isl_map.c: fix typo
[platform/upstream/isl.git] / isl_bernstein.c
1 /*
2  * Copyright 2006-2007 Universiteit Leiden
3  * Copyright 2008-2009 Katholieke Universiteit Leuven
4  * Copyright 2010      INRIA Saclay
5  *
6  * Use of this software is governed by the GNU LGPLv2.1 license
7  *
8  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11  * B-3001 Leuven, Belgium
12  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14  */
15
16 #include <isl_set.h>
17 #include <isl_seq.h>
18 #include <isl_morph.h>
19 #include <isl_factorization.h>
20 #include <isl_vertices_private.h>
21 #include <isl_polynomial_private.h>
22 #include <isl_bernstein.h>
23
24 struct bernstein_data {
25         enum isl_fold type;
26         isl_qpolynomial *poly;
27         int check_tight;
28
29         isl_cell *cell;
30
31         isl_qpolynomial_fold *fold;
32         isl_qpolynomial_fold *fold_tight;
33         isl_pw_qpolynomial_fold *pwf;
34         isl_pw_qpolynomial_fold *pwf_tight;
35 };
36
37 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
38 {
39         unsigned nvar;
40         unsigned nparam;
41         int i;
42
43         nvar = isl_basic_set_dim(vertex, isl_dim_set);
44         nparam = isl_basic_set_dim(vertex, isl_dim_param);
45         for (i = 0; i < nvar; ++i) {
46                 int r = nvar - 1 - i;
47                 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
48                     !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
49                         return 0;
50         }
51
52         return 1;
53 }
54
55 static __isl_give isl_qpolynomial *vertex_coordinate(
56         __isl_keep isl_basic_set *vertex, int i, __isl_take isl_dim *dim)
57 {
58         unsigned nvar;
59         unsigned nparam;
60         int r;
61         isl_int denom;
62         isl_qpolynomial *v;
63
64         nvar = isl_basic_set_dim(vertex, isl_dim_set);
65         nparam = isl_basic_set_dim(vertex, isl_dim_param);
66         r = nvar - 1 - i;
67
68         isl_int_init(denom);
69         isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
70         isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
71
72         if (isl_int_is_pos(denom))
73                 isl_seq_neg(vertex->eq[r], vertex->eq[r],
74                                 1 + isl_basic_set_total_dim(vertex));
75         else
76                 isl_int_neg(denom, denom);
77
78         v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
79         isl_int_clear(denom);
80
81         return v;
82 error:
83         isl_dim_free(dim);
84         isl_int_clear(denom);
85         return NULL;
86 }
87
88 /* Check whether the bound associated to the selection "k" is tight,
89  * which is the case if we select exactly one vertex and if that vertex
90  * is integral for all values of the parameters.
91  */
92 static int is_tight(int *k, int n, int d, isl_cell *cell)
93 {
94         int i, j;
95
96         for (i = 0; i < n; ++i) {
97                 int v;
98                 if (k[i] != d) {
99                         if (k[i])
100                                 return 0;
101                         continue;
102                 }
103                 v = cell->vertices->c[cell->id].vertices[n - 1 - i];
104                 return vertex_is_integral(cell->vertices->v[v].vertex);
105         }
106
107         return 0;
108 }
109
110 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
111         int *k, int n, int d, struct bernstein_data *data)
112 {
113         isl_qpolynomial_fold *fold;
114
115         fold = isl_qpolynomial_fold_alloc(data->type, b);
116
117         if (data->check_tight && is_tight(k, n, d, data->cell))
118                 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
119                                                         data->fold_tight, fold);
120         else
121                 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
122                                                         data->fold, fold);
123 }
124
125 /* Extract the coefficients of the Bernstein base polynomials and store
126  * them in data->fold and data->fold_tight.
127  *
128  * In particular, the coefficient of each monomial
129  * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
130  * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
131  *
132  * c[i] contains the coefficient of the selected powers of the first i+1 vars.
133  * multinom[i] contains the partial multinomial coefficient.
134  */
135 static void extract_coefficients(isl_qpolynomial *poly,
136         __isl_keep isl_set *dom, struct bernstein_data *data)
137 {
138         int i;
139         int d;
140         int n;
141         isl_ctx *ctx;
142         isl_qpolynomial **c = NULL;
143         int *k = NULL;
144         int *left = NULL;
145         isl_vec *multinom = NULL;
146
147         if (!poly)
148                 return;
149
150         ctx = isl_qpolynomial_get_ctx(poly);
151         n = isl_qpolynomial_dim(poly, isl_dim_set);
152         d = isl_qpolynomial_degree(poly);
153         isl_assert(ctx, n >= 2, return);
154
155         c = isl_calloc_array(ctx, isl_qpolynomial *, n);
156         k = isl_alloc_array(ctx, int, n);
157         left = isl_alloc_array(ctx, int, n);
158         multinom = isl_vec_alloc(ctx, n);
159         if (!c || !k || !left || !multinom)
160                 goto error;
161
162         isl_int_set_si(multinom->el[0], 1);
163         for (k[0] = d; k[0] >= 0; --k[0]) {
164                 int i = 1;
165                 isl_qpolynomial_free(c[0]);
166                 c[0] = isl_qpolynomial_coeff(poly, isl_dim_set, n - 1, k[0]);
167                 left[0] = d - k[0];
168                 k[1] = -1;
169                 isl_int_set(multinom->el[1], multinom->el[0]);
170                 while (i > 0) {
171                         if (i == n - 1) {
172                                 int j;
173                                 isl_dim *dim;
174                                 isl_qpolynomial *b;
175                                 isl_qpolynomial *f;
176                                 for (j = 2; j <= left[i - 1]; ++j)
177                                         isl_int_divexact_ui(multinom->el[i],
178                                                 multinom->el[i], j);
179                                 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
180                                         n - 1 - i, left[i - 1]);
181                                 b = isl_qpolynomial_drop_dims(b, isl_dim_set,
182                                                                 0, n);
183                                 dim = isl_qpolynomial_get_dim(b);
184                                 f = isl_qpolynomial_rat_cst(dim, ctx->one,
185                                         multinom->el[i]);
186                                 b = isl_qpolynomial_mul(b, f);
187                                 k[n - 1] = left[n - 2];
188                                 add_fold(b, dom, k, n, d, data);
189                                 --i;
190                                 continue;
191                         }
192                         if (k[i] >= left[i - 1]) {
193                                 --i;
194                                 continue;
195                         }
196                         ++k[i];
197                         if (k[i])
198                                 isl_int_divexact_ui(multinom->el[i],
199                                         multinom->el[i], k[i]);
200                         isl_qpolynomial_free(c[i]);
201                         c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
202                                         n - 1 - i, k[i]);
203                         left[i] = left[i - 1] - k[i];
204                         k[i + 1] = -1;
205                         isl_int_set(multinom->el[i + 1], multinom->el[i]);
206                         ++i;
207                 }
208                 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
209         }
210
211         for (i = 0; i < n; ++i)
212                 isl_qpolynomial_free(c[i]);
213
214         isl_vec_free(multinom);
215         free(left);
216         free(k);
217         free(c);
218         return;
219 error:
220         isl_vec_free(multinom);
221         free(left);
222         free(k);
223         if (c)
224                 for (i = 0; i < n; ++i)
225                         isl_qpolynomial_free(c[i]);
226         free(c);
227         return;
228 }
229
230 /* Perform bernstein expansion on the parametric vertices that are active
231  * on "cell".
232  *
233  * data->poly has been homogenized in the calling function.
234  *
235  * We plug in the barycentric coordinates for the set variables
236  *
237  *              \vec x = \sum_i \alpha_i v_i(\vec p)
238  *
239  * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
240  * Next, we extract the coefficients of the Bernstein base polynomials.
241  */
242 static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
243 {
244         int i, j;
245         struct bernstein_data *data = (struct bernstein_data *)user;
246         isl_dim *dim_param;
247         isl_dim *dim_dst;
248         isl_qpolynomial *poly = data->poly;
249         unsigned nvar;
250         int n_vertices;
251         isl_qpolynomial **subs;
252         isl_pw_qpolynomial_fold *pwf;
253         isl_set *dom;
254
255         nvar = isl_qpolynomial_dim(poly, isl_dim_set) - 1;
256         n_vertices = cell->vertices->c[cell->id].n_vertices;
257
258         subs = isl_alloc_array(data->poly->dim->ctx, isl_qpolynomial *,
259                                 1 + nvar);
260         if (!subs)
261                 goto error;
262
263         dim_param = isl_basic_set_get_dim(cell->dom);
264         dim_dst = isl_qpolynomial_get_dim(poly);
265         dim_dst = isl_dim_add(dim_dst, isl_dim_set, n_vertices);
266
267         for (i = 0; i < 1 + nvar; ++i)
268                 subs[i] = isl_qpolynomial_zero(isl_dim_copy(dim_dst));
269
270         for (i = 0; i < n_vertices; ++i) {
271                 isl_qpolynomial *c;
272                 c = isl_qpolynomial_var(isl_dim_copy(dim_dst), isl_dim_set,
273                                         1 + nvar + i);
274                 for (j = 0; j < nvar; ++j) {
275                         int k = cell->vertices->c[cell->id].vertices[i];
276                         isl_qpolynomial *v;
277                         v = vertex_coordinate(cell->vertices->v[k].vertex, j,
278                                                 isl_dim_copy(dim_param));
279                         v = isl_qpolynomial_add_dims(v, isl_dim_set,
280                                                         1 + nvar + n_vertices);
281                         v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
282                         subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
283                 }
284                 subs[0] = isl_qpolynomial_add(subs[0], c);
285         }
286         isl_dim_free(dim_dst);
287
288         poly = isl_qpolynomial_copy(poly);
289
290         poly = isl_qpolynomial_add_dims(poly, isl_dim_set, n_vertices);
291         poly = isl_qpolynomial_substitute(poly, isl_dim_set, 0, 1 + nvar, subs);
292         poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, 1 + nvar);
293
294         data->cell = cell;
295         dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
296         data->fold = isl_qpolynomial_fold_empty(data->type, isl_dim_copy(dim_param));
297         data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
298         extract_coefficients(poly, dom, data);
299
300         pwf = isl_pw_qpolynomial_fold_alloc(isl_set_copy(dom), data->fold);
301         data->pwf = isl_pw_qpolynomial_fold_add(data->pwf, pwf);
302         pwf = isl_pw_qpolynomial_fold_alloc(dom, data->fold_tight);
303         data->pwf_tight = isl_pw_qpolynomial_fold_add(data->pwf_tight, pwf);
304
305         isl_qpolynomial_free(poly);
306         isl_cell_free(cell);
307         for (i = 0; i < 1 + nvar; ++i)
308                 isl_qpolynomial_free(subs[i]);
309         free(subs);
310         return 0;
311 error:
312         isl_cell_free(cell);
313         return -1;
314 }
315
316 /* Base case of applying bernstein expansion.
317  *
318  * We compute the chamber decomposition of the parametric polytope "bset"
319  * and then perform bernstein expansion on the parametric vertices
320  * that are active on each chamber.
321  */
322 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
323         __isl_take isl_basic_set *bset,
324         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
325 {
326         unsigned nvar;
327         isl_dim *dim;
328         isl_pw_qpolynomial_fold *pwf;
329         isl_vertices *vertices;
330         int covers;
331
332         nvar = isl_basic_set_dim(bset, isl_dim_set);
333         if (nvar == 0) {
334                 isl_set *dom;
335                 isl_qpolynomial_fold *fold;
336                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
337                 dom = isl_set_from_basic_set(bset);
338                 if (tight)
339                         *tight = 1;
340                 return isl_pw_qpolynomial_fold_alloc(dom, fold);
341         }
342
343         if (isl_qpolynomial_is_zero(poly)) {
344                 isl_set *dom;
345                 isl_qpolynomial_fold *fold;
346                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
347                 dom = isl_set_from_basic_set(bset);
348                 pwf = isl_pw_qpolynomial_fold_alloc(dom, fold);
349                 if (tight)
350                         *tight = 1;
351                 return isl_pw_qpolynomial_fold_drop_dims(pwf,
352                                                             isl_dim_set, 0, nvar);
353         }
354
355         dim = isl_basic_set_get_dim(bset);
356         dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
357         data->pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim));
358         data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim);
359         data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
360         vertices = isl_basic_set_compute_vertices(bset);
361         isl_vertices_foreach_disjoint_cell(vertices,
362                 &bernstein_coefficients_cell, data);
363         isl_vertices_free(vertices);
364         isl_qpolynomial_free(data->poly);
365
366         isl_basic_set_free(bset);
367         isl_qpolynomial_free(poly);
368
369         covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
370         if (covers < 0)
371                 goto error;
372
373         if (tight)
374                 *tight = covers;
375
376         if (covers) {
377                 isl_pw_qpolynomial_fold_free(data->pwf);
378                 return data->pwf_tight;
379         }
380
381         data->pwf = isl_pw_qpolynomial_fold_add(data->pwf, data->pwf_tight);
382
383         return data->pwf;
384 error:
385         isl_pw_qpolynomial_fold_free(data->pwf_tight);
386         isl_pw_qpolynomial_fold_free(data->pwf);
387         return NULL;
388 }
389
390 /* Apply bernstein expansion recursively by working in on len[i]
391  * set variables at a time, with i ranging from n_group - 1 to 0.
392  */
393 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
394         __isl_take isl_pw_qpolynomial *pwqp,
395         int n_group, int *len, struct bernstein_data *data, int *tight)
396 {
397         int i;
398         unsigned nparam;
399         unsigned nvar;
400         isl_pw_qpolynomial_fold *pwf;
401
402         if (!pwqp)
403                 return NULL;
404
405         nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
406         nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_set);
407
408         pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
409                                         isl_dim_set, 0, nvar - len[n_group - 1]);
410         pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
411
412         for (i = n_group - 2; i >= 0; --i) {
413                 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
414                 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_set, 0,
415                                 isl_dim_param, nparam - len[i], len[i]);
416                 if (tight && !*tight)
417                         tight = NULL;
418                 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
419         }
420
421         return pwf;
422 }
423
424 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
425         __isl_take isl_basic_set *bset,
426         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
427 {
428         isl_factorizer *f;
429         isl_set *set;
430         isl_pw_qpolynomial *pwqp;
431         isl_pw_qpolynomial_fold *pwf;
432
433         f = isl_basic_set_factorizer(bset);
434         if (!f)
435                 goto error;
436         if (f->n_group == 0) {
437                 isl_factorizer_free(f);
438                 return  bernstein_coefficients_base(bset, poly, data, tight);
439         }
440
441         set = isl_set_from_basic_set(bset);
442         pwqp = isl_pw_qpolynomial_alloc(set, poly);
443         pwqp = isl_pw_qpolynomial_morph(pwqp, isl_morph_copy(f->morph));
444
445         pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
446                                                 tight);
447
448         isl_factorizer_free(f);
449
450         return pwf;
451 error:
452         isl_basic_set_free(bset);
453         isl_qpolynomial_free(poly);
454         return NULL;
455 }
456
457 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
458         __isl_take isl_basic_set *bset,
459         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
460 {
461         int i;
462         int *len;
463         unsigned nvar;
464         isl_pw_qpolynomial_fold *pwf;
465         isl_set *set;
466         isl_pw_qpolynomial *pwqp;
467
468         if (!bset || !poly)
469                 goto error;
470
471         nvar = isl_basic_set_dim(bset, isl_dim_set);
472         
473         len = isl_alloc_array(bset->ctx, int, nvar);
474         if (!len)
475                 goto error;
476
477         for (i = 0; i < nvar; ++i)
478                 len[i] = 1;
479
480         set = isl_set_from_basic_set(bset);
481         pwqp = isl_pw_qpolynomial_alloc(set, poly);
482
483         pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
484
485         free(len);
486
487         return pwf;
488 error:
489         isl_basic_set_free(bset);
490         isl_qpolynomial_free(poly);
491         return NULL;
492 }
493
494 /* Compute a bound on the polynomial defined over the parametric polytope
495  * using bernstein expansion and store the result
496  * in bound->pwf and bound->pwf_tight.
497  *
498  * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
499  * the polytope can be factorized and apply bernstein expansion recursively
500  * on the factors.
501  * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
502  * bernstein expansion recursively on each dimension.
503  * Otherwise, we apply bernstein expansion on the entire polytope.
504  */
505 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
506         __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
507 {
508         struct bernstein_data data;
509         isl_pw_qpolynomial_fold *pwf;
510         unsigned nvar;
511         int tight = 0;
512         int *tp = bound->check_tight ? &tight : NULL;
513
514         if (!bset || !poly)
515                 goto error;
516
517         data.type = bound->type;
518         data.check_tight = bound->check_tight;
519
520         nvar = isl_basic_set_dim(bset, isl_dim_set);
521
522         if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
523                 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
524         else if (nvar > 1 &&
525             (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
526                 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
527         else
528                 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
529
530         if (tight)
531                 bound->pwf_tight = isl_pw_qpolynomial_fold_add(bound->pwf_tight, pwf);
532         else
533                 bound->pwf = isl_pw_qpolynomial_fold_add(bound->pwf, pwf);
534
535         return 0;
536 error:
537         isl_basic_set_free(bset);
538         isl_qpolynomial_free(poly);
539         return -1;
540 }