2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_bernstein.h>
26 struct bernstein_data {
28 isl_qpolynomial *poly;
33 isl_qpolynomial_fold *fold;
34 isl_qpolynomial_fold *fold_tight;
35 isl_pw_qpolynomial_fold *pwf;
36 isl_pw_qpolynomial_fold *pwf_tight;
39 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
45 nvar = isl_basic_set_dim(vertex, isl_dim_set);
46 nparam = isl_basic_set_dim(vertex, isl_dim_param);
47 for (i = 0; i < nvar; ++i) {
49 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
50 !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
57 static __isl_give isl_qpolynomial *vertex_coordinate(
58 __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *dim)
66 nvar = isl_basic_set_dim(vertex, isl_dim_set);
67 nparam = isl_basic_set_dim(vertex, isl_dim_param);
71 isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
72 isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
74 if (isl_int_is_pos(denom))
75 isl_seq_neg(vertex->eq[r], vertex->eq[r],
76 1 + isl_basic_set_total_dim(vertex));
78 isl_int_neg(denom, denom);
80 v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
90 /* Check whether the bound associated to the selection "k" is tight,
91 * which is the case if we select exactly one vertex and if that vertex
92 * is integral for all values of the parameters.
94 static int is_tight(int *k, int n, int d, isl_cell *cell)
98 for (i = 0; i < n; ++i) {
105 v = cell->ids[n - 1 - i];
106 return vertex_is_integral(cell->vertices->v[v].vertex);
112 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
113 int *k, int n, int d, struct bernstein_data *data)
115 isl_qpolynomial_fold *fold;
117 fold = isl_qpolynomial_fold_alloc(data->type, b);
119 if (data->check_tight && is_tight(k, n, d, data->cell))
120 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
121 data->fold_tight, fold);
123 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
127 /* Extract the coefficients of the Bernstein base polynomials and store
128 * them in data->fold and data->fold_tight.
130 * In particular, the coefficient of each monomial
131 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
132 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
134 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
135 * multinom[i] contains the partial multinomial coefficient.
137 static void extract_coefficients(isl_qpolynomial *poly,
138 __isl_keep isl_set *dom, struct bernstein_data *data)
144 isl_qpolynomial **c = NULL;
147 isl_vec *multinom = NULL;
152 ctx = isl_qpolynomial_get_ctx(poly);
153 n = isl_qpolynomial_dim(poly, isl_dim_in);
154 d = isl_qpolynomial_degree(poly);
155 isl_assert(ctx, n >= 2, return);
157 c = isl_calloc_array(ctx, isl_qpolynomial *, n);
158 k = isl_alloc_array(ctx, int, n);
159 left = isl_alloc_array(ctx, int, n);
160 multinom = isl_vec_alloc(ctx, n);
161 if (!c || !k || !left || !multinom)
164 isl_int_set_si(multinom->el[0], 1);
165 for (k[0] = d; k[0] >= 0; --k[0]) {
167 isl_qpolynomial_free(c[0]);
168 c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
171 isl_int_set(multinom->el[1], multinom->el[0]);
178 for (j = 2; j <= left[i - 1]; ++j)
179 isl_int_divexact_ui(multinom->el[i],
181 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
182 n - 1 - i, left[i - 1]);
183 b = isl_qpolynomial_project_domain_on_params(b);
184 dim = isl_qpolynomial_get_domain_space(b);
185 f = isl_qpolynomial_rat_cst_on_domain(dim, ctx->one,
187 b = isl_qpolynomial_mul(b, f);
188 k[n - 1] = left[n - 2];
189 add_fold(b, dom, k, n, d, data);
193 if (k[i] >= left[i - 1]) {
199 isl_int_divexact_ui(multinom->el[i],
200 multinom->el[i], k[i]);
201 isl_qpolynomial_free(c[i]);
202 c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
204 left[i] = left[i - 1] - k[i];
206 isl_int_set(multinom->el[i + 1], multinom->el[i]);
209 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
212 for (i = 0; i < n; ++i)
213 isl_qpolynomial_free(c[i]);
215 isl_vec_free(multinom);
221 isl_vec_free(multinom);
225 for (i = 0; i < n; ++i)
226 isl_qpolynomial_free(c[i]);
231 /* Perform bernstein expansion on the parametric vertices that are active
234 * data->poly has been homogenized in the calling function.
236 * We plug in the barycentric coordinates for the set variables
238 * \vec x = \sum_i \alpha_i v_i(\vec p)
240 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
241 * Next, we extract the coefficients of the Bernstein base polynomials.
243 static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
246 struct bernstein_data *data = (struct bernstein_data *)user;
247 isl_space *dim_param;
249 isl_qpolynomial *poly = data->poly;
252 isl_qpolynomial **subs;
253 isl_pw_qpolynomial_fold *pwf;
260 nvar = isl_qpolynomial_dim(poly, isl_dim_in) - 1;
261 n_vertices = cell->n_vertices;
263 ctx = isl_qpolynomial_get_ctx(poly);
264 if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
265 return isl_cell_foreach_simplex(cell,
266 &bernstein_coefficients_cell, user);
268 subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
272 dim_param = isl_basic_set_get_space(cell->dom);
273 dim_dst = isl_qpolynomial_get_domain_space(poly);
274 dim_dst = isl_space_add_dims(dim_dst, isl_dim_set, n_vertices);
276 for (i = 0; i < 1 + nvar; ++i)
277 subs[i] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst));
279 for (i = 0; i < n_vertices; ++i) {
281 c = isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst), isl_dim_set,
283 for (j = 0; j < nvar; ++j) {
284 int k = cell->ids[i];
286 v = vertex_coordinate(cell->vertices->v[k].vertex, j,
287 isl_space_copy(dim_param));
288 v = isl_qpolynomial_add_dims(v, isl_dim_in,
289 1 + nvar + n_vertices);
290 v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
291 subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
293 subs[0] = isl_qpolynomial_add(subs[0], c);
295 isl_space_free(dim_dst);
297 poly = isl_qpolynomial_copy(poly);
299 poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
300 poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
301 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
304 dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
305 data->fold = isl_qpolynomial_fold_empty(data->type, isl_space_copy(dim_param));
306 data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
307 extract_coefficients(poly, dom, data);
309 pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
311 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
312 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
313 data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
315 isl_qpolynomial_free(poly);
317 for (i = 0; i < 1 + nvar; ++i)
318 isl_qpolynomial_free(subs[i]);
326 /* Base case of applying bernstein expansion.
328 * We compute the chamber decomposition of the parametric polytope "bset"
329 * and then perform bernstein expansion on the parametric vertices
330 * that are active on each chamber.
332 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
333 __isl_take isl_basic_set *bset,
334 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
338 isl_pw_qpolynomial_fold *pwf;
339 isl_vertices *vertices;
342 nvar = isl_basic_set_dim(bset, isl_dim_set);
345 isl_qpolynomial_fold *fold;
347 fold = isl_qpolynomial_fold_alloc(data->type, poly);
348 dom = isl_set_from_basic_set(bset);
351 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
352 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
355 if (isl_qpolynomial_is_zero(poly)) {
357 isl_qpolynomial_fold *fold;
358 fold = isl_qpolynomial_fold_alloc(data->type, poly);
359 dom = isl_set_from_basic_set(bset);
360 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
363 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
366 dim = isl_basic_set_get_space(bset);
367 dim = isl_space_params(dim);
368 dim = isl_space_from_domain(dim);
369 dim = isl_space_add_dims(dim, isl_dim_set, 1);
370 data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), data->type);
371 data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
372 data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
373 vertices = isl_basic_set_compute_vertices(bset);
374 isl_vertices_foreach_disjoint_cell(vertices,
375 &bernstein_coefficients_cell, data);
376 isl_vertices_free(vertices);
377 isl_qpolynomial_free(data->poly);
379 isl_basic_set_free(bset);
380 isl_qpolynomial_free(poly);
382 covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
390 isl_pw_qpolynomial_fold_free(data->pwf);
391 return data->pwf_tight;
394 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
398 isl_pw_qpolynomial_fold_free(data->pwf_tight);
399 isl_pw_qpolynomial_fold_free(data->pwf);
403 /* Apply bernstein expansion recursively by working in on len[i]
404 * set variables at a time, with i ranging from n_group - 1 to 0.
406 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
407 __isl_take isl_pw_qpolynomial *pwqp,
408 int n_group, int *len, struct bernstein_data *data, int *tight)
413 isl_pw_qpolynomial_fold *pwf;
418 nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
419 nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
421 pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
422 isl_dim_in, 0, nvar - len[n_group - 1]);
423 pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
425 for (i = n_group - 2; i >= 0; --i) {
426 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
427 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
428 isl_dim_param, nparam - len[i], len[i]);
429 if (tight && !*tight)
431 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
437 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
438 __isl_take isl_basic_set *bset,
439 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
443 isl_pw_qpolynomial *pwqp;
444 isl_pw_qpolynomial_fold *pwf;
446 f = isl_basic_set_factorizer(bset);
449 if (f->n_group == 0) {
450 isl_factorizer_free(f);
451 return bernstein_coefficients_base(bset, poly, data, tight);
454 set = isl_set_from_basic_set(bset);
455 pwqp = isl_pw_qpolynomial_alloc(set, poly);
456 pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
458 pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
461 isl_factorizer_free(f);
465 isl_basic_set_free(bset);
466 isl_qpolynomial_free(poly);
470 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
471 __isl_take isl_basic_set *bset,
472 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
477 isl_pw_qpolynomial_fold *pwf;
479 isl_pw_qpolynomial *pwqp;
484 nvar = isl_basic_set_dim(bset, isl_dim_set);
486 len = isl_alloc_array(bset->ctx, int, nvar);
490 for (i = 0; i < nvar; ++i)
493 set = isl_set_from_basic_set(bset);
494 pwqp = isl_pw_qpolynomial_alloc(set, poly);
496 pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
502 isl_basic_set_free(bset);
503 isl_qpolynomial_free(poly);
507 /* Compute a bound on the polynomial defined over the parametric polytope
508 * using bernstein expansion and store the result
509 * in bound->pwf and bound->pwf_tight.
511 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
512 * the polytope can be factorized and apply bernstein expansion recursively
514 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
515 * bernstein expansion recursively on each dimension.
516 * Otherwise, we apply bernstein expansion on the entire polytope.
518 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
519 __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
521 struct bernstein_data data;
522 isl_pw_qpolynomial_fold *pwf;
525 int *tp = bound->check_tight ? &tight : NULL;
530 data.type = bound->type;
531 data.check_tight = bound->check_tight;
533 nvar = isl_basic_set_dim(bset, isl_dim_set);
535 if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
536 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
538 (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
539 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
541 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
544 bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
546 bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
550 isl_basic_set_free(bset);
551 isl_qpolynomial_free(poly);