i) {
1681 tabs[i] = isl_tab_from_basic_map(map->p[i], 0);
1684 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
1685 if (isl_tab_detect_implicit_equalities(tabs[i]) < 0)
1687 map->p[i] = isl_tab_make_equalities_explicit(tabs[i],
1691 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
1692 if (isl_tab_detect_redundant(tabs[i]) < 0)
1695 for (i = map->n - 1; i >= 0; --i)
1699 map = coalesce(map, tabs);
1702 for (i = 0; i < map->n; ++i) {
1703 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
1705 map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
1706 map->p[i] = isl_basic_map_finalize(map->p[i]);
1709 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
1710 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
1713 for (i = 0; i < n; ++i)
1714 isl_tab_free(tabs[i]);
1721 for (i = 0; i < n; ++i)
1722 isl_tab_free(tabs[i]);
1728 /* For each pair of basic sets in the set, check if the union of the two
1729 * can be represented by a single basic set.
1730 * If so, replace the pair by the single basic set and start over.
1732 struct isl_set *isl_set_coalesce(struct isl_set *set)
1734 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);