2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15 #include "isl_map_private.h"
17 #include <isl/options.h>
19 #include <isl_mat_private.h>
20 #include <isl_local_space_private.h>
22 #define STATUS_ERROR -1
23 #define STATUS_REDUNDANT 1
24 #define STATUS_VALID 2
25 #define STATUS_SEPARATE 3
27 #define STATUS_ADJ_EQ 5
28 #define STATUS_ADJ_INEQ 6
30 static int status_in(isl_int *ineq, struct isl_tab *tab)
32 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
35 case isl_ineq_error: return STATUS_ERROR;
36 case isl_ineq_redundant: return STATUS_VALID;
37 case isl_ineq_separate: return STATUS_SEPARATE;
38 case isl_ineq_cut: return STATUS_CUT;
39 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
40 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
44 /* Compute the position of the equalities of basic map "bmap_i"
45 * with respect to the basic map represented by "tab_j".
46 * The resulting array has twice as many entries as the number
47 * of equalities corresponding to the two inequalties to which
48 * each equality corresponds.
50 static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
51 struct isl_tab *tab_j)
54 int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
57 dim = isl_basic_map_total_dim(bmap_i);
58 for (k = 0; k < bmap_i->n_eq; ++k) {
59 for (l = 0; l < 2; ++l) {
60 isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
61 eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
62 if (eq[2 * k + l] == STATUS_ERROR)
65 if (eq[2 * k] == STATUS_SEPARATE ||
66 eq[2 * k + 1] == STATUS_SEPARATE)
76 /* Compute the position of the inequalities of basic map "bmap_i"
77 * (also represented by "tab_i", if not NULL) with respect to the basic map
78 * represented by "tab_j".
80 static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
81 struct isl_tab *tab_i, struct isl_tab *tab_j)
84 unsigned n_eq = bmap_i->n_eq;
85 int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
87 for (k = 0; k < bmap_i->n_ineq; ++k) {
88 if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
89 ineq[k] = STATUS_REDUNDANT;
92 ineq[k] = status_in(bmap_i->ineq[k], tab_j);
93 if (ineq[k] == STATUS_ERROR)
95 if (ineq[k] == STATUS_SEPARATE)
105 static int any(int *con, unsigned len, int status)
109 for (i = 0; i < len ; ++i)
110 if (con[i] == status)
115 static int count(int *con, unsigned len, int status)
120 for (i = 0; i < len ; ++i)
121 if (con[i] == status)
126 static int all(int *con, unsigned len, int status)
130 for (i = 0; i < len ; ++i) {
131 if (con[i] == STATUS_REDUNDANT)
133 if (con[i] != status)
139 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
141 isl_basic_map_free(map->p[i]);
142 isl_tab_free(tabs[i]);
144 if (i != map->n - 1) {
145 map->p[i] = map->p[map->n - 1];
146 tabs[i] = tabs[map->n - 1];
148 tabs[map->n - 1] = NULL;
152 /* Replace the pair of basic maps i and j by the basic map bounded
153 * by the valid constraints in both basic maps and the constraint
154 * in extra (if not NULL).
156 static int fuse(struct isl_map *map, int i, int j,
157 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
158 __isl_keep isl_mat *extra)
161 struct isl_basic_map *fused = NULL;
162 struct isl_tab *fused_tab = NULL;
163 unsigned total = isl_basic_map_total_dim(map->p[i]);
164 unsigned extra_rows = extra ? extra->n_row : 0;
166 fused = isl_basic_map_alloc_space(isl_space_copy(map->p[i]->dim),
168 map->p[i]->n_eq + map->p[j]->n_eq,
169 map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
173 for (k = 0; k < map->p[i]->n_eq; ++k) {
174 if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
175 eq_i[2 * k + 1] != STATUS_VALID))
177 l = isl_basic_map_alloc_equality(fused);
180 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
183 for (k = 0; k < map->p[j]->n_eq; ++k) {
184 if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
185 eq_j[2 * k + 1] != STATUS_VALID))
187 l = isl_basic_map_alloc_equality(fused);
190 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
193 for (k = 0; k < map->p[i]->n_ineq; ++k) {
194 if (ineq_i[k] != STATUS_VALID)
196 l = isl_basic_map_alloc_inequality(fused);
199 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
202 for (k = 0; k < map->p[j]->n_ineq; ++k) {
203 if (ineq_j[k] != STATUS_VALID)
205 l = isl_basic_map_alloc_inequality(fused);
208 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
211 for (k = 0; k < map->p[i]->n_div; ++k) {
212 int l = isl_basic_map_alloc_div(fused);
215 isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
218 for (k = 0; k < extra_rows; ++k) {
219 l = isl_basic_map_alloc_inequality(fused);
222 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
225 fused = isl_basic_map_gauss(fused, NULL);
226 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
227 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
228 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
229 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
231 fused_tab = isl_tab_from_basic_map(fused, 0);
232 if (isl_tab_detect_redundant(fused_tab) < 0)
235 isl_basic_map_free(map->p[i]);
237 isl_tab_free(tabs[i]);
243 isl_tab_free(fused_tab);
244 isl_basic_map_free(fused);
248 /* Given a pair of basic maps i and j such that all constraints are either
249 * "valid" or "cut", check if the facets corresponding to the "cut"
250 * constraints of i lie entirely within basic map j.
251 * If so, replace the pair by the basic map consisting of the valid
252 * constraints in both basic maps.
254 * To see that we are not introducing any extra points, call the
255 * two basic maps A and B and the resulting map U and let x
256 * be an element of U \setminus ( A \cup B ).
257 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
258 * violates them. Let X be the intersection of U with the opposites
259 * of these constraints. Then x \in X.
260 * The facet corresponding to c_1 contains the corresponding facet of A.
261 * This facet is entirely contained in B, so c_2 is valid on the facet.
262 * However, since it is also (part of) a facet of X, -c_2 is also valid
263 * on the facet. This means c_2 is saturated on the facet, so c_1 and
264 * c_2 must be opposites of each other, but then x could not violate
267 static int check_facets(struct isl_map *map, int i, int j,
268 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
271 struct isl_tab_undo *snap;
272 unsigned n_eq = map->p[i]->n_eq;
274 snap = isl_tab_snap(tabs[i]);
276 for (k = 0; k < map->p[i]->n_ineq; ++k) {
277 if (ineq_i[k] != STATUS_CUT)
279 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
281 for (l = 0; l < map->p[j]->n_ineq; ++l) {
283 if (ineq_j[l] != STATUS_CUT)
285 stat = status_in(map->p[j]->ineq[l], tabs[i]);
286 if (stat != STATUS_VALID)
289 if (isl_tab_rollback(tabs[i], snap) < 0)
291 if (l < map->p[j]->n_ineq)
295 if (k < map->p[i]->n_ineq)
298 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
301 /* Both basic maps have at least one inequality with and adjacent
302 * (but opposite) inequality in the other basic map.
303 * Check that there are no cut constraints and that there is only
304 * a single pair of adjacent inequalities.
305 * If so, we can replace the pair by a single basic map described
306 * by all but the pair of adjacent inequalities.
307 * Any additional points introduced lie strictly between the two
308 * adjacent hyperplanes and can therefore be integral.
317 * The test for a single pair of adjancent inequalities is important
318 * for avoiding the combination of two basic maps like the following
328 static int check_adj_ineq(struct isl_map *map, int i, int j,
329 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
333 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
334 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
337 else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
338 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
339 changed = fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
340 /* else ADJ INEQ TOO MANY */
345 /* Check if basic map "i" contains the basic map represented
346 * by the tableau "tab".
348 static int contains(struct isl_map *map, int i, int *ineq_i,
354 dim = isl_basic_map_total_dim(map->p[i]);
355 for (k = 0; k < map->p[i]->n_eq; ++k) {
356 for (l = 0; l < 2; ++l) {
358 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
359 stat = status_in(map->p[i]->eq[k], tab);
360 if (stat != STATUS_VALID)
365 for (k = 0; k < map->p[i]->n_ineq; ++k) {
367 if (ineq_i[k] == STATUS_REDUNDANT)
369 stat = status_in(map->p[i]->ineq[k], tab);
370 if (stat != STATUS_VALID)
376 /* Basic map "i" has an inequality "k" that is adjacent to some equality
377 * of basic map "j". All the other inequalities are valid for "j".
378 * Check if basic map "j" forms an extension of basic map "i".
380 * In particular, we relax constraint "k", compute the corresponding
381 * facet and check whether it is included in the other basic map.
382 * If so, we know that relaxing the constraint extends the basic
383 * map with exactly the other basic map (we already know that this
384 * other basic map is included in the extension, because there
385 * were no "cut" inequalities in "i") and we can replace the
386 * two basic maps by thie extension.
394 static int is_extension(struct isl_map *map, int i, int j, int k,
395 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
399 struct isl_tab_undo *snap, *snap2;
400 unsigned n_eq = map->p[i]->n_eq;
402 if (isl_tab_is_equality(tabs[i], n_eq + k))
405 snap = isl_tab_snap(tabs[i]);
406 tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
407 snap2 = isl_tab_snap(tabs[i]);
408 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
410 super = contains(map, j, ineq_j, tabs[i]);
412 if (isl_tab_rollback(tabs[i], snap2) < 0)
414 map->p[i] = isl_basic_map_cow(map->p[i]);
417 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
418 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
422 if (isl_tab_rollback(tabs[i], snap) < 0)
428 /* Data structure that keeps track of the wrapping constraints
429 * and of information to bound the coefficients of those constraints.
431 * bound is set if we want to apply a bound on the coefficients
432 * mat contains the wrapping constraints
433 * max is the bound on the coefficients (if bound is set)
441 /* Update wraps->max to be greater than or equal to the coefficients
442 * in the equalities and inequalities of bmap that can be removed if we end up
445 static void wraps_update_max(struct isl_wraps *wraps,
446 __isl_keep isl_basic_map *bmap, int *eq, int *ineq)
450 unsigned total = isl_basic_map_total_dim(bmap);
454 for (k = 0; k < bmap->n_eq; ++k) {
455 if (eq[2 * k] == STATUS_VALID &&
456 eq[2 * k + 1] == STATUS_VALID)
458 isl_seq_abs_max(bmap->eq[k] + 1, total, &max_k);
459 if (isl_int_abs_gt(max_k, wraps->max))
460 isl_int_set(wraps->max, max_k);
463 for (k = 0; k < bmap->n_ineq; ++k) {
464 if (ineq[k] == STATUS_VALID || ineq[k] == STATUS_REDUNDANT)
466 isl_seq_abs_max(bmap->ineq[k] + 1, total, &max_k);
467 if (isl_int_abs_gt(max_k, wraps->max))
468 isl_int_set(wraps->max, max_k);
471 isl_int_clear(max_k);
474 /* Initialize the isl_wraps data structure.
475 * If we want to bound the coefficients of the wrapping constraints,
476 * we set wraps->max to the largest coefficient
477 * in the equalities and inequalities that can be removed if we end up
480 static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
481 __isl_keep isl_map *map, int i, int j,
482 int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
490 ctx = isl_mat_get_ctx(mat);
491 wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
494 isl_int_init(wraps->max);
495 isl_int_set_si(wraps->max, 0);
496 wraps_update_max(wraps, map->p[i], eq_i, ineq_i);
497 wraps_update_max(wraps, map->p[j], eq_j, ineq_j);
500 /* Free the contents of the isl_wraps data structure.
502 static void wraps_free(struct isl_wraps *wraps)
504 isl_mat_free(wraps->mat);
506 isl_int_clear(wraps->max);
509 /* Is the wrapping constraint in row "row" allowed?
511 * If wraps->bound is set, we check that none of the coefficients
512 * is greater than wraps->max.
514 static int allow_wrap(struct isl_wraps *wraps, int row)
521 for (i = 1; i < wraps->mat->n_col; ++i)
522 if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
528 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
529 * wrap the constraint around "bound" such that it includes the whole
530 * set "set" and append the resulting constraint to "wraps".
531 * "wraps" is assumed to have been pre-allocated to the appropriate size.
532 * wraps->n_row is the number of actual wrapped constraints that have
534 * If any of the wrapping problems results in a constraint that is
535 * identical to "bound", then this means that "set" is unbounded in such
536 * way that no wrapping is possible. If this happens then wraps->n_row
538 * Similarly, if we want to bound the coefficients of the wrapping
539 * constraints and a newly added wrapping constraint does not
540 * satisfy the bound, then wraps->n_row is also reset to zero.
542 static int add_wraps(struct isl_wraps *wraps, __isl_keep isl_basic_map *bmap,
543 struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
547 unsigned total = isl_basic_map_total_dim(bmap);
549 w = wraps->mat->n_row;
551 for (l = 0; l < bmap->n_ineq; ++l) {
552 if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
554 if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
556 if (isl_tab_is_redundant(tab, bmap->n_eq + l))
559 isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
560 if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->ineq[l]))
562 if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
564 if (!allow_wrap(wraps, w))
568 for (l = 0; l < bmap->n_eq; ++l) {
569 if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
571 if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
574 isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
575 isl_seq_neg(wraps->mat->row[w + 1], bmap->eq[l], 1 + total);
576 if (!isl_set_wrap_facet(set, wraps->mat->row[w],
577 wraps->mat->row[w + 1]))
579 if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
581 if (!allow_wrap(wraps, w))
585 isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
586 if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->eq[l]))
588 if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
590 if (!allow_wrap(wraps, w))
595 wraps->mat->n_row = w;
598 wraps->mat->n_row = 0;
602 /* Check if the constraints in "wraps" from "first" until the last
603 * are all valid for the basic set represented by "tab".
604 * If not, wraps->n_row is set to zero.
606 static int check_wraps(__isl_keep isl_mat *wraps, int first,
611 for (i = first; i < wraps->n_row; ++i) {
612 enum isl_ineq_type type;
613 type = isl_tab_ineq_type(tab, wraps->row[i]);
614 if (type == isl_ineq_error)
616 if (type == isl_ineq_redundant)
625 /* Return a set that corresponds to the non-redudant constraints
626 * (as recorded in tab) of bmap.
628 * It's important to remove the redundant constraints as some
629 * of the other constraints may have been modified after the
630 * constraints were marked redundant.
631 * In particular, a constraint may have been relaxed.
632 * Redundant constraints are ignored when a constraint is relaxed
633 * and should therefore continue to be ignored ever after.
634 * Otherwise, the relaxation might be thwarted by some of
637 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
640 bmap = isl_basic_map_copy(bmap);
641 bmap = isl_basic_map_cow(bmap);
642 bmap = isl_basic_map_update_from_tab(bmap, tab);
643 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap));
646 /* Given a basic set i with a constraint k that is adjacent to either the
647 * whole of basic set j or a facet of basic set j, check if we can wrap
648 * both the facet corresponding to k and the facet of j (or the whole of j)
649 * around their ridges to include the other set.
650 * If so, replace the pair of basic sets by their union.
652 * All constraints of i (except k) are assumed to be valid for j.
654 * However, the constraints of j may not be valid for i and so
655 * we have to check that the wrapping constraints for j are valid for i.
657 * In the case where j has a facet adjacent to i, tab[j] is assumed
658 * to have been restricted to this facet, so that the non-redundant
659 * constraints in tab[j] are the ridges of the facet.
660 * Note that for the purpose of wrapping, it does not matter whether
661 * we wrap the ridges of i around the whole of j or just around
662 * the facet since all the other constraints are assumed to be valid for j.
663 * In practice, we wrap to include the whole of j.
672 static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
673 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
676 struct isl_wraps wraps;
678 struct isl_set *set_i = NULL;
679 struct isl_set *set_j = NULL;
680 struct isl_vec *bound = NULL;
681 unsigned total = isl_basic_map_total_dim(map->p[i]);
682 struct isl_tab_undo *snap;
685 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
686 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
687 mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
688 map->p[i]->n_ineq + map->p[j]->n_ineq,
690 wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
691 bound = isl_vec_alloc(map->ctx, 1 + total);
692 if (!set_i || !set_j || !wraps.mat || !bound)
695 isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
696 isl_int_add_ui(bound->el[0], bound->el[0], 1);
698 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
699 wraps.mat->n_row = 1;
701 if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
703 if (!wraps.mat->n_row)
706 snap = isl_tab_snap(tabs[i]);
708 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k) < 0)
710 if (isl_tab_detect_redundant(tabs[i]) < 0)
713 isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
715 n = wraps.mat->n_row;
716 if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
719 if (isl_tab_rollback(tabs[i], snap) < 0)
721 if (check_wraps(wraps.mat, n, tabs[i]) < 0)
723 if (!wraps.mat->n_row)
726 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
745 /* Set the is_redundant property of the "n" constraints in "cuts",
747 * This is a fairly tricky operation as it bypasses isl_tab.c.
748 * The reason we want to temporarily mark some constraints redundant
749 * is that we want to ignore them in add_wraps.
751 * Initially all cut constraints are non-redundant, but the
752 * selection of a facet right before the call to this function
753 * may have made some of them redundant.
754 * Likewise, the same constraints are marked non-redundant
755 * in the second call to this function, before they are officially
756 * made non-redundant again in the subsequent rollback.
758 static void set_is_redundant(struct isl_tab *tab, unsigned n_eq,
759 int *cuts, int n, int k, int v)
763 for (l = 0; l < n; ++l) {
766 tab->con[n_eq + cuts[l]].is_redundant = v;
770 /* Given a pair of basic maps i and j such that j sticks out
771 * of i at n cut constraints, each time by at most one,
772 * try to compute wrapping constraints and replace the two
773 * basic maps by a single basic map.
774 * The other constraints of i are assumed to be valid for j.
776 * The facets of i corresponding to the cut constraints are
777 * wrapped around their ridges, except those ridges determined
778 * by any of the other cut constraints.
779 * The intersections of cut constraints need to be ignored
780 * as the result of wrapping one cut constraint around another
781 * would result in a constraint cutting the union.
782 * In each case, the facets are wrapped to include the union
783 * of the two basic maps.
785 * The pieces of j that lie at an offset of exactly one from
786 * one of the cut constraints of i are wrapped around their edges.
787 * Here, there is no need to ignore intersections because we
788 * are wrapping around the union of the two basic maps.
790 * If any wrapping fails, i.e., if we cannot wrap to touch
791 * the union, then we give up.
792 * Otherwise, the pair of basic maps is replaced by their union.
794 static int wrap_in_facets(struct isl_map *map, int i, int j,
795 int *cuts, int n, struct isl_tab **tabs,
796 int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
799 struct isl_wraps wraps;
802 isl_vec *bound = NULL;
803 unsigned total = isl_basic_map_total_dim(map->p[i]);
806 struct isl_tab_undo *snap_i, *snap_j;
808 if (isl_tab_extend_cons(tabs[j], 1) < 0)
811 max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
812 map->p[i]->n_ineq + map->p[j]->n_ineq;
815 set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]),
816 set_from_updated_bmap(map->p[j], tabs[j]));
817 mat = isl_mat_alloc(map->ctx, max_wrap, 1 + total);
818 wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
819 bound = isl_vec_alloc(map->ctx, 1 + total);
820 if (!set || !wraps.mat || !bound)
823 snap_i = isl_tab_snap(tabs[i]);
824 snap_j = isl_tab_snap(tabs[j]);
826 wraps.mat->n_row = 0;
828 for (k = 0; k < n; ++k) {
829 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + cuts[k]) < 0)
831 if (isl_tab_detect_redundant(tabs[i]) < 0)
833 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1);
835 isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
836 if (!tabs[i]->empty &&
837 add_wraps(&wraps, map->p[i], tabs[i], bound->el, set) < 0)
840 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0);
841 if (isl_tab_rollback(tabs[i], snap_i) < 0)
846 if (!wraps.mat->n_row)
849 isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
850 isl_int_add_ui(bound->el[0], bound->el[0], 1);
851 if (isl_tab_add_eq(tabs[j], bound->el) < 0)
853 if (isl_tab_detect_redundant(tabs[j]) < 0)
856 if (!tabs[j]->empty &&
857 add_wraps(&wraps, map->p[j], tabs[j], bound->el, set) < 0)
860 if (isl_tab_rollback(tabs[j], snap_j) < 0)
863 if (!wraps.mat->n_row)
868 changed = fuse(map, i, j, tabs,
869 eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
883 /* Given two basic sets i and j such that i has no cut equalities,
884 * check if relaxing all the cut inequalities of i by one turns
885 * them into valid constraint for j and check if we can wrap in
886 * the bits that are sticking out.
887 * If so, replace the pair by their union.
889 * We first check if all relaxed cut inequalities of i are valid for j
890 * and then try to wrap in the intersections of the relaxed cut inequalities
893 * During this wrapping, we consider the points of j that lie at a distance
894 * of exactly 1 from i. In particular, we ignore the points that lie in
895 * between this lower-dimensional space and the basic map i.
896 * We can therefore only apply this to integer maps.
922 * Wrapping can fail if the result of wrapping one of the facets
923 * around its edges does not produce any new facet constraint.
924 * In particular, this happens when we try to wrap in unbounded sets.
926 * _______________________________________________________________________
930 * |_| |_________________________________________________________________
933 * The following is not an acceptable result of coalescing the above two
934 * sets as it includes extra integer points.
935 * _______________________________________________________________________
940 * \______________________________________________________________________
942 static int can_wrap_in_set(struct isl_map *map, int i, int j,
943 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
950 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) ||
951 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
954 n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
958 cuts = isl_alloc_array(map->ctx, int, n);
962 for (k = 0, m = 0; m < n; ++k) {
963 enum isl_ineq_type type;
965 if (ineq_i[k] != STATUS_CUT)
968 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
969 type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]);
970 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
971 if (type == isl_ineq_error)
973 if (type != isl_ineq_redundant)
980 changed = wrap_in_facets(map, i, j, cuts, n, tabs,
981 eq_i, ineq_i, eq_j, ineq_j);
991 /* Check if either i or j has a single cut constraint that can
992 * be used to wrap in (a facet of) the other basic set.
993 * if so, replace the pair by their union.
995 static int check_wrap(struct isl_map *map, int i, int j,
996 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1000 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
1001 changed = can_wrap_in_set(map, i, j, tabs,
1002 eq_i, ineq_i, eq_j, ineq_j);
1006 if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1007 changed = can_wrap_in_set(map, j, i, tabs,
1008 eq_j, ineq_j, eq_i, ineq_i);
1012 /* At least one of the basic maps has an equality that is adjacent
1013 * to inequality. Make sure that only one of the basic maps has
1014 * such an equality and that the other basic map has exactly one
1015 * inequality adjacent to an equality.
1016 * We call the basic map that has the inequality "i" and the basic
1017 * map that has the equality "j".
1018 * If "i" has any "cut" (in)equality, then relaxing the inequality
1019 * by one would not result in a basic map that contains the other
1022 static int check_adj_eq(struct isl_map *map, int i, int j,
1023 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1028 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
1029 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
1030 /* ADJ EQ TOO MANY */
1033 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
1034 return check_adj_eq(map, j, i, tabs,
1035 eq_j, ineq_j, eq_i, ineq_i);
1037 /* j has an equality adjacent to an inequality in i */
1039 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
1041 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
1044 if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
1045 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
1046 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
1047 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
1048 /* ADJ EQ TOO MANY */
1051 for (k = 0; k < map->p[i]->n_ineq ; ++k)
1052 if (ineq_i[k] == STATUS_ADJ_EQ)
1055 changed = is_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
1059 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1)
1062 changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
1067 /* The two basic maps lie on adjacent hyperplanes. In particular,
1068 * basic map "i" has an equality that lies parallel to basic map "j".
1069 * Check if we can wrap the facets around the parallel hyperplanes
1070 * to include the other set.
1072 * We perform basically the same operations as can_wrap_in_facet,
1073 * except that we don't need to select a facet of one of the sets.
1079 * We only allow one equality of "i" to be adjacent to an equality of "j"
1080 * to avoid coalescing
1082 * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
1083 * x <= 10 and y <= 10;
1084 * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
1085 * y >= 5 and y <= 15 }
1089 * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
1090 * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
1091 * y2 <= 1 + x + y - x2 and y2 >= y and
1092 * y2 >= 1 + x + y - x2 }
1094 static int check_eq_adj_eq(struct isl_map *map, int i, int j,
1095 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1099 struct isl_wraps wraps;
1101 struct isl_set *set_i = NULL;
1102 struct isl_set *set_j = NULL;
1103 struct isl_vec *bound = NULL;
1104 unsigned total = isl_basic_map_total_dim(map->p[i]);
1106 if (count(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) != 1)
1109 for (k = 0; k < 2 * map->p[i]->n_eq ; ++k)
1110 if (eq_i[k] == STATUS_ADJ_EQ)
1113 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
1114 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
1115 mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
1116 map->p[i]->n_ineq + map->p[j]->n_ineq,
1118 wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
1119 bound = isl_vec_alloc(map->ctx, 1 + total);
1120 if (!set_i || !set_j || !wraps.mat || !bound)
1124 isl_seq_neg(bound->el, map->p[i]->eq[k / 2], 1 + total);
1126 isl_seq_cpy(bound->el, map->p[i]->eq[k / 2], 1 + total);
1127 isl_int_add_ui(bound->el[0], bound->el[0], 1);
1129 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
1130 wraps.mat->n_row = 1;
1132 if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
1134 if (!wraps.mat->n_row)
1137 isl_int_sub_ui(bound->el[0], bound->el[0], 1);
1138 isl_seq_neg(bound->el, bound->el, 1 + total);
1140 isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
1143 if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
1145 if (!wraps.mat->n_row)
1148 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
1151 error: changed = -1;
1156 isl_set_free(set_i);
1157 isl_set_free(set_j);
1158 isl_vec_free(bound);
1163 /* Check if the union of the given pair of basic maps
1164 * can be represented by a single basic map.
1165 * If so, replace the pair by the single basic map and return 1.
1166 * Otherwise, return 0;
1167 * The two basic maps are assumed to live in the same local space.
1169 * We first check the effect of each constraint of one basic map
1170 * on the other basic map.
1171 * The constraint may be
1172 * redundant the constraint is redundant in its own
1173 * basic map and should be ignore and removed
1175 * valid all (integer) points of the other basic map
1176 * satisfy the constraint
1177 * separate no (integer) point of the other basic map
1178 * satisfies the constraint
1179 * cut some but not all points of the other basic map
1180 * satisfy the constraint
1181 * adj_eq the given constraint is adjacent (on the outside)
1182 * to an equality of the other basic map
1183 * adj_ineq the given constraint is adjacent (on the outside)
1184 * to an inequality of the other basic map
1186 * We consider seven cases in which we can replace the pair by a single
1187 * basic map. We ignore all "redundant" constraints.
1189 * 1. all constraints of one basic map are valid
1190 * => the other basic map is a subset and can be removed
1192 * 2. all constraints of both basic maps are either "valid" or "cut"
1193 * and the facets corresponding to the "cut" constraints
1194 * of one of the basic maps lies entirely inside the other basic map
1195 * => the pair can be replaced by a basic map consisting
1196 * of the valid constraints in both basic maps
1198 * 3. there is a single pair of adjacent inequalities
1199 * (all other constraints are "valid")
1200 * => the pair can be replaced by a basic map consisting
1201 * of the valid constraints in both basic maps
1203 * 4. there is a single adjacent pair of an inequality and an equality,
1204 * the other constraints of the basic map containing the inequality are
1205 * "valid". Moreover, if the inequality the basic map is relaxed
1206 * and then turned into an equality, then resulting facet lies
1207 * entirely inside the other basic map
1208 * => the pair can be replaced by the basic map containing
1209 * the inequality, with the inequality relaxed.
1211 * 5. there is a single adjacent pair of an inequality and an equality,
1212 * the other constraints of the basic map containing the inequality are
1213 * "valid". Moreover, the facets corresponding to both
1214 * the inequality and the equality can be wrapped around their
1215 * ridges to include the other basic map
1216 * => the pair can be replaced by a basic map consisting
1217 * of the valid constraints in both basic maps together
1218 * with all wrapping constraints
1220 * 6. one of the basic maps extends beyond the other by at most one.
1221 * Moreover, the facets corresponding to the cut constraints and
1222 * the pieces of the other basic map at offset one from these cut
1223 * constraints can be wrapped around their ridges to include
1224 * the union of the two basic maps
1225 * => the pair can be replaced by a basic map consisting
1226 * of the valid constraints in both basic maps together
1227 * with all wrapping constraints
1229 * 7. the two basic maps live in adjacent hyperplanes. In principle
1230 * such sets can always be combined through wrapping, but we impose
1231 * that there is only one such pair, to avoid overeager coalescing.
1233 * Throughout the computation, we maintain a collection of tableaus
1234 * corresponding to the basic maps. When the basic maps are dropped
1235 * or combined, the tableaus are modified accordingly.
1237 static int coalesce_local_pair(__isl_keep isl_map *map, int i, int j,
1238 struct isl_tab **tabs)
1246 eq_i = eq_status_in(map->p[i], tabs[j]);
1249 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
1251 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
1254 eq_j = eq_status_in(map->p[j], tabs[i]);
1257 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
1259 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
1262 ineq_i = ineq_status_in(map->p[i], tabs[i], tabs[j]);
1265 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
1267 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
1270 ineq_j = ineq_status_in(map->p[j], tabs[j], tabs[i]);
1273 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
1275 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
1278 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
1279 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
1282 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
1283 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
1286 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ)) {
1287 changed = check_eq_adj_eq(map, i, j, tabs,
1288 eq_i, ineq_i, eq_j, ineq_j);
1289 } else if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
1290 changed = check_eq_adj_eq(map, j, i, tabs,
1291 eq_j, ineq_j, eq_i, ineq_i);
1292 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
1293 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
1294 changed = check_adj_eq(map, i, j, tabs,
1295 eq_i, ineq_i, eq_j, ineq_j);
1296 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
1297 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
1300 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
1301 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
1302 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1303 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1304 changed = check_adj_ineq(map, i, j, tabs,
1307 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1308 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1309 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
1311 changed = check_wrap(map, i, j, tabs,
1312 eq_i, ineq_i, eq_j, ineq_j);
1329 /* Do the two basic maps live in the same local space, i.e.,
1330 * do they have the same (known) divs?
1331 * If either basic map has any unknown divs, then we can only assume
1332 * that they do not live in the same local space.
1334 static int same_divs(__isl_keep isl_basic_map *bmap1,
1335 __isl_keep isl_basic_map *bmap2)
1341 if (!bmap1 || !bmap2)
1343 if (bmap1->n_div != bmap2->n_div)
1346 if (bmap1->n_div == 0)
1349 known = isl_basic_map_divs_known(bmap1);
1350 if (known < 0 || !known)
1352 known = isl_basic_map_divs_known(bmap2);
1353 if (known < 0 || !known)
1356 total = isl_basic_map_total_dim(bmap1);
1357 for (i = 0; i < bmap1->n_div; ++i)
1358 if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
1364 /* Given two basic maps "i" and "j", where the divs of "i" form a subset
1365 * of those of "j", check if basic map "j" is a subset of basic map "i"
1366 * and, if so, drop basic map "j".
1368 * We first expand the divs of basic map "i" to match those of basic map "j",
1369 * using the divs and expansion computed by the caller.
1370 * Then we check if all constraints of the expanded "i" are valid for "j".
1372 static int coalesce_subset(__isl_keep isl_map *map, int i, int j,
1373 struct isl_tab **tabs, __isl_keep isl_mat *div, int *exp)
1375 isl_basic_map *bmap;
1380 bmap = isl_basic_map_copy(map->p[i]);
1381 bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp);
1386 eq_i = eq_status_in(bmap, tabs[j]);
1389 if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR))
1391 if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE))
1394 ineq_i = ineq_status_in(bmap, NULL, tabs[j]);
1397 if (any(ineq_i, bmap->n_ineq, STATUS_ERROR))
1399 if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE))
1402 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
1403 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
1409 isl_basic_map_free(bmap);
1414 isl_basic_map_free(bmap);
1420 /* Check if the basic map "j" is a subset of basic map "i",
1421 * assuming that "i" has fewer divs that "j".
1422 * If not, then we change the order.
1424 * If the two basic maps have the same number of divs, then
1425 * they must necessarily be different. Otherwise, we would have
1426 * called coalesce_local_pair. We therefore don't do try anyhing
1429 * We first check if the divs of "i" are all known and form a subset
1430 * of those of "j". If so, we pass control over to coalesce_subset.
1432 static int check_coalesce_subset(__isl_keep isl_map *map, int i, int j,
1433 struct isl_tab **tabs)
1436 isl_mat *div_i, *div_j, *div;
1442 if (map->p[i]->n_div == map->p[j]->n_div)
1444 if (map->p[j]->n_div < map->p[i]->n_div)
1445 return check_coalesce_subset(map, j, i, tabs);
1447 known = isl_basic_map_divs_known(map->p[i]);
1448 if (known < 0 || !known)
1451 ctx = isl_map_get_ctx(map);
1453 div_i = isl_basic_map_get_divs(map->p[i]);
1454 div_j = isl_basic_map_get_divs(map->p[j]);
1456 if (!div_i || !div_j)
1459 exp1 = isl_alloc_array(ctx, int, div_i->n_row);
1460 exp2 = isl_alloc_array(ctx, int, div_j->n_row);
1464 div = isl_merge_divs(div_i, div_j, exp1, exp2);
1468 if (div->n_row == div_j->n_row)
1469 subset = coalesce_subset(map, i, j, tabs, div, exp1);
1475 isl_mat_free(div_i);
1476 isl_mat_free(div_j);
1483 isl_mat_free(div_i);
1484 isl_mat_free(div_j);
1490 /* Check if the union of the given pair of basic maps
1491 * can be represented by a single basic map.
1492 * If so, replace the pair by the single basic map and return 1.
1493 * Otherwise, return 0;
1495 * We first check if the two basic maps live in the same local space.
1496 * If so, we do the complete check. Otherwise, we check if one is
1497 * an obvious subset of the other.
1499 static int coalesce_pair(__isl_keep isl_map *map, int i, int j,
1500 struct isl_tab **tabs)
1504 same = same_divs(map->p[i], map->p[j]);
1508 return coalesce_local_pair(map, i, j, tabs);
1510 return check_coalesce_subset(map, i, j, tabs);
1513 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
1517 for (i = map->n - 2; i >= 0; --i)
1519 for (j = i + 1; j < map->n; ++j) {
1521 changed = coalesce_pair(map, i, j, tabs);
1533 /* For each pair of basic maps in the map, check if the union of the two
1534 * can be represented by a single basic map.
1535 * If so, replace the pair by the single basic map and start over.
1537 struct isl_map *isl_map_coalesce(struct isl_map *map)
1541 struct isl_tab **tabs = NULL;
1543 map = isl_map_remove_empty_parts(map);
1550 map = isl_map_sort_divs(map);
1551 map = isl_map_cow(map);
1553 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
1558 for (i = 0; i < map->n; ++i) {
1559 tabs[i] = isl_tab_from_basic_map(map->p[i], 0);
1562 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
1563 if (isl_tab_detect_implicit_equalities(tabs[i]) < 0)
1565 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
1566 if (isl_tab_detect_redundant(tabs[i]) < 0)
1569 for (i = map->n - 1; i >= 0; --i)
1573 map = coalesce(map, tabs);
1576 for (i = 0; i < map->n; ++i) {
1577 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
1579 map->p[i] = isl_basic_map_finalize(map->p[i]);
1582 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
1583 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
1586 for (i = 0; i < n; ++i)
1587 isl_tab_free(tabs[i]);
1594 for (i = 0; i < n; ++i)
1595 isl_tab_free(tabs[i]);
1601 /* For each pair of basic sets in the set, check if the union of the two
1602 * can be represented by a single basic set.
1603 * If so, replace the pair by the single basic set and start over.
1605 struct isl_set *isl_set_coalesce(struct isl_set *set)
1607 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);