2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include "isl_map_private.h"
17 #define STATUS_ERROR -1
18 #define STATUS_REDUNDANT 1
19 #define STATUS_VALID 2
20 #define STATUS_SEPARATE 3
22 #define STATUS_ADJ_EQ 5
23 #define STATUS_ADJ_INEQ 6
25 static int status_in(isl_int *ineq, struct isl_tab *tab)
27 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
30 case isl_ineq_error: return STATUS_ERROR;
31 case isl_ineq_redundant: return STATUS_VALID;
32 case isl_ineq_separate: return STATUS_SEPARATE;
33 case isl_ineq_cut: return STATUS_CUT;
34 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
35 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
39 /* Compute the position of the equalities of basic map "i"
40 * with respect to basic map "j".
41 * The resulting array has twice as many entries as the number
42 * of equalities corresponding to the two inequalties to which
43 * each equality corresponds.
45 static int *eq_status_in(struct isl_map *map, int i, int j,
46 struct isl_tab **tabs)
49 int *eq = isl_calloc_array(map->ctx, int, 2 * map->p[i]->n_eq);
52 dim = isl_basic_map_total_dim(map->p[i]);
53 for (k = 0; k < map->p[i]->n_eq; ++k) {
54 for (l = 0; l < 2; ++l) {
55 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
56 eq[2 * k + l] = status_in(map->p[i]->eq[k], tabs[j]);
57 if (eq[2 * k + l] == STATUS_ERROR)
60 if (eq[2 * k] == STATUS_SEPARATE ||
61 eq[2 * k + 1] == STATUS_SEPARATE)
71 /* Compute the position of the inequalities of basic map "i"
72 * with respect to basic map "j".
74 static int *ineq_status_in(struct isl_map *map, int i, int j,
75 struct isl_tab **tabs)
78 unsigned n_eq = map->p[i]->n_eq;
79 int *ineq = isl_calloc_array(map->ctx, int, map->p[i]->n_ineq);
81 for (k = 0; k < map->p[i]->n_ineq; ++k) {
82 if (isl_tab_is_redundant(tabs[i], n_eq + k)) {
83 ineq[k] = STATUS_REDUNDANT;
86 ineq[k] = status_in(map->p[i]->ineq[k], tabs[j]);
87 if (ineq[k] == STATUS_ERROR)
89 if (ineq[k] == STATUS_SEPARATE)
99 static int any(int *con, unsigned len, int status)
103 for (i = 0; i < len ; ++i)
104 if (con[i] == status)
109 static int count(int *con, unsigned len, int status)
114 for (i = 0; i < len ; ++i)
115 if (con[i] == status)
120 static int all(int *con, unsigned len, int status)
124 for (i = 0; i < len ; ++i) {
125 if (con[i] == STATUS_REDUNDANT)
127 if (con[i] != status)
133 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
135 isl_basic_map_free(map->p[i]);
136 isl_tab_free(tabs[i]);
138 if (i != map->n - 1) {
139 map->p[i] = map->p[map->n - 1];
140 tabs[i] = tabs[map->n - 1];
142 tabs[map->n - 1] = NULL;
146 /* Replace the pair of basic maps i and j by the basic map bounded
147 * by the valid constraints in both basic maps and the constraint
148 * in extra (if not NULL).
150 static int fuse(struct isl_map *map, int i, int j,
151 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
152 __isl_keep isl_mat *extra)
155 struct isl_basic_map *fused = NULL;
156 struct isl_tab *fused_tab = NULL;
157 unsigned total = isl_basic_map_total_dim(map->p[i]);
158 unsigned extra_rows = extra ? extra->n_row : 0;
160 fused = isl_basic_map_alloc_dim(isl_dim_copy(map->p[i]->dim),
162 map->p[i]->n_eq + map->p[j]->n_eq,
163 map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
167 for (k = 0; k < map->p[i]->n_eq; ++k) {
168 if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
169 eq_i[2 * k + 1] != STATUS_VALID))
171 l = isl_basic_map_alloc_equality(fused);
174 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
177 for (k = 0; k < map->p[j]->n_eq; ++k) {
178 if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
179 eq_j[2 * k + 1] != STATUS_VALID))
181 l = isl_basic_map_alloc_equality(fused);
184 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
187 for (k = 0; k < map->p[i]->n_ineq; ++k) {
188 if (ineq_i[k] != STATUS_VALID)
190 l = isl_basic_map_alloc_inequality(fused);
193 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
196 for (k = 0; k < map->p[j]->n_ineq; ++k) {
197 if (ineq_j[k] != STATUS_VALID)
199 l = isl_basic_map_alloc_inequality(fused);
202 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
205 for (k = 0; k < map->p[i]->n_div; ++k) {
206 int l = isl_basic_map_alloc_div(fused);
209 isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
212 for (k = 0; k < extra_rows; ++k) {
213 l = isl_basic_map_alloc_inequality(fused);
216 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
219 fused = isl_basic_map_gauss(fused, NULL);
220 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
221 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
222 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
223 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
225 fused_tab = isl_tab_from_basic_map(fused);
226 if (isl_tab_detect_redundant(fused_tab) < 0)
229 isl_basic_map_free(map->p[i]);
231 isl_tab_free(tabs[i]);
237 isl_tab_free(fused_tab);
238 isl_basic_map_free(fused);
242 /* Given a pair of basic maps i and j such that all constraints are either
243 * "valid" or "cut", check if the facets corresponding to the "cut"
244 * constraints of i lie entirely within basic map j.
245 * If so, replace the pair by the basic map consisting of the valid
246 * constraints in both basic maps.
248 * To see that we are not introducing any extra points, call the
249 * two basic maps A and B and the resulting map U and let x
250 * be an element of U \setminus ( A \cup B ).
251 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
252 * violates them. Let X be the intersection of U with the opposites
253 * of these constraints. Then x \in X.
254 * The facet corresponding to c_1 contains the corresponding facet of A.
255 * This facet is entirely contained in B, so c_2 is valid on the facet.
256 * However, since it is also (part of) a facet of X, -c_2 is also valid
257 * on the facet. This means c_2 is saturated on the facet, so c_1 and
258 * c_2 must be opposites of each other, but then x could not violate
261 static int check_facets(struct isl_map *map, int i, int j,
262 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
265 struct isl_tab_undo *snap;
266 unsigned n_eq = map->p[i]->n_eq;
268 snap = isl_tab_snap(tabs[i]);
270 for (k = 0; k < map->p[i]->n_ineq; ++k) {
271 if (ineq_i[k] != STATUS_CUT)
273 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
275 for (l = 0; l < map->p[j]->n_ineq; ++l) {
277 if (ineq_j[l] != STATUS_CUT)
279 stat = status_in(map->p[j]->ineq[l], tabs[i]);
280 if (stat != STATUS_VALID)
283 if (isl_tab_rollback(tabs[i], snap) < 0)
285 if (l < map->p[j]->n_ineq)
289 if (k < map->p[i]->n_ineq)
292 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
295 /* Both basic maps have at least one inequality with and adjacent
296 * (but opposite) inequality in the other basic map.
297 * Check that there are no cut constraints and that there is only
298 * a single pair of adjacent inequalities.
299 * If so, we can replace the pair by a single basic map described
300 * by all but the pair of adjacent inequalities.
301 * Any additional points introduced lie strictly between the two
302 * adjacent hyperplanes and can therefore be integral.
311 * The test for a single pair of adjancent inequalities is important
312 * for avoiding the combination of two basic maps like the following
322 static int check_adj_ineq(struct isl_map *map, int i, int j,
323 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
327 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
328 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
331 else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
332 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
333 changed = fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
334 /* else ADJ INEQ TOO MANY */
339 /* Check if basic map "i" contains the basic map represented
340 * by the tableau "tab".
342 static int contains(struct isl_map *map, int i, int *ineq_i,
348 dim = isl_basic_map_total_dim(map->p[i]);
349 for (k = 0; k < map->p[i]->n_eq; ++k) {
350 for (l = 0; l < 2; ++l) {
352 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
353 stat = status_in(map->p[i]->eq[k], tab);
354 if (stat != STATUS_VALID)
359 for (k = 0; k < map->p[i]->n_ineq; ++k) {
361 if (ineq_i[k] == STATUS_REDUNDANT)
363 stat = status_in(map->p[i]->ineq[k], tab);
364 if (stat != STATUS_VALID)
370 /* Basic map "i" has an inequality "k" that is adjacent to some equality
371 * of basic map "j". All the other inequalities are valid for "j".
372 * Check if basic map "j" forms an extension of basic map "i".
374 * In particular, we relax constraint "k", compute the corresponding
375 * facet and check whether it is included in the other basic map.
376 * If so, we know that relaxing the constraint extends the basic
377 * map with exactly the other basic map (we already know that this
378 * other basic map is included in the extension, because there
379 * were no "cut" inequalities in "i") and we can replace the
380 * two basic maps by thie extension.
388 static int is_extension(struct isl_map *map, int i, int j, int k,
389 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
393 struct isl_tab_undo *snap, *snap2;
394 unsigned n_eq = map->p[i]->n_eq;
396 snap = isl_tab_snap(tabs[i]);
397 tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
398 snap2 = isl_tab_snap(tabs[i]);
399 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
401 super = contains(map, j, ineq_j, tabs[i]);
403 if (isl_tab_rollback(tabs[i], snap2) < 0)
405 map->p[i] = isl_basic_map_cow(map->p[i]);
408 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
409 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
413 if (isl_tab_rollback(tabs[i], snap) < 0)
419 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
420 * wrap the constraint around "bound" such that it includes the whole
421 * set "set" and append the resulting constraint to "wraps".
422 * "wraps" is assumed to have been pre-allocated to the appropriate size.
423 * wraps->n_row is the number of actual wrapped constraints that have
425 * If any of the wrapping problems results in a constraint that is
426 * identical to "bound", then this means that "set" is unbounded in such
427 * way that no wrapping is possible. If this happens then wraps->n_row
430 static int add_wraps(__isl_keep isl_mat *wraps, __isl_keep isl_basic_map *bmap,
431 struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
435 unsigned total = isl_basic_map_total_dim(bmap);
439 for (l = 0; l < bmap->n_ineq; ++l) {
440 if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
442 if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
444 if (isl_tab_is_redundant(tab, bmap->n_eq + l))
447 isl_seq_cpy(wraps->row[w], bound, 1 + total);
448 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->ineq[l]))
450 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
454 for (l = 0; l < bmap->n_eq; ++l) {
455 if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
457 if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
460 isl_seq_cpy(wraps->row[w], bound, 1 + total);
461 isl_seq_neg(wraps->row[w + 1], bmap->eq[l], 1 + total);
462 if (!isl_set_wrap_facet(set, wraps->row[w], wraps->row[w + 1]))
464 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
468 isl_seq_cpy(wraps->row[w], bound, 1 + total);
469 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->eq[l]))
471 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
483 /* Check if the constraints in "wraps" from "first" until the last
484 * are all valid for the basic set represented by "tab".
485 * If not, wraps->n_row is set to zero.
487 static int check_wraps(__isl_keep isl_mat *wraps, int first,
492 for (i = first; i < wraps->n_row; ++i) {
493 enum isl_ineq_type type;
494 type = isl_tab_ineq_type(tab, wraps->row[i]);
495 if (type == isl_ineq_error)
497 if (type == isl_ineq_redundant)
506 /* Return a set that corresponds to the non-redudant constraints
507 * (as recorded in tab) of bmap.
509 * It's important to remove the redundant constraints as some
510 * of the other constraints may have been modified after the
511 * constraints were marked redundant.
512 * In particular, a constraint may have been relaxed.
513 * Redundant constraints are ignored when a constraint is relaxed
514 * and should therefore continue to be ignored ever after.
515 * Otherwise, the relaxation might be thwarted by some of
518 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
521 bmap = isl_basic_map_copy(bmap);
522 bmap = isl_basic_map_cow(bmap);
523 bmap = isl_basic_map_update_from_tab(bmap, tab);
524 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap));
527 /* Given a basic set i with a constraint k that is adjacent to either the
528 * whole of basic set j or a facet of basic set j, check if we can wrap
529 * both the facet corresponding to k and the facet of j (or the whole of j)
530 * around their ridges to include the other set.
531 * If so, replace the pair of basic sets by their union.
533 * All constraints of i (except k) are assumed to be valid for j.
535 * However, the constraints of j may not be valid for i and so
536 * we have to check that the wrapping constraints for j are valid for i.
538 * In the case where j has a facet adjacent to i, tab[j] is assumed
539 * to have been restricted to this facet, so that the non-redundant
540 * constraints in tab[j] are the ridges of the facet.
541 * Note that for the purpose of wrapping, it does not matter whether
542 * we wrap the ridges of i around the whole of j or just around
543 * the facet since all the other constraints are assumed to be valid for j.
544 * In practice, we wrap to include the whole of j.
553 static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
554 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
557 struct isl_mat *wraps = NULL;
558 struct isl_set *set_i = NULL;
559 struct isl_set *set_j = NULL;
560 struct isl_vec *bound = NULL;
561 unsigned total = isl_basic_map_total_dim(map->p[i]);
562 struct isl_tab_undo *snap;
565 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
566 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
567 wraps = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
568 map->p[i]->n_ineq + map->p[j]->n_ineq,
570 bound = isl_vec_alloc(map->ctx, 1 + total);
571 if (!set_i || !set_j || !wraps || !bound)
574 isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
575 isl_int_add_ui(bound->el[0], bound->el[0], 1);
577 isl_seq_cpy(wraps->row[0], bound->el, 1 + total);
580 if (add_wraps(wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
585 snap = isl_tab_snap(tabs[i]);
587 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k) < 0)
589 if (isl_tab_detect_redundant(tabs[i]) < 0)
592 isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
595 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
598 if (isl_tab_rollback(tabs[i], snap) < 0)
600 if (check_wraps(wraps, n, tabs[i]) < 0)
605 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps);
624 /* Set the is_redundant property of the "n" constraints in "cuts",
626 * This is a fairly tricky operation as it bypasses isl_tab.c.
627 * The reason we want to temporarily mark some constraints redundant
628 * is that we want to ignore them in add_wraps.
630 * Initially all cut constraints are non-redundant, but the
631 * selection of a facet right before the call to this function
632 * may have made some of them redundant.
633 * Likewise, the same constraints are marked non-redundant
634 * in the second call to this function, before they are officially
635 * made non-redundant again in the subsequent rollback.
637 static void set_is_redundant(struct isl_tab *tab, unsigned n_eq,
638 int *cuts, int n, int k, int v)
642 for (l = 0; l < n; ++l) {
645 tab->con[n_eq + cuts[l]].is_redundant = v;
649 /* Given a pair of basic maps i and j such that j sticks out
650 * of i at n cut constraints, each time by at most one,
651 * try to compute wrapping constraints and replace the two
652 * basic maps by a single basic map.
653 * The other constraints of i are assumed to be valid for j.
655 * The facets of i corresponding to the cut constraints are
656 * wrapped around their ridges, except those ridges determined
657 * by any of the other cut constraints.
658 * The intersections of cut constraints need to be ignored
659 * as the result of wrapping on cur constraint around another
660 * would result in a constraint cutting the union.
661 * In each case, the facets are wrapped to include the union
662 * of the two basic maps.
664 * The pieces of j that lie at an offset of exactly one from
665 * one of the cut constraints of i are wrapped around their edges.
666 * Here, there is no need to ignore intersections because we
667 * are wrapping around the union of the two basic maps.
669 * If any wrapping fails, i.e., if we cannot wrap to touch
670 * the union, then we give up.
671 * Otherwise, the pair of basic maps is replaced by their union.
673 static int wrap_in_facets(struct isl_map *map, int i, int j,
674 int *cuts, int n, struct isl_tab **tabs,
675 int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
678 isl_mat *wraps = NULL;
680 isl_vec *bound = NULL;
681 unsigned total = isl_basic_map_total_dim(map->p[i]);
684 struct isl_tab_undo *snap_i, *snap_j;
686 if (isl_tab_extend_cons(tabs[j], 1) < 0)
689 max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
690 map->p[i]->n_ineq + map->p[j]->n_ineq;
693 set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]),
694 set_from_updated_bmap(map->p[j], tabs[j]));
695 wraps = isl_mat_alloc(map->ctx, max_wrap, 1 + total);
696 bound = isl_vec_alloc(map->ctx, 1 + total);
697 if (!set || !wraps || !bound)
700 snap_i = isl_tab_snap(tabs[i]);
701 snap_j = isl_tab_snap(tabs[j]);
705 for (k = 0; k < n; ++k) {
706 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + cuts[k]) < 0)
708 if (isl_tab_detect_redundant(tabs[i]) < 0)
710 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1);
712 isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
713 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set) < 0)
716 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0);
717 if (isl_tab_rollback(tabs[i], snap_i) < 0)
723 isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
724 isl_int_add_ui(bound->el[0], bound->el[0], 1);
725 if (isl_tab_add_eq(tabs[j], bound->el) < 0)
727 if (isl_tab_detect_redundant(tabs[j]) < 0)
730 if (!tabs[j]->empty &&
731 add_wraps(wraps, map->p[j], tabs[j], bound->el, set) < 0)
734 if (isl_tab_rollback(tabs[j], snap_j) < 0)
742 changed = fuse(map, i, j, tabs,
743 eq_i, ineq_i, eq_j, ineq_j, wraps);
757 /* Given two basic sets i and j such that i has not cut equalities,
758 * check if relaxing all the cut inequalities of i by one turns
759 * them into valid constraint for j and check if we can wrap in
760 * the bits that are sticking out.
761 * If so, replace the pair by their union.
763 * We first check if all relaxed cut inequalities of i are valid for j
764 * and then try to wrap in the intersections of the relaxed cut inequalities
767 * During this wrapping, we consider the points of j that lie at a distance
768 * of exactly 1 from i. In particular, we ignore the points that lie in
769 * between this lower-dimensional space and the basic map i.
770 * We can therefore only apply this to integer maps.
796 * Wrapping can fail if the result of wrapping one of the facets
797 * around its edges does not produce any new facet constraint.
798 * In particular, this happens when we try to wrap in unbounded sets.
800 * _______________________________________________________________________
804 * |_| |_________________________________________________________________
807 * The following is not an acceptable result of coalescing the above two
808 * sets as it includes extra integer points.
809 * _______________________________________________________________________
814 * \______________________________________________________________________
816 static int can_wrap_in_set(struct isl_map *map, int i, int j,
817 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
824 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) ||
825 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
828 n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
832 cuts = isl_alloc_array(map->ctx, int, n);
836 for (k = 0, m = 0; m < n; ++k) {
837 enum isl_ineq_type type;
839 if (ineq_i[k] != STATUS_CUT)
842 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
843 type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]);
844 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
845 if (type == isl_ineq_error)
847 if (type != isl_ineq_redundant)
854 changed = wrap_in_facets(map, i, j, cuts, n, tabs,
855 eq_i, ineq_i, eq_j, ineq_j);
865 /* Check if either i or j has a single cut constraint that can
866 * be used to wrap in (a facet of) the other basic set.
867 * if so, replace the pair by their union.
869 static int check_wrap(struct isl_map *map, int i, int j,
870 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
874 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
875 changed = can_wrap_in_set(map, i, j, tabs,
876 eq_i, ineq_i, eq_j, ineq_j);
880 if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
881 changed = can_wrap_in_set(map, j, i, tabs,
882 eq_j, ineq_j, eq_i, ineq_i);
886 /* At least one of the basic maps has an equality that is adjacent
887 * to inequality. Make sure that only one of the basic maps has
888 * such an equality and that the other basic map has exactly one
889 * inequality adjacent to an equality.
890 * We call the basic map that has the inequality "i" and the basic
891 * map that has the equality "j".
892 * If "i" has any "cut" (in)equality, then relaxing the inequality
893 * by one would not result in a basic map that contains the other
896 static int check_adj_eq(struct isl_map *map, int i, int j,
897 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
902 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
903 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
904 /* ADJ EQ TOO MANY */
907 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
908 return check_adj_eq(map, j, i, tabs,
909 eq_j, ineq_j, eq_i, ineq_i);
911 /* j has an equality adjacent to an inequality in i */
913 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
915 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
918 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 ||
919 count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
920 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
921 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
922 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
923 /* ADJ EQ TOO MANY */
926 for (k = 0; k < map->p[i]->n_ineq ; ++k)
927 if (ineq_i[k] == STATUS_ADJ_EQ)
930 changed = is_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
934 changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
939 /* Check if the union of the given pair of basic maps
940 * can be represented by a single basic map.
941 * If so, replace the pair by the single basic map and return 1.
942 * Otherwise, return 0;
944 * We first check the effect of each constraint of one basic map
945 * on the other basic map.
946 * The constraint may be
947 * redundant the constraint is redundant in its own
948 * basic map and should be ignore and removed
950 * valid all (integer) points of the other basic map
951 * satisfy the constraint
952 * separate no (integer) point of the other basic map
953 * satisfies the constraint
954 * cut some but not all points of the other basic map
955 * satisfy the constraint
956 * adj_eq the given constraint is adjacent (on the outside)
957 * to an equality of the other basic map
958 * adj_ineq the given constraint is adjacent (on the outside)
959 * to an inequality of the other basic map
961 * We consider six cases in which we can replace the pair by a single
962 * basic map. We ignore all "redundant" constraints.
964 * 1. all constraints of one basic map are valid
965 * => the other basic map is a subset and can be removed
967 * 2. all constraints of both basic maps are either "valid" or "cut"
968 * and the facets corresponding to the "cut" constraints
969 * of one of the basic maps lies entirely inside the other basic map
970 * => the pair can be replaced by a basic map consisting
971 * of the valid constraints in both basic maps
973 * 3. there is a single pair of adjacent inequalities
974 * (all other constraints are "valid")
975 * => the pair can be replaced by a basic map consisting
976 * of the valid constraints in both basic maps
978 * 4. there is a single adjacent pair of an inequality and an equality,
979 * the other constraints of the basic map containing the inequality are
980 * "valid". Moreover, if the inequality the basic map is relaxed
981 * and then turned into an equality, then resulting facet lies
982 * entirely inside the other basic map
983 * => the pair can be replaced by the basic map containing
984 * the inequality, with the inequality relaxed.
986 * 5. there is a single adjacent pair of an inequality and an equality,
987 * the other constraints of the basic map containing the inequality are
988 * "valid". Moreover, the facets corresponding to both
989 * the inequality and the equality can be wrapped around their
990 * ridges to include the other basic map
991 * => the pair can be replaced by a basic map consisting
992 * of the valid constraints in both basic maps together
993 * with all wrapping constraints
995 * 6. one of the basic maps extends beyond the other by at most one.
996 * Moreover, the facets corresponding to the cut constraints and
997 * the pieces of the other basic map at offset one from these cut
998 * constraints can be wrapped around their ridges to include
999 * the unione of the two basic maps
1000 * => the pair can be replaced by a basic map consisting
1001 * of the valid constraints in both basic maps together
1002 * with all wrapping constraints
1004 * Throughout the computation, we maintain a collection of tableaus
1005 * corresponding to the basic maps. When the basic maps are dropped
1006 * or combined, the tableaus are modified accordingly.
1008 static int coalesce_pair(struct isl_map *map, int i, int j,
1009 struct isl_tab **tabs)
1017 eq_i = eq_status_in(map, i, j, tabs);
1020 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
1022 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
1025 eq_j = eq_status_in(map, j, i, tabs);
1028 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
1030 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
1033 ineq_i = ineq_status_in(map, i, j, tabs);
1036 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
1038 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
1041 ineq_j = ineq_status_in(map, j, i, tabs);
1044 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
1046 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
1049 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
1050 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
1053 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
1054 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
1057 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) ||
1058 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
1060 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
1061 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
1062 changed = check_adj_eq(map, i, j, tabs,
1063 eq_i, ineq_i, eq_j, ineq_j);
1064 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
1065 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
1068 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
1069 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
1070 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1071 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1072 changed = check_adj_ineq(map, i, j, tabs,
1075 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1076 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1077 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
1079 changed = check_wrap(map, i, j, tabs,
1080 eq_i, ineq_i, eq_j, ineq_j);
1097 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
1101 for (i = map->n - 2; i >= 0; --i)
1103 for (j = i + 1; j < map->n; ++j) {
1105 changed = coalesce_pair(map, i, j, tabs);
1117 /* For each pair of basic maps in the map, check if the union of the two
1118 * can be represented by a single basic map.
1119 * If so, replace the pair by the single basic map and start over.
1121 struct isl_map *isl_map_coalesce(struct isl_map *map)
1125 struct isl_tab **tabs = NULL;
1133 map = isl_map_align_divs(map);
1135 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
1140 for (i = 0; i < map->n; ++i) {
1141 tabs[i] = isl_tab_from_basic_map(map->p[i]);
1144 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
1145 if (isl_tab_detect_implicit_equalities(tabs[i]) < 0)
1147 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
1148 if (isl_tab_detect_redundant(tabs[i]) < 0)
1151 for (i = map->n - 1; i >= 0; --i)
1155 map = coalesce(map, tabs);
1158 for (i = 0; i < map->n; ++i) {
1159 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
1161 map->p[i] = isl_basic_map_finalize(map->p[i]);
1164 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
1165 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
1168 for (i = 0; i < n; ++i)
1169 isl_tab_free(tabs[i]);
1176 for (i = 0; i < n; ++i)
1177 isl_tab_free(tabs[i]);
1182 /* For each pair of basic sets in the set, check if the union of the two
1183 * can be represented by a single basic set.
1184 * If so, replace the pair by the single basic set and start over.
1186 struct isl_set *isl_set_coalesce(struct isl_set *set)
1188 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);