2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the GNU LGPLv2.1 license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include "isl_map_private.h"
16 #include <isl_mat_private.h>
18 #define STATUS_ERROR -1
19 #define STATUS_REDUNDANT 1
20 #define STATUS_VALID 2
21 #define STATUS_SEPARATE 3
23 #define STATUS_ADJ_EQ 5
24 #define STATUS_ADJ_INEQ 6
26 static int status_in(isl_int *ineq, struct isl_tab *tab)
28 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
31 case isl_ineq_error: return STATUS_ERROR;
32 case isl_ineq_redundant: return STATUS_VALID;
33 case isl_ineq_separate: return STATUS_SEPARATE;
34 case isl_ineq_cut: return STATUS_CUT;
35 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
36 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
40 /* Compute the position of the equalities of basic map "i"
41 * with respect to basic map "j".
42 * The resulting array has twice as many entries as the number
43 * of equalities corresponding to the two inequalties to which
44 * each equality corresponds.
46 static int *eq_status_in(struct isl_map *map, int i, int j,
47 struct isl_tab **tabs)
50 int *eq = isl_calloc_array(map->ctx, int, 2 * map->p[i]->n_eq);
53 dim = isl_basic_map_total_dim(map->p[i]);
54 for (k = 0; k < map->p[i]->n_eq; ++k) {
55 for (l = 0; l < 2; ++l) {
56 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
57 eq[2 * k + l] = status_in(map->p[i]->eq[k], tabs[j]);
58 if (eq[2 * k + l] == STATUS_ERROR)
61 if (eq[2 * k] == STATUS_SEPARATE ||
62 eq[2 * k + 1] == STATUS_SEPARATE)
72 /* Compute the position of the inequalities of basic map "i"
73 * with respect to basic map "j".
75 static int *ineq_status_in(struct isl_map *map, int i, int j,
76 struct isl_tab **tabs)
79 unsigned n_eq = map->p[i]->n_eq;
80 int *ineq = isl_calloc_array(map->ctx, int, map->p[i]->n_ineq);
82 for (k = 0; k < map->p[i]->n_ineq; ++k) {
83 if (isl_tab_is_redundant(tabs[i], n_eq + k)) {
84 ineq[k] = STATUS_REDUNDANT;
87 ineq[k] = status_in(map->p[i]->ineq[k], tabs[j]);
88 if (ineq[k] == STATUS_ERROR)
90 if (ineq[k] == STATUS_SEPARATE)
100 static int any(int *con, unsigned len, int status)
104 for (i = 0; i < len ; ++i)
105 if (con[i] == status)
110 static int count(int *con, unsigned len, int status)
115 for (i = 0; i < len ; ++i)
116 if (con[i] == status)
121 static int all(int *con, unsigned len, int status)
125 for (i = 0; i < len ; ++i) {
126 if (con[i] == STATUS_REDUNDANT)
128 if (con[i] != status)
134 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
136 isl_basic_map_free(map->p[i]);
137 isl_tab_free(tabs[i]);
139 if (i != map->n - 1) {
140 map->p[i] = map->p[map->n - 1];
141 tabs[i] = tabs[map->n - 1];
143 tabs[map->n - 1] = NULL;
147 /* Replace the pair of basic maps i and j by the basic map bounded
148 * by the valid constraints in both basic maps and the constraint
149 * in extra (if not NULL).
151 static int fuse(struct isl_map *map, int i, int j,
152 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
153 __isl_keep isl_mat *extra)
156 struct isl_basic_map *fused = NULL;
157 struct isl_tab *fused_tab = NULL;
158 unsigned total = isl_basic_map_total_dim(map->p[i]);
159 unsigned extra_rows = extra ? extra->n_row : 0;
161 fused = isl_basic_map_alloc_dim(isl_dim_copy(map->p[i]->dim),
163 map->p[i]->n_eq + map->p[j]->n_eq,
164 map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
168 for (k = 0; k < map->p[i]->n_eq; ++k) {
169 if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
170 eq_i[2 * k + 1] != STATUS_VALID))
172 l = isl_basic_map_alloc_equality(fused);
175 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
178 for (k = 0; k < map->p[j]->n_eq; ++k) {
179 if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
180 eq_j[2 * k + 1] != STATUS_VALID))
182 l = isl_basic_map_alloc_equality(fused);
185 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
188 for (k = 0; k < map->p[i]->n_ineq; ++k) {
189 if (ineq_i[k] != STATUS_VALID)
191 l = isl_basic_map_alloc_inequality(fused);
194 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
197 for (k = 0; k < map->p[j]->n_ineq; ++k) {
198 if (ineq_j[k] != STATUS_VALID)
200 l = isl_basic_map_alloc_inequality(fused);
203 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
206 for (k = 0; k < map->p[i]->n_div; ++k) {
207 int l = isl_basic_map_alloc_div(fused);
210 isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
213 for (k = 0; k < extra_rows; ++k) {
214 l = isl_basic_map_alloc_inequality(fused);
217 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
220 fused = isl_basic_map_gauss(fused, NULL);
221 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
222 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
223 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
224 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
226 fused_tab = isl_tab_from_basic_map(fused);
227 if (isl_tab_detect_redundant(fused_tab) < 0)
230 isl_basic_map_free(map->p[i]);
232 isl_tab_free(tabs[i]);
238 isl_tab_free(fused_tab);
239 isl_basic_map_free(fused);
243 /* Given a pair of basic maps i and j such that all constraints are either
244 * "valid" or "cut", check if the facets corresponding to the "cut"
245 * constraints of i lie entirely within basic map j.
246 * If so, replace the pair by the basic map consisting of the valid
247 * constraints in both basic maps.
249 * To see that we are not introducing any extra points, call the
250 * two basic maps A and B and the resulting map U and let x
251 * be an element of U \setminus ( A \cup B ).
252 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
253 * violates them. Let X be the intersection of U with the opposites
254 * of these constraints. Then x \in X.
255 * The facet corresponding to c_1 contains the corresponding facet of A.
256 * This facet is entirely contained in B, so c_2 is valid on the facet.
257 * However, since it is also (part of) a facet of X, -c_2 is also valid
258 * on the facet. This means c_2 is saturated on the facet, so c_1 and
259 * c_2 must be opposites of each other, but then x could not violate
262 static int check_facets(struct isl_map *map, int i, int j,
263 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
266 struct isl_tab_undo *snap;
267 unsigned n_eq = map->p[i]->n_eq;
269 snap = isl_tab_snap(tabs[i]);
271 for (k = 0; k < map->p[i]->n_ineq; ++k) {
272 if (ineq_i[k] != STATUS_CUT)
274 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
276 for (l = 0; l < map->p[j]->n_ineq; ++l) {
278 if (ineq_j[l] != STATUS_CUT)
280 stat = status_in(map->p[j]->ineq[l], tabs[i]);
281 if (stat != STATUS_VALID)
284 if (isl_tab_rollback(tabs[i], snap) < 0)
286 if (l < map->p[j]->n_ineq)
290 if (k < map->p[i]->n_ineq)
293 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
296 /* Both basic maps have at least one inequality with and adjacent
297 * (but opposite) inequality in the other basic map.
298 * Check that there are no cut constraints and that there is only
299 * a single pair of adjacent inequalities.
300 * If so, we can replace the pair by a single basic map described
301 * by all but the pair of adjacent inequalities.
302 * Any additional points introduced lie strictly between the two
303 * adjacent hyperplanes and can therefore be integral.
312 * The test for a single pair of adjancent inequalities is important
313 * for avoiding the combination of two basic maps like the following
323 static int check_adj_ineq(struct isl_map *map, int i, int j,
324 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
328 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
329 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
332 else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
333 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
334 changed = fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
335 /* else ADJ INEQ TOO MANY */
340 /* Check if basic map "i" contains the basic map represented
341 * by the tableau "tab".
343 static int contains(struct isl_map *map, int i, int *ineq_i,
349 dim = isl_basic_map_total_dim(map->p[i]);
350 for (k = 0; k < map->p[i]->n_eq; ++k) {
351 for (l = 0; l < 2; ++l) {
353 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
354 stat = status_in(map->p[i]->eq[k], tab);
355 if (stat != STATUS_VALID)
360 for (k = 0; k < map->p[i]->n_ineq; ++k) {
362 if (ineq_i[k] == STATUS_REDUNDANT)
364 stat = status_in(map->p[i]->ineq[k], tab);
365 if (stat != STATUS_VALID)
371 /* Basic map "i" has an inequality "k" that is adjacent to some equality
372 * of basic map "j". All the other inequalities are valid for "j".
373 * Check if basic map "j" forms an extension of basic map "i".
375 * In particular, we relax constraint "k", compute the corresponding
376 * facet and check whether it is included in the other basic map.
377 * If so, we know that relaxing the constraint extends the basic
378 * map with exactly the other basic map (we already know that this
379 * other basic map is included in the extension, because there
380 * were no "cut" inequalities in "i") and we can replace the
381 * two basic maps by thie extension.
389 static int is_extension(struct isl_map *map, int i, int j, int k,
390 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
394 struct isl_tab_undo *snap, *snap2;
395 unsigned n_eq = map->p[i]->n_eq;
397 snap = isl_tab_snap(tabs[i]);
398 tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
399 snap2 = isl_tab_snap(tabs[i]);
400 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
402 super = contains(map, j, ineq_j, tabs[i]);
404 if (isl_tab_rollback(tabs[i], snap2) < 0)
406 map->p[i] = isl_basic_map_cow(map->p[i]);
409 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
410 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
414 if (isl_tab_rollback(tabs[i], snap) < 0)
420 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
421 * wrap the constraint around "bound" such that it includes the whole
422 * set "set" and append the resulting constraint to "wraps".
423 * "wraps" is assumed to have been pre-allocated to the appropriate size.
424 * wraps->n_row is the number of actual wrapped constraints that have
426 * If any of the wrapping problems results in a constraint that is
427 * identical to "bound", then this means that "set" is unbounded in such
428 * way that no wrapping is possible. If this happens then wraps->n_row
431 static int add_wraps(__isl_keep isl_mat *wraps, __isl_keep isl_basic_map *bmap,
432 struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
436 unsigned total = isl_basic_map_total_dim(bmap);
440 for (l = 0; l < bmap->n_ineq; ++l) {
441 if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
443 if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
445 if (isl_tab_is_redundant(tab, bmap->n_eq + l))
448 isl_seq_cpy(wraps->row[w], bound, 1 + total);
449 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->ineq[l]))
451 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
455 for (l = 0; l < bmap->n_eq; ++l) {
456 if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
458 if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
461 isl_seq_cpy(wraps->row[w], bound, 1 + total);
462 isl_seq_neg(wraps->row[w + 1], bmap->eq[l], 1 + total);
463 if (!isl_set_wrap_facet(set, wraps->row[w], wraps->row[w + 1]))
465 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
469 isl_seq_cpy(wraps->row[w], bound, 1 + total);
470 if (!isl_set_wrap_facet(set, wraps->row[w], bmap->eq[l]))
472 if (isl_seq_eq(wraps->row[w], bound, 1 + total))
484 /* Check if the constraints in "wraps" from "first" until the last
485 * are all valid for the basic set represented by "tab".
486 * If not, wraps->n_row is set to zero.
488 static int check_wraps(__isl_keep isl_mat *wraps, int first,
493 for (i = first; i < wraps->n_row; ++i) {
494 enum isl_ineq_type type;
495 type = isl_tab_ineq_type(tab, wraps->row[i]);
496 if (type == isl_ineq_error)
498 if (type == isl_ineq_redundant)
507 /* Return a set that corresponds to the non-redudant constraints
508 * (as recorded in tab) of bmap.
510 * It's important to remove the redundant constraints as some
511 * of the other constraints may have been modified after the
512 * constraints were marked redundant.
513 * In particular, a constraint may have been relaxed.
514 * Redundant constraints are ignored when a constraint is relaxed
515 * and should therefore continue to be ignored ever after.
516 * Otherwise, the relaxation might be thwarted by some of
519 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
522 bmap = isl_basic_map_copy(bmap);
523 bmap = isl_basic_map_cow(bmap);
524 bmap = isl_basic_map_update_from_tab(bmap, tab);
525 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap));
528 /* Given a basic set i with a constraint k that is adjacent to either the
529 * whole of basic set j or a facet of basic set j, check if we can wrap
530 * both the facet corresponding to k and the facet of j (or the whole of j)
531 * around their ridges to include the other set.
532 * If so, replace the pair of basic sets by their union.
534 * All constraints of i (except k) are assumed to be valid for j.
536 * However, the constraints of j may not be valid for i and so
537 * we have to check that the wrapping constraints for j are valid for i.
539 * In the case where j has a facet adjacent to i, tab[j] is assumed
540 * to have been restricted to this facet, so that the non-redundant
541 * constraints in tab[j] are the ridges of the facet.
542 * Note that for the purpose of wrapping, it does not matter whether
543 * we wrap the ridges of i around the whole of j or just around
544 * the facet since all the other constraints are assumed to be valid for j.
545 * In practice, we wrap to include the whole of j.
554 static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
555 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
558 struct isl_mat *wraps = NULL;
559 struct isl_set *set_i = NULL;
560 struct isl_set *set_j = NULL;
561 struct isl_vec *bound = NULL;
562 unsigned total = isl_basic_map_total_dim(map->p[i]);
563 struct isl_tab_undo *snap;
566 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
567 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
568 wraps = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
569 map->p[i]->n_ineq + map->p[j]->n_ineq,
571 bound = isl_vec_alloc(map->ctx, 1 + total);
572 if (!set_i || !set_j || !wraps || !bound)
575 isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
576 isl_int_add_ui(bound->el[0], bound->el[0], 1);
578 isl_seq_cpy(wraps->row[0], bound->el, 1 + total);
581 if (add_wraps(wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
586 snap = isl_tab_snap(tabs[i]);
588 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k) < 0)
590 if (isl_tab_detect_redundant(tabs[i]) < 0)
593 isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
596 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
599 if (isl_tab_rollback(tabs[i], snap) < 0)
601 if (check_wraps(wraps, n, tabs[i]) < 0)
606 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps);
625 /* Set the is_redundant property of the "n" constraints in "cuts",
627 * This is a fairly tricky operation as it bypasses isl_tab.c.
628 * The reason we want to temporarily mark some constraints redundant
629 * is that we want to ignore them in add_wraps.
631 * Initially all cut constraints are non-redundant, but the
632 * selection of a facet right before the call to this function
633 * may have made some of them redundant.
634 * Likewise, the same constraints are marked non-redundant
635 * in the second call to this function, before they are officially
636 * made non-redundant again in the subsequent rollback.
638 static void set_is_redundant(struct isl_tab *tab, unsigned n_eq,
639 int *cuts, int n, int k, int v)
643 for (l = 0; l < n; ++l) {
646 tab->con[n_eq + cuts[l]].is_redundant = v;
650 /* Given a pair of basic maps i and j such that j sticks out
651 * of i at n cut constraints, each time by at most one,
652 * try to compute wrapping constraints and replace the two
653 * basic maps by a single basic map.
654 * The other constraints of i are assumed to be valid for j.
656 * The facets of i corresponding to the cut constraints are
657 * wrapped around their ridges, except those ridges determined
658 * by any of the other cut constraints.
659 * The intersections of cut constraints need to be ignored
660 * as the result of wrapping one cut constraint around another
661 * would result in a constraint cutting the union.
662 * In each case, the facets are wrapped to include the union
663 * of the two basic maps.
665 * The pieces of j that lie at an offset of exactly one from
666 * one of the cut constraints of i are wrapped around their edges.
667 * Here, there is no need to ignore intersections because we
668 * are wrapping around the union of the two basic maps.
670 * If any wrapping fails, i.e., if we cannot wrap to touch
671 * the union, then we give up.
672 * Otherwise, the pair of basic maps is replaced by their union.
674 static int wrap_in_facets(struct isl_map *map, int i, int j,
675 int *cuts, int n, struct isl_tab **tabs,
676 int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
679 isl_mat *wraps = NULL;
681 isl_vec *bound = NULL;
682 unsigned total = isl_basic_map_total_dim(map->p[i]);
685 struct isl_tab_undo *snap_i, *snap_j;
687 if (isl_tab_extend_cons(tabs[j], 1) < 0)
690 max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
691 map->p[i]->n_ineq + map->p[j]->n_ineq;
694 set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]),
695 set_from_updated_bmap(map->p[j], tabs[j]));
696 wraps = isl_mat_alloc(map->ctx, max_wrap, 1 + total);
697 bound = isl_vec_alloc(map->ctx, 1 + total);
698 if (!set || !wraps || !bound)
701 snap_i = isl_tab_snap(tabs[i]);
702 snap_j = isl_tab_snap(tabs[j]);
706 for (k = 0; k < n; ++k) {
707 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + cuts[k]) < 0)
709 if (isl_tab_detect_redundant(tabs[i]) < 0)
711 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1);
713 isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
714 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set) < 0)
717 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0);
718 if (isl_tab_rollback(tabs[i], snap_i) < 0)
724 isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
725 isl_int_add_ui(bound->el[0], bound->el[0], 1);
726 if (isl_tab_add_eq(tabs[j], bound->el) < 0)
728 if (isl_tab_detect_redundant(tabs[j]) < 0)
731 if (!tabs[j]->empty &&
732 add_wraps(wraps, map->p[j], tabs[j], bound->el, set) < 0)
735 if (isl_tab_rollback(tabs[j], snap_j) < 0)
743 changed = fuse(map, i, j, tabs,
744 eq_i, ineq_i, eq_j, ineq_j, wraps);
758 /* Given two basic sets i and j such that i has no cut equalities,
759 * check if relaxing all the cut inequalities of i by one turns
760 * them into valid constraint for j and check if we can wrap in
761 * the bits that are sticking out.
762 * If so, replace the pair by their union.
764 * We first check if all relaxed cut inequalities of i are valid for j
765 * and then try to wrap in the intersections of the relaxed cut inequalities
768 * During this wrapping, we consider the points of j that lie at a distance
769 * of exactly 1 from i. In particular, we ignore the points that lie in
770 * between this lower-dimensional space and the basic map i.
771 * We can therefore only apply this to integer maps.
797 * Wrapping can fail if the result of wrapping one of the facets
798 * around its edges does not produce any new facet constraint.
799 * In particular, this happens when we try to wrap in unbounded sets.
801 * _______________________________________________________________________
805 * |_| |_________________________________________________________________
808 * The following is not an acceptable result of coalescing the above two
809 * sets as it includes extra integer points.
810 * _______________________________________________________________________
815 * \______________________________________________________________________
817 static int can_wrap_in_set(struct isl_map *map, int i, int j,
818 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
825 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) ||
826 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
829 n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
833 cuts = isl_alloc_array(map->ctx, int, n);
837 for (k = 0, m = 0; m < n; ++k) {
838 enum isl_ineq_type type;
840 if (ineq_i[k] != STATUS_CUT)
843 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
844 type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]);
845 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
846 if (type == isl_ineq_error)
848 if (type != isl_ineq_redundant)
855 changed = wrap_in_facets(map, i, j, cuts, n, tabs,
856 eq_i, ineq_i, eq_j, ineq_j);
866 /* Check if either i or j has a single cut constraint that can
867 * be used to wrap in (a facet of) the other basic set.
868 * if so, replace the pair by their union.
870 static int check_wrap(struct isl_map *map, int i, int j,
871 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
875 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
876 changed = can_wrap_in_set(map, i, j, tabs,
877 eq_i, ineq_i, eq_j, ineq_j);
881 if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
882 changed = can_wrap_in_set(map, j, i, tabs,
883 eq_j, ineq_j, eq_i, ineq_i);
887 /* At least one of the basic maps has an equality that is adjacent
888 * to inequality. Make sure that only one of the basic maps has
889 * such an equality and that the other basic map has exactly one
890 * inequality adjacent to an equality.
891 * We call the basic map that has the inequality "i" and the basic
892 * map that has the equality "j".
893 * If "i" has any "cut" (in)equality, then relaxing the inequality
894 * by one would not result in a basic map that contains the other
897 static int check_adj_eq(struct isl_map *map, int i, int j,
898 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
903 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
904 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
905 /* ADJ EQ TOO MANY */
908 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
909 return check_adj_eq(map, j, i, tabs,
910 eq_j, ineq_j, eq_i, ineq_i);
912 /* j has an equality adjacent to an inequality in i */
914 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
916 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
919 if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
920 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
921 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
922 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
923 /* ADJ EQ TOO MANY */
926 for (k = 0; k < map->p[i]->n_ineq ; ++k)
927 if (ineq_i[k] == STATUS_ADJ_EQ)
930 changed = is_extension(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
934 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1)
937 changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
942 /* The two basic maps lie on adjacent hyperplanes. In particular,
943 * basic map "i" has an equality that lies parallel to basic map "j".
944 * Check if we can wrap the facets around the parallel hyperplanes
945 * to include the other set.
947 * We perform basically the same operations as can_wrap_in_facet,
948 * except that we don't need to select a facet of one of the sets.
954 * We only allow one equality of "i" to be adjacent to an equality of "j"
955 * to avoid coalescing
957 * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
958 * x <= 10 and y <= 10;
959 * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
960 * y >= 5 and y <= 15 }
964 * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
965 * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
966 * y2 <= 1 + x + y - x2 and y2 >= y and
967 * y2 >= 1 + x + y - x2 }
969 static int check_eq_adj_eq(struct isl_map *map, int i, int j,
970 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
974 struct isl_mat *wraps = NULL;
975 struct isl_set *set_i = NULL;
976 struct isl_set *set_j = NULL;
977 struct isl_vec *bound = NULL;
978 unsigned total = isl_basic_map_total_dim(map->p[i]);
980 if (count(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) != 1)
983 for (k = 0; k < 2 * map->p[i]->n_eq ; ++k)
984 if (eq_i[k] == STATUS_ADJ_EQ)
987 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
988 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
989 wraps = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
990 map->p[i]->n_ineq + map->p[j]->n_ineq,
992 bound = isl_vec_alloc(map->ctx, 1 + total);
993 if (!set_i || !set_j || !wraps || !bound)
997 isl_seq_neg(bound->el, map->p[i]->eq[k / 2], 1 + total);
999 isl_seq_cpy(bound->el, map->p[i]->eq[k / 2], 1 + total);
1000 isl_int_add_ui(bound->el[0], bound->el[0], 1);
1002 isl_seq_cpy(wraps->row[0], bound->el, 1 + total);
1005 if (add_wraps(wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
1010 isl_int_sub_ui(bound->el[0], bound->el[0], 1);
1011 isl_seq_neg(bound->el, bound->el, 1 + total);
1013 isl_seq_cpy(wraps->row[wraps->n_row], bound->el, 1 + total);
1016 if (add_wraps(wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
1021 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps);
1024 error: changed = -1;
1028 isl_mat_free(wraps);
1029 isl_set_free(set_i);
1030 isl_set_free(set_j);
1031 isl_vec_free(bound);
1036 /* Check if the union of the given pair of basic maps
1037 * can be represented by a single basic map.
1038 * If so, replace the pair by the single basic map and return 1.
1039 * Otherwise, return 0;
1041 * We first check the effect of each constraint of one basic map
1042 * on the other basic map.
1043 * The constraint may be
1044 * redundant the constraint is redundant in its own
1045 * basic map and should be ignore and removed
1047 * valid all (integer) points of the other basic map
1048 * satisfy the constraint
1049 * separate no (integer) point of the other basic map
1050 * satisfies the constraint
1051 * cut some but not all points of the other basic map
1052 * satisfy the constraint
1053 * adj_eq the given constraint is adjacent (on the outside)
1054 * to an equality of the other basic map
1055 * adj_ineq the given constraint is adjacent (on the outside)
1056 * to an inequality of the other basic map
1058 * We consider seven cases in which we can replace the pair by a single
1059 * basic map. We ignore all "redundant" constraints.
1061 * 1. all constraints of one basic map are valid
1062 * => the other basic map is a subset and can be removed
1064 * 2. all constraints of both basic maps are either "valid" or "cut"
1065 * and the facets corresponding to the "cut" constraints
1066 * of one of the basic maps lies entirely inside the other basic map
1067 * => the pair can be replaced by a basic map consisting
1068 * of the valid constraints in both basic maps
1070 * 3. there is a single pair of adjacent inequalities
1071 * (all other constraints are "valid")
1072 * => the pair can be replaced by a basic map consisting
1073 * of the valid constraints in both basic maps
1075 * 4. there is a single adjacent pair of an inequality and an equality,
1076 * the other constraints of the basic map containing the inequality are
1077 * "valid". Moreover, if the inequality the basic map is relaxed
1078 * and then turned into an equality, then resulting facet lies
1079 * entirely inside the other basic map
1080 * => the pair can be replaced by the basic map containing
1081 * the inequality, with the inequality relaxed.
1083 * 5. there is a single adjacent pair of an inequality and an equality,
1084 * the other constraints of the basic map containing the inequality are
1085 * "valid". Moreover, the facets corresponding to both
1086 * the inequality and the equality can be wrapped around their
1087 * ridges to include the other basic map
1088 * => the pair can be replaced by a basic map consisting
1089 * of the valid constraints in both basic maps together
1090 * with all wrapping constraints
1092 * 6. one of the basic maps extends beyond the other by at most one.
1093 * Moreover, the facets corresponding to the cut constraints and
1094 * the pieces of the other basic map at offset one from these cut
1095 * constraints can be wrapped around their ridges to include
1096 * the union of the two basic maps
1097 * => the pair can be replaced by a basic map consisting
1098 * of the valid constraints in both basic maps together
1099 * with all wrapping constraints
1101 * 7. the two basic maps live in adjacent hyperplanes. In principle
1102 * such sets can always be combined through wrapping, but we impose
1103 * that there is only one such pair, to avoid overeager coalescing.
1105 * Throughout the computation, we maintain a collection of tableaus
1106 * corresponding to the basic maps. When the basic maps are dropped
1107 * or combined, the tableaus are modified accordingly.
1109 static int coalesce_pair(struct isl_map *map, int i, int j,
1110 struct isl_tab **tabs)
1118 eq_i = eq_status_in(map, i, j, tabs);
1121 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
1123 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
1126 eq_j = eq_status_in(map, j, i, tabs);
1129 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
1131 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
1134 ineq_i = ineq_status_in(map, i, j, tabs);
1137 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
1139 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
1142 ineq_j = ineq_status_in(map, j, i, tabs);
1145 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
1147 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
1150 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
1151 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
1154 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
1155 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
1158 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ)) {
1159 changed = check_eq_adj_eq(map, i, j, tabs,
1160 eq_i, ineq_i, eq_j, ineq_j);
1161 } else if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
1162 changed = check_eq_adj_eq(map, j, i, tabs,
1163 eq_j, ineq_j, eq_i, ineq_i);
1164 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
1165 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
1166 changed = check_adj_eq(map, i, j, tabs,
1167 eq_i, ineq_i, eq_j, ineq_j);
1168 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
1169 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
1172 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
1173 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
1174 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1175 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1176 changed = check_adj_ineq(map, i, j, tabs,
1179 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1180 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1181 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
1183 changed = check_wrap(map, i, j, tabs,
1184 eq_i, ineq_i, eq_j, ineq_j);
1201 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
1205 for (i = map->n - 2; i >= 0; --i)
1207 for (j = i + 1; j < map->n; ++j) {
1209 changed = coalesce_pair(map, i, j, tabs);
1221 /* For each pair of basic maps in the map, check if the union of the two
1222 * can be represented by a single basic map.
1223 * If so, replace the pair by the single basic map and start over.
1225 struct isl_map *isl_map_coalesce(struct isl_map *map)
1229 struct isl_tab **tabs = NULL;
1237 map = isl_map_align_divs(map);
1239 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
1244 for (i = 0; i < map->n; ++i) {
1245 tabs[i] = isl_tab_from_basic_map(map->p[i]);
1248 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
1249 if (isl_tab_detect_implicit_equalities(tabs[i]) < 0)
1251 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
1252 if (isl_tab_detect_redundant(tabs[i]) < 0)
1255 for (i = map->n - 1; i >= 0; --i)
1259 map = coalesce(map, tabs);
1262 for (i = 0; i < map->n; ++i) {
1263 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
1265 map->p[i] = isl_basic_map_finalize(map->p[i]);
1268 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
1269 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
1272 for (i = 0; i < n; ++i)
1273 isl_tab_free(tabs[i]);
1280 for (i = 0; i < n; ++i)
1281 isl_tab_free(tabs[i]);
1287 /* For each pair of basic sets in the set, check if the union of the two
1288 * can be represented by a single basic set.
1289 * If so, replace the pair by the single basic set and start over.
1291 struct isl_set *isl_set_coalesce(struct isl_set *set)
1293 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);