add isl_pw_multi_aff_identity
[platform/upstream/isl.git] / isl_bernstein.c
1 /*
2  * Copyright 2006-2007 Universiteit Leiden
3  * Copyright 2008-2009 Katholieke Universiteit Leuven
4  * Copyright 2010      INRIA Saclay
5  *
6  * Use of this software is governed by the MIT license
7  *
8  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11  * B-3001 Leuven, Belgium
12  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14  */
15
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include <isl/set.h>
19 #include <isl/seq.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_bernstein.h>
26
27 struct bernstein_data {
28         enum isl_fold type;
29         isl_qpolynomial *poly;
30         int check_tight;
31
32         isl_cell *cell;
33
34         isl_qpolynomial_fold *fold;
35         isl_qpolynomial_fold *fold_tight;
36         isl_pw_qpolynomial_fold *pwf;
37         isl_pw_qpolynomial_fold *pwf_tight;
38 };
39
40 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
41 {
42         unsigned nvar;
43         unsigned nparam;
44         int i;
45
46         nvar = isl_basic_set_dim(vertex, isl_dim_set);
47         nparam = isl_basic_set_dim(vertex, isl_dim_param);
48         for (i = 0; i < nvar; ++i) {
49                 int r = nvar - 1 - i;
50                 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
51                     !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
52                         return 0;
53         }
54
55         return 1;
56 }
57
58 static __isl_give isl_qpolynomial *vertex_coordinate(
59         __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *dim)
60 {
61         unsigned nvar;
62         unsigned nparam;
63         int r;
64         isl_int denom;
65         isl_qpolynomial *v;
66
67         nvar = isl_basic_set_dim(vertex, isl_dim_set);
68         nparam = isl_basic_set_dim(vertex, isl_dim_param);
69         r = nvar - 1 - i;
70
71         isl_int_init(denom);
72         isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
73         isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
74
75         if (isl_int_is_pos(denom))
76                 isl_seq_neg(vertex->eq[r], vertex->eq[r],
77                                 1 + isl_basic_set_total_dim(vertex));
78         else
79                 isl_int_neg(denom, denom);
80
81         v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
82         isl_int_clear(denom);
83
84         return v;
85 error:
86         isl_space_free(dim);
87         isl_int_clear(denom);
88         return NULL;
89 }
90
91 /* Check whether the bound associated to the selection "k" is tight,
92  * which is the case if we select exactly one vertex and if that vertex
93  * is integral for all values of the parameters.
94  */
95 static int is_tight(int *k, int n, int d, isl_cell *cell)
96 {
97         int i;
98
99         for (i = 0; i < n; ++i) {
100                 int v;
101                 if (k[i] != d) {
102                         if (k[i])
103                                 return 0;
104                         continue;
105                 }
106                 v = cell->ids[n - 1 - i];
107                 return vertex_is_integral(cell->vertices->v[v].vertex);
108         }
109
110         return 0;
111 }
112
113 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
114         int *k, int n, int d, struct bernstein_data *data)
115 {
116         isl_qpolynomial_fold *fold;
117
118         fold = isl_qpolynomial_fold_alloc(data->type, b);
119
120         if (data->check_tight && is_tight(k, n, d, data->cell))
121                 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
122                                                         data->fold_tight, fold);
123         else
124                 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
125                                                         data->fold, fold);
126 }
127
128 /* Extract the coefficients of the Bernstein base polynomials and store
129  * them in data->fold and data->fold_tight.
130  *
131  * In particular, the coefficient of each monomial
132  * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
133  * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
134  *
135  * c[i] contains the coefficient of the selected powers of the first i+1 vars.
136  * multinom[i] contains the partial multinomial coefficient.
137  */
138 static void extract_coefficients(isl_qpolynomial *poly,
139         __isl_keep isl_set *dom, struct bernstein_data *data)
140 {
141         int i;
142         int d;
143         int n;
144         isl_ctx *ctx;
145         isl_qpolynomial **c = NULL;
146         int *k = NULL;
147         int *left = NULL;
148         isl_vec *multinom = NULL;
149
150         if (!poly)
151                 return;
152
153         ctx = isl_qpolynomial_get_ctx(poly);
154         n = isl_qpolynomial_dim(poly, isl_dim_in);
155         d = isl_qpolynomial_degree(poly);
156         isl_assert(ctx, n >= 2, return);
157
158         c = isl_calloc_array(ctx, isl_qpolynomial *, n);
159         k = isl_alloc_array(ctx, int, n);
160         left = isl_alloc_array(ctx, int, n);
161         multinom = isl_vec_alloc(ctx, n);
162         if (!c || !k || !left || !multinom)
163                 goto error;
164
165         isl_int_set_si(multinom->el[0], 1);
166         for (k[0] = d; k[0] >= 0; --k[0]) {
167                 int i = 1;
168                 isl_qpolynomial_free(c[0]);
169                 c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
170                 left[0] = d - k[0];
171                 k[1] = -1;
172                 isl_int_set(multinom->el[1], multinom->el[0]);
173                 while (i > 0) {
174                         if (i == n - 1) {
175                                 int j;
176                                 isl_space *dim;
177                                 isl_qpolynomial *b;
178                                 isl_qpolynomial *f;
179                                 for (j = 2; j <= left[i - 1]; ++j)
180                                         isl_int_divexact_ui(multinom->el[i],
181                                                 multinom->el[i], j);
182                                 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
183                                         n - 1 - i, left[i - 1]);
184                                 b = isl_qpolynomial_project_domain_on_params(b);
185                                 dim = isl_qpolynomial_get_domain_space(b);
186                                 f = isl_qpolynomial_rat_cst_on_domain(dim, ctx->one,
187                                         multinom->el[i]);
188                                 b = isl_qpolynomial_mul(b, f);
189                                 k[n - 1] = left[n - 2];
190                                 add_fold(b, dom, k, n, d, data);
191                                 --i;
192                                 continue;
193                         }
194                         if (k[i] >= left[i - 1]) {
195                                 --i;
196                                 continue;
197                         }
198                         ++k[i];
199                         if (k[i])
200                                 isl_int_divexact_ui(multinom->el[i],
201                                         multinom->el[i], k[i]);
202                         isl_qpolynomial_free(c[i]);
203                         c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
204                                         n - 1 - i, k[i]);
205                         left[i] = left[i - 1] - k[i];
206                         k[i + 1] = -1;
207                         isl_int_set(multinom->el[i + 1], multinom->el[i]);
208                         ++i;
209                 }
210                 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
211         }
212
213         for (i = 0; i < n; ++i)
214                 isl_qpolynomial_free(c[i]);
215
216         isl_vec_free(multinom);
217         free(left);
218         free(k);
219         free(c);
220         return;
221 error:
222         isl_vec_free(multinom);
223         free(left);
224         free(k);
225         if (c)
226                 for (i = 0; i < n; ++i)
227                         isl_qpolynomial_free(c[i]);
228         free(c);
229         return;
230 }
231
232 /* Perform bernstein expansion on the parametric vertices that are active
233  * on "cell".
234  *
235  * data->poly has been homogenized in the calling function.
236  *
237  * We plug in the barycentric coordinates for the set variables
238  *
239  *              \vec x = \sum_i \alpha_i v_i(\vec p)
240  *
241  * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
242  * Next, we extract the coefficients of the Bernstein base polynomials.
243  */
244 static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
245 {
246         int i, j;
247         struct bernstein_data *data = (struct bernstein_data *)user;
248         isl_space *dim_param;
249         isl_space *dim_dst;
250         isl_qpolynomial *poly = data->poly;
251         unsigned nvar;
252         int n_vertices;
253         isl_qpolynomial **subs;
254         isl_pw_qpolynomial_fold *pwf;
255         isl_set *dom;
256         isl_ctx *ctx;
257
258         if (!poly)
259                 goto error;
260
261         nvar = isl_qpolynomial_dim(poly, isl_dim_in) - 1;
262         n_vertices = cell->n_vertices;
263
264         ctx = isl_qpolynomial_get_ctx(poly);
265         if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
266                 return isl_cell_foreach_simplex(cell,
267                                             &bernstein_coefficients_cell, user);
268
269         subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
270         if (!subs)
271                 goto error;
272
273         dim_param = isl_basic_set_get_space(cell->dom);
274         dim_dst = isl_qpolynomial_get_domain_space(poly);
275         dim_dst = isl_space_add_dims(dim_dst, isl_dim_set, n_vertices);
276
277         for (i = 0; i < 1 + nvar; ++i)
278                 subs[i] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst));
279
280         for (i = 0; i < n_vertices; ++i) {
281                 isl_qpolynomial *c;
282                 c = isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst), isl_dim_set,
283                                         1 + nvar + i);
284                 for (j = 0; j < nvar; ++j) {
285                         int k = cell->ids[i];
286                         isl_qpolynomial *v;
287                         v = vertex_coordinate(cell->vertices->v[k].vertex, j,
288                                                 isl_space_copy(dim_param));
289                         v = isl_qpolynomial_add_dims(v, isl_dim_in,
290                                                         1 + nvar + n_vertices);
291                         v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
292                         subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
293                 }
294                 subs[0] = isl_qpolynomial_add(subs[0], c);
295         }
296         isl_space_free(dim_dst);
297
298         poly = isl_qpolynomial_copy(poly);
299
300         poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
301         poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
302         poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
303
304         data->cell = cell;
305         dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
306         data->fold = isl_qpolynomial_fold_empty(data->type, isl_space_copy(dim_param));
307         data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
308         extract_coefficients(poly, dom, data);
309
310         pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
311                                             data->fold);
312         data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
313         pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
314         data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
315
316         isl_qpolynomial_free(poly);
317         isl_cell_free(cell);
318         for (i = 0; i < 1 + nvar; ++i)
319                 isl_qpolynomial_free(subs[i]);
320         free(subs);
321         return 0;
322 error:
323         isl_cell_free(cell);
324         return -1;
325 }
326
327 /* Base case of applying bernstein expansion.
328  *
329  * We compute the chamber decomposition of the parametric polytope "bset"
330  * and then perform bernstein expansion on the parametric vertices
331  * that are active on each chamber.
332  */
333 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
334         __isl_take isl_basic_set *bset,
335         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
336 {
337         unsigned nvar;
338         isl_space *dim;
339         isl_pw_qpolynomial_fold *pwf;
340         isl_vertices *vertices;
341         int covers;
342
343         nvar = isl_basic_set_dim(bset, isl_dim_set);
344         if (nvar == 0) {
345                 isl_set *dom;
346                 isl_qpolynomial_fold *fold;
347
348                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
349                 dom = isl_set_from_basic_set(bset);
350                 if (tight)
351                         *tight = 1;
352                 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
353                 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
354         }
355
356         if (isl_qpolynomial_is_zero(poly)) {
357                 isl_set *dom;
358                 isl_qpolynomial_fold *fold;
359                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
360                 dom = isl_set_from_basic_set(bset);
361                 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
362                 if (tight)
363                         *tight = 1;
364                 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
365         }
366
367         dim = isl_basic_set_get_space(bset);
368         dim = isl_space_params(dim);
369         dim = isl_space_from_domain(dim);
370         dim = isl_space_add_dims(dim, isl_dim_set, 1);
371         data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), data->type);
372         data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
373         data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
374         vertices = isl_basic_set_compute_vertices(bset);
375         isl_vertices_foreach_disjoint_cell(vertices,
376                 &bernstein_coefficients_cell, data);
377         isl_vertices_free(vertices);
378         isl_qpolynomial_free(data->poly);
379
380         isl_basic_set_free(bset);
381         isl_qpolynomial_free(poly);
382
383         covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
384         if (covers < 0)
385                 goto error;
386
387         if (tight)
388                 *tight = covers;
389
390         if (covers) {
391                 isl_pw_qpolynomial_fold_free(data->pwf);
392                 return data->pwf_tight;
393         }
394
395         data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
396
397         return data->pwf;
398 error:
399         isl_pw_qpolynomial_fold_free(data->pwf_tight);
400         isl_pw_qpolynomial_fold_free(data->pwf);
401         return NULL;
402 }
403
404 /* Apply bernstein expansion recursively by working in on len[i]
405  * set variables at a time, with i ranging from n_group - 1 to 0.
406  */
407 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
408         __isl_take isl_pw_qpolynomial *pwqp,
409         int n_group, int *len, struct bernstein_data *data, int *tight)
410 {
411         int i;
412         unsigned nparam;
413         unsigned nvar;
414         isl_pw_qpolynomial_fold *pwf;
415
416         if (!pwqp)
417                 return NULL;
418
419         nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
420         nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
421
422         pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
423                                         isl_dim_in, 0, nvar - len[n_group - 1]);
424         pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
425
426         for (i = n_group - 2; i >= 0; --i) {
427                 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
428                 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
429                                 isl_dim_param, nparam - len[i], len[i]);
430                 if (tight && !*tight)
431                         tight = NULL;
432                 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
433         }
434
435         return pwf;
436 }
437
438 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
439         __isl_take isl_basic_set *bset,
440         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
441 {
442         isl_factorizer *f;
443         isl_set *set;
444         isl_pw_qpolynomial *pwqp;
445         isl_pw_qpolynomial_fold *pwf;
446
447         f = isl_basic_set_factorizer(bset);
448         if (!f)
449                 goto error;
450         if (f->n_group == 0) {
451                 isl_factorizer_free(f);
452                 return  bernstein_coefficients_base(bset, poly, data, tight);
453         }
454
455         set = isl_set_from_basic_set(bset);
456         pwqp = isl_pw_qpolynomial_alloc(set, poly);
457         pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
458
459         pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
460                                                 tight);
461
462         isl_factorizer_free(f);
463
464         return pwf;
465 error:
466         isl_basic_set_free(bset);
467         isl_qpolynomial_free(poly);
468         return NULL;
469 }
470
471 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
472         __isl_take isl_basic_set *bset,
473         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
474 {
475         int i;
476         int *len;
477         unsigned nvar;
478         isl_pw_qpolynomial_fold *pwf;
479         isl_set *set;
480         isl_pw_qpolynomial *pwqp;
481
482         if (!bset || !poly)
483                 goto error;
484
485         nvar = isl_basic_set_dim(bset, isl_dim_set);
486         
487         len = isl_alloc_array(bset->ctx, int, nvar);
488         if (!len)
489                 goto error;
490
491         for (i = 0; i < nvar; ++i)
492                 len[i] = 1;
493
494         set = isl_set_from_basic_set(bset);
495         pwqp = isl_pw_qpolynomial_alloc(set, poly);
496
497         pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
498
499         free(len);
500
501         return pwf;
502 error:
503         isl_basic_set_free(bset);
504         isl_qpolynomial_free(poly);
505         return NULL;
506 }
507
508 /* Compute a bound on the polynomial defined over the parametric polytope
509  * using bernstein expansion and store the result
510  * in bound->pwf and bound->pwf_tight.
511  *
512  * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
513  * the polytope can be factorized and apply bernstein expansion recursively
514  * on the factors.
515  * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
516  * bernstein expansion recursively on each dimension.
517  * Otherwise, we apply bernstein expansion on the entire polytope.
518  */
519 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
520         __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
521 {
522         struct bernstein_data data;
523         isl_pw_qpolynomial_fold *pwf;
524         unsigned nvar;
525         int tight = 0;
526         int *tp = bound->check_tight ? &tight : NULL;
527
528         if (!bset || !poly)
529                 goto error;
530
531         data.type = bound->type;
532         data.check_tight = bound->check_tight;
533
534         nvar = isl_basic_set_dim(bset, isl_dim_set);
535
536         if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
537                 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
538         else if (nvar > 1 &&
539             (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
540                 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
541         else
542                 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
543
544         if (tight)
545                 bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
546         else
547                 bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
548
549         return 0;
550 error:
551         isl_basic_set_free(bset);
552         isl_qpolynomial_free(poly);
553         return -1;
554 }