1 #include "isl_map_private.h"
5 #define STATUS_ERROR -1
6 #define STATUS_REDUNDANT 1
8 #define STATUS_SEPARATE 3
10 #define STATUS_ADJ_EQ 5
11 #define STATUS_ADJ_INEQ 6
13 static int status_in(isl_int *ineq, struct isl_tab *tab)
15 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
17 case isl_ineq_error: return STATUS_ERROR;
18 case isl_ineq_redundant: return STATUS_VALID;
19 case isl_ineq_separate: return STATUS_SEPARATE;
20 case isl_ineq_cut: return STATUS_CUT;
21 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
22 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
26 /* Compute the position of the equalities of basic map "i"
27 * with respect to basic map "j".
28 * The resulting array has twice as many entries as the number
29 * of equalities corresponding to the two inequalties to which
30 * each equality corresponds.
32 static int *eq_status_in(struct isl_map *map, int i, int j,
33 struct isl_tab **tabs)
36 int *eq = isl_calloc_array(map->ctx, int, 2 * map->p[i]->n_eq);
39 dim = isl_basic_map_total_dim(map->p[i]);
40 for (k = 0; k < map->p[i]->n_eq; ++k) {
41 for (l = 0; l < 2; ++l) {
42 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
43 eq[2 * k + l] = status_in(map->p[i]->eq[k], tabs[j]);
44 if (eq[2 * k + l] == STATUS_ERROR)
47 if (eq[2 * k] == STATUS_SEPARATE ||
48 eq[2 * k + 1] == STATUS_SEPARATE)
58 /* Compute the position of the inequalities of basic map "i"
59 * with respect to basic map "j".
61 static int *ineq_status_in(struct isl_map *map, int i, int j,
62 struct isl_tab **tabs)
65 unsigned n_eq = map->p[i]->n_eq;
66 int *ineq = isl_calloc_array(map->ctx, int, map->p[i]->n_ineq);
68 for (k = 0; k < map->p[i]->n_ineq; ++k) {
69 if (isl_tab_is_redundant(tabs[i], n_eq + k)) {
70 ineq[k] = STATUS_REDUNDANT;
73 ineq[k] = status_in(map->p[i]->ineq[k], tabs[j]);
74 if (ineq[k] == STATUS_ERROR)
76 if (ineq[k] == STATUS_SEPARATE)
86 static int any(int *con, unsigned len, int status)
90 for (i = 0; i < len ; ++i)
96 static int count(int *con, unsigned len, int status)
101 for (i = 0; i < len ; ++i)
102 if (con[i] == status)
107 static int all(int *con, unsigned len, int status)
111 for (i = 0; i < len ; ++i) {
112 if (con[i] == STATUS_REDUNDANT)
114 if (con[i] != status)
120 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
122 isl_basic_map_free(map->p[i]);
123 isl_tab_free(tabs[i]);
125 if (i != map->n - 1) {
126 map->p[i] = map->p[map->n - 1];
127 tabs[i] = tabs[map->n - 1];
129 tabs[map->n - 1] = NULL;
133 /* Replace the pair of basic maps i and j but the basic map bounded
134 * by the valid constraints in both basic maps.
136 static int fuse(struct isl_map *map, int i, int j, struct isl_tab **tabs,
137 int *ineq_i, int *ineq_j)
140 struct isl_basic_map *fused = NULL;
141 struct isl_tab *fused_tab = NULL;
142 unsigned total = isl_basic_map_total_dim(map->p[i]);
144 fused = isl_basic_map_alloc_dim(isl_dim_copy(map->p[i]->dim),
146 map->p[i]->n_eq + map->p[j]->n_eq,
147 map->p[i]->n_ineq + map->p[j]->n_ineq);
151 for (k = 0; k < map->p[i]->n_eq; ++k) {
152 int l = isl_basic_map_alloc_equality(fused);
153 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
156 for (k = 0; k < map->p[j]->n_eq; ++k) {
157 int l = isl_basic_map_alloc_equality(fused);
158 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
161 for (k = 0; k < map->p[i]->n_ineq; ++k) {
162 if (ineq_i[k] != STATUS_VALID)
164 l = isl_basic_map_alloc_inequality(fused);
165 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
168 for (k = 0; k < map->p[j]->n_ineq; ++k) {
169 if (ineq_j[k] != STATUS_VALID)
171 l = isl_basic_map_alloc_inequality(fused);
172 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
175 for (k = 0; k < map->p[i]->n_div; ++k) {
176 int l = isl_basic_map_alloc_div(fused);
177 isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
180 fused = isl_basic_map_gauss(fused, NULL);
181 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
182 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
183 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
184 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
186 fused_tab = isl_tab_from_basic_map(fused);
187 fused_tab = isl_tab_detect_redundant(fused_tab);
191 isl_basic_map_free(map->p[i]);
193 isl_tab_free(tabs[i]);
199 isl_basic_map_free(fused);
203 /* Given a pair of basic maps i and j such that all constraints are either
204 * "valid" or "cut", check if the facets corresponding to the "cut"
205 * constraints of i lie entirely within basic map j.
206 * If so, replace the pair by the basic map consisting of the valid
207 * constraints in both basic maps.
209 * To see that we are not introducing any extra points, call the
210 * two basic maps A and B and the resulting map U and let x
211 * be an element of U \setminus ( A \cup B ).
212 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
213 * violates them. Let X be the intersection of U with the opposites
214 * of these constraints. Then x \in X.
215 * The facet corresponding to c_1 contains the corresponding facet of A.
216 * This facet is entirely contained in B, so c_2 is valid on the facet.
217 * However, since it is also (part of) a facet of X, -c_2 is also valid
218 * on the facet. This means c_2 is saturated on the facet, so c_1 and
219 * c_2 must be opposites of each other, but then x could not violate
222 static int check_facets(struct isl_map *map, int i, int j,
223 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
226 struct isl_tab_undo *snap;
227 unsigned n_eq = map->p[i]->n_eq;
229 snap = isl_tab_snap(tabs[i]);
231 for (k = 0; k < map->p[i]->n_ineq; ++k) {
232 if (ineq_i[k] != STATUS_CUT)
234 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
235 for (l = 0; l < map->p[j]->n_ineq; ++l) {
237 if (ineq_j[l] != STATUS_CUT)
239 stat = status_in(map->p[j]->ineq[l], tabs[i]);
240 if (stat != STATUS_VALID)
243 if (isl_tab_rollback(tabs[i], snap) < 0)
245 if (l < map->p[j]->n_ineq)
249 if (k < map->p[i]->n_ineq)
252 return fuse(map, i, j, tabs, ineq_i, ineq_j);
255 /* Both basic maps have at least one inequality with and adjacent
256 * (but opposite) inequality in the other basic map.
257 * Check that there are no cut constraints and that there is only
258 * a single pair of adjacent inequalities.
259 * If so, we can replace the pair by a single basic map described
260 * by all but the pair of adjacent inequalities.
261 * Any additional points introduced lie strictly between the two
262 * adjacent hyperplanes and can therefore be integral.
271 * The test for a single pair of adjancent inequalities is important
272 * for avoiding the combination of two basic maps like the following
282 static int check_adj_ineq(struct isl_map *map, int i, int j,
283 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
287 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT) ||
288 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT))
291 else if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) == 1 &&
292 count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ) == 1)
293 changed = fuse(map, i, j, tabs, ineq_i, ineq_j);
294 /* else ADJ INEQ TOO MANY */
299 /* Check if basic map "i" contains the basic map represented
300 * by the tableau "tab".
302 static int contains(struct isl_map *map, int i, int *ineq_i,
308 dim = isl_basic_map_total_dim(map->p[i]);
309 for (k = 0; k < map->p[i]->n_eq; ++k) {
310 for (l = 0; l < 2; ++l) {
312 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
313 stat = status_in(map->p[i]->eq[k], tab);
314 if (stat != STATUS_VALID)
319 for (k = 0; k < map->p[i]->n_ineq; ++k) {
321 if (ineq_i[k] == STATUS_REDUNDANT)
323 stat = status_in(map->p[i]->ineq[k], tab);
324 if (stat != STATUS_VALID)
330 /* At least one of the basic maps has an equality that is adjacent
331 * to inequality. Make sure that only one of the basic maps has
332 * such an equality and that the other basic map has exactly one
333 * inequality adjacent to an equality.
334 * We call the basic map that has the inequality "i" and the basic
335 * map that has the equality "j".
336 * If "i" has any "cut" inequality, then relaxing the inequality
337 * by one would not result in a basic map that contains the other
339 * Otherwise, we relax the constraint, compute the corresponding
340 * facet and check whether it is included in the other basic map.
341 * If so, we know that relaxing the constraint extend the basic
342 * map with exactly the other basic map (we already know that this
343 * other basic map is included in the extension, because there
344 * were no "cut" inequalities in "i") and we can replace the
345 * two basic maps by thie extension.
353 static int check_adj_eq(struct isl_map *map, int i, int j,
354 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
359 struct isl_tab_undo *snap, *snap2;
360 unsigned n_eq = map->p[i]->n_eq;
362 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
363 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
364 /* ADJ EQ TOO MANY */
367 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
368 return check_adj_eq(map, j, i, tabs,
369 eq_j, ineq_j, eq_i, ineq_i);
371 /* j has an equality adjacent to an inequality in i */
373 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
376 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1 ||
377 count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
378 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
379 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
380 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
381 /* ADJ EQ TOO MANY */
384 for (k = 0; k < map->p[i]->n_ineq ; ++k)
385 if (ineq_i[k] == STATUS_ADJ_EQ)
388 snap = isl_tab_snap(tabs[i]);
389 tabs[i] = isl_tab_relax(tabs[i], n_eq + k);
390 snap2 = isl_tab_snap(tabs[i]);
391 tabs[i] = isl_tab_select_facet(tabs[i], n_eq + k);
392 super = contains(map, j, ineq_j, tabs[i]);
394 if (isl_tab_rollback(tabs[i], snap2) < 0)
396 map->p[i] = isl_basic_map_cow(map->p[i]);
399 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
400 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
404 if (isl_tab_rollback(tabs[i], snap) < 0)
410 /* Check if the union of the given pair of basic maps
411 * can be represented by a single basic map.
412 * If so, replace the pair by the single basic map and return 1.
413 * Otherwise, return 0;
415 * We first check the effect of each constraint of one basic map
416 * on the other basic map.
417 * The constraint may be
418 * redundant the constraint is redundant in its own
419 * basic map and should be ignore and removed
421 * valid all (integer) points of the other basic map
422 * satisfy the constraint
423 * separate no (integer) point of the other basic map
424 * satisfies the constraint
425 * cut some but not all points of the other basic map
426 * satisfy the constraint
427 * adj_eq the given constraint is adjacent (on the outside)
428 * to an equality of the other basic map
429 * adj_ineq the given constraint is adjacent (on the outside)
430 * to an inequality of the other basic map
432 * We consider four cases in which we can replace the pair by a single
433 * basic map. We ignore all "redundant" constraints.
435 * 1. all constraints of one basic map are valid
436 * => the other basic map is a subset and can be removed
438 * 2. all constraints of both basic maps are either "valid" or "cut"
439 * and the facets corresponding to the "cut" constraints
440 * of one of the basic maps lies entirely inside the other basic map
441 * => the pair can be replaced by a basic map consisting
442 * of the valid constraints in both basic maps
444 * 3. there is a single pair of adjacent inequalities
445 * (all other constraints are "valid")
446 * => the pair can be replaced by a basic map consisting
447 * of the valid constraints in both basic maps
449 * 4. there is a single adjacent pair of an inequality and an equality,
450 * the other constraints of the basic map containing the inequality are
451 * "valid". Moreover, if the inequality the basic map is relaxed
452 * and then turned into an equality, then resulting facet lies
453 * entirely inside the other basic map
454 * => the pair can be replaced by the basic map containing
455 * the inequality, with the inequality relaxed.
457 * Throughout the computation, we maintain a collection of tableaus
458 * corresponding to the basic maps. When the basic maps are dropped
459 * or combined, the tableaus are modified accordingly.
461 static int coalesce_pair(struct isl_map *map, int i, int j,
462 struct isl_tab **tabs)
470 eq_i = eq_status_in(map, i, j, tabs);
471 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
473 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
476 eq_j = eq_status_in(map, j, i, tabs);
477 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
479 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
482 ineq_i = ineq_status_in(map, i, j, tabs);
483 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
485 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
488 ineq_j = ineq_status_in(map, j, i, tabs);
489 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
491 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
494 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
495 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
498 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
499 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
502 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
503 any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT)) {
505 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) ||
506 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
508 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
509 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
510 changed = check_adj_eq(map, i, j, tabs,
511 eq_i, ineq_i, eq_j, ineq_j);
512 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
513 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
516 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
517 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
518 changed = check_adj_ineq(map, i, j, tabs, ineq_i, ineq_j);
520 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
536 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
540 for (i = 0; i < map->n - 1; ++i)
541 for (j = i + 1; j < map->n; ++j) {
543 changed = coalesce_pair(map, i, j, tabs);
547 return coalesce(map, tabs);
555 /* For each pair of basic maps in the map, check if the union of the two
556 * can be represented by a single basic map.
557 * If so, replace the pair by the single basic map and start over.
559 struct isl_map *isl_map_coalesce(struct isl_map *map)
563 struct isl_tab **tabs = NULL;
571 map = isl_map_align_divs(map);
573 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
578 for (i = 0; i < map->n; ++i) {
579 tabs[i] = isl_tab_from_basic_map(map->p[i]);
582 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
583 tabs[i] = isl_tab_detect_implicit_equalities(tabs[i]);
584 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
585 tabs[i] = isl_tab_detect_redundant(tabs[i]);
587 for (i = map->n - 1; i >= 0; --i)
591 map = coalesce(map, tabs);
594 for (i = 0; i < map->n; ++i) {
595 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
597 map->p[i] = isl_basic_map_finalize(map->p[i]);
600 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
601 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
604 for (i = 0; i < n; ++i)
605 isl_tab_free(tabs[i]);
612 for (i = 0; i < n; ++i)
613 isl_tab_free(tabs[i]);
618 /* For each pair of basic sets in the set, check if the union of the two
619 * can be represented by a single basic set.
620 * If so, replace the pair by the single basic set and start over.
622 struct isl_set *isl_set_coalesce(struct isl_set *set)
624 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);