add isl_pw_*_intersect_params
[platform/upstream/isl.git] / isl_bernstein.c
1 /*
2  * Copyright 2006-2007 Universiteit Leiden
3  * Copyright 2008-2009 Katholieke Universiteit Leuven
4  * Copyright 2010      INRIA Saclay
5  *
6  * Use of this software is governed by the GNU LGPLv2.1 license
7  *
8  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11  * B-3001 Leuven, Belgium
12  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14  */
15
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include <isl/set.h>
19 #include <isl/seq.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_bernstein.h>
25
26 struct bernstein_data {
27         enum isl_fold type;
28         isl_qpolynomial *poly;
29         int check_tight;
30
31         isl_cell *cell;
32
33         isl_qpolynomial_fold *fold;
34         isl_qpolynomial_fold *fold_tight;
35         isl_pw_qpolynomial_fold *pwf;
36         isl_pw_qpolynomial_fold *pwf_tight;
37 };
38
39 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
40 {
41         unsigned nvar;
42         unsigned nparam;
43         int i;
44
45         nvar = isl_basic_set_dim(vertex, isl_dim_set);
46         nparam = isl_basic_set_dim(vertex, isl_dim_param);
47         for (i = 0; i < nvar; ++i) {
48                 int r = nvar - 1 - i;
49                 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
50                     !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
51                         return 0;
52         }
53
54         return 1;
55 }
56
57 static __isl_give isl_qpolynomial *vertex_coordinate(
58         __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *dim)
59 {
60         unsigned nvar;
61         unsigned nparam;
62         int r;
63         isl_int denom;
64         isl_qpolynomial *v;
65
66         nvar = isl_basic_set_dim(vertex, isl_dim_set);
67         nparam = isl_basic_set_dim(vertex, isl_dim_param);
68         r = nvar - 1 - i;
69
70         isl_int_init(denom);
71         isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
72         isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
73
74         if (isl_int_is_pos(denom))
75                 isl_seq_neg(vertex->eq[r], vertex->eq[r],
76                                 1 + isl_basic_set_total_dim(vertex));
77         else
78                 isl_int_neg(denom, denom);
79
80         v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
81         isl_int_clear(denom);
82
83         return v;
84 error:
85         isl_space_free(dim);
86         isl_int_clear(denom);
87         return NULL;
88 }
89
90 /* Check whether the bound associated to the selection "k" is tight,
91  * which is the case if we select exactly one vertex and if that vertex
92  * is integral for all values of the parameters.
93  */
94 static int is_tight(int *k, int n, int d, isl_cell *cell)
95 {
96         int i;
97
98         for (i = 0; i < n; ++i) {
99                 int v;
100                 if (k[i] != d) {
101                         if (k[i])
102                                 return 0;
103                         continue;
104                 }
105                 v = cell->ids[n - 1 - i];
106                 return vertex_is_integral(cell->vertices->v[v].vertex);
107         }
108
109         return 0;
110 }
111
112 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
113         int *k, int n, int d, struct bernstein_data *data)
114 {
115         isl_qpolynomial_fold *fold;
116
117         fold = isl_qpolynomial_fold_alloc(data->type, b);
118
119         if (data->check_tight && is_tight(k, n, d, data->cell))
120                 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
121                                                         data->fold_tight, fold);
122         else
123                 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
124                                                         data->fold, fold);
125 }
126
127 /* Extract the coefficients of the Bernstein base polynomials and store
128  * them in data->fold and data->fold_tight.
129  *
130  * In particular, the coefficient of each monomial
131  * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
132  * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
133  *
134  * c[i] contains the coefficient of the selected powers of the first i+1 vars.
135  * multinom[i] contains the partial multinomial coefficient.
136  */
137 static void extract_coefficients(isl_qpolynomial *poly,
138         __isl_keep isl_set *dom, struct bernstein_data *data)
139 {
140         int i;
141         int d;
142         int n;
143         isl_ctx *ctx;
144         isl_qpolynomial **c = NULL;
145         int *k = NULL;
146         int *left = NULL;
147         isl_vec *multinom = NULL;
148
149         if (!poly)
150                 return;
151
152         ctx = isl_qpolynomial_get_ctx(poly);
153         n = isl_qpolynomial_dim(poly, isl_dim_in);
154         d = isl_qpolynomial_degree(poly);
155         isl_assert(ctx, n >= 2, return);
156
157         c = isl_calloc_array(ctx, isl_qpolynomial *, n);
158         k = isl_alloc_array(ctx, int, n);
159         left = isl_alloc_array(ctx, int, n);
160         multinom = isl_vec_alloc(ctx, n);
161         if (!c || !k || !left || !multinom)
162                 goto error;
163
164         isl_int_set_si(multinom->el[0], 1);
165         for (k[0] = d; k[0] >= 0; --k[0]) {
166                 int i = 1;
167                 isl_qpolynomial_free(c[0]);
168                 c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
169                 left[0] = d - k[0];
170                 k[1] = -1;
171                 isl_int_set(multinom->el[1], multinom->el[0]);
172                 while (i > 0) {
173                         if (i == n - 1) {
174                                 int j;
175                                 isl_space *dim;
176                                 isl_qpolynomial *b;
177                                 isl_qpolynomial *f;
178                                 for (j = 2; j <= left[i - 1]; ++j)
179                                         isl_int_divexact_ui(multinom->el[i],
180                                                 multinom->el[i], j);
181                                 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
182                                         n - 1 - i, left[i - 1]);
183                                 b = isl_qpolynomial_project_domain_on_params(b);
184                                 dim = isl_qpolynomial_get_domain_space(b);
185                                 f = isl_qpolynomial_rat_cst_on_domain(dim, ctx->one,
186                                         multinom->el[i]);
187                                 b = isl_qpolynomial_mul(b, f);
188                                 k[n - 1] = left[n - 2];
189                                 add_fold(b, dom, k, n, d, data);
190                                 --i;
191                                 continue;
192                         }
193                         if (k[i] >= left[i - 1]) {
194                                 --i;
195                                 continue;
196                         }
197                         ++k[i];
198                         if (k[i])
199                                 isl_int_divexact_ui(multinom->el[i],
200                                         multinom->el[i], k[i]);
201                         isl_qpolynomial_free(c[i]);
202                         c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
203                                         n - 1 - i, k[i]);
204                         left[i] = left[i - 1] - k[i];
205                         k[i + 1] = -1;
206                         isl_int_set(multinom->el[i + 1], multinom->el[i]);
207                         ++i;
208                 }
209                 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
210         }
211
212         for (i = 0; i < n; ++i)
213                 isl_qpolynomial_free(c[i]);
214
215         isl_vec_free(multinom);
216         free(left);
217         free(k);
218         free(c);
219         return;
220 error:
221         isl_vec_free(multinom);
222         free(left);
223         free(k);
224         if (c)
225                 for (i = 0; i < n; ++i)
226                         isl_qpolynomial_free(c[i]);
227         free(c);
228         return;
229 }
230
231 /* Perform bernstein expansion on the parametric vertices that are active
232  * on "cell".
233  *
234  * data->poly has been homogenized in the calling function.
235  *
236  * We plug in the barycentric coordinates for the set variables
237  *
238  *              \vec x = \sum_i \alpha_i v_i(\vec p)
239  *
240  * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
241  * Next, we extract the coefficients of the Bernstein base polynomials.
242  */
243 static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
244 {
245         int i, j;
246         struct bernstein_data *data = (struct bernstein_data *)user;
247         isl_space *dim_param;
248         isl_space *dim_dst;
249         isl_qpolynomial *poly = data->poly;
250         unsigned nvar;
251         int n_vertices;
252         isl_qpolynomial **subs;
253         isl_pw_qpolynomial_fold *pwf;
254         isl_set *dom;
255         isl_ctx *ctx;
256
257         if (!poly)
258                 goto error;
259
260         nvar = isl_qpolynomial_dim(poly, isl_dim_in) - 1;
261         n_vertices = cell->n_vertices;
262
263         ctx = isl_qpolynomial_get_ctx(poly);
264         if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
265                 return isl_cell_foreach_simplex(cell,
266                                             &bernstein_coefficients_cell, user);
267
268         subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
269         if (!subs)
270                 goto error;
271
272         dim_param = isl_basic_set_get_space(cell->dom);
273         dim_dst = isl_qpolynomial_get_domain_space(poly);
274         dim_dst = isl_space_add_dims(dim_dst, isl_dim_set, n_vertices);
275
276         for (i = 0; i < 1 + nvar; ++i)
277                 subs[i] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst));
278
279         for (i = 0; i < n_vertices; ++i) {
280                 isl_qpolynomial *c;
281                 c = isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst), isl_dim_set,
282                                         1 + nvar + i);
283                 for (j = 0; j < nvar; ++j) {
284                         int k = cell->ids[i];
285                         isl_qpolynomial *v;
286                         v = vertex_coordinate(cell->vertices->v[k].vertex, j,
287                                                 isl_space_copy(dim_param));
288                         v = isl_qpolynomial_add_dims(v, isl_dim_in,
289                                                         1 + nvar + n_vertices);
290                         v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
291                         subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
292                 }
293                 subs[0] = isl_qpolynomial_add(subs[0], c);
294         }
295         isl_space_free(dim_dst);
296
297         poly = isl_qpolynomial_copy(poly);
298
299         poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
300         poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
301         poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
302
303         data->cell = cell;
304         dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
305         data->fold = isl_qpolynomial_fold_empty(data->type, isl_space_copy(dim_param));
306         data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
307         extract_coefficients(poly, dom, data);
308
309         pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
310                                             data->fold);
311         data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
312         pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
313         data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
314
315         isl_qpolynomial_free(poly);
316         isl_cell_free(cell);
317         for (i = 0; i < 1 + nvar; ++i)
318                 isl_qpolynomial_free(subs[i]);
319         free(subs);
320         return 0;
321 error:
322         isl_cell_free(cell);
323         return -1;
324 }
325
326 /* Base case of applying bernstein expansion.
327  *
328  * We compute the chamber decomposition of the parametric polytope "bset"
329  * and then perform bernstein expansion on the parametric vertices
330  * that are active on each chamber.
331  */
332 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
333         __isl_take isl_basic_set *bset,
334         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
335 {
336         unsigned nvar;
337         isl_space *dim;
338         isl_pw_qpolynomial_fold *pwf;
339         isl_vertices *vertices;
340         int covers;
341
342         nvar = isl_basic_set_dim(bset, isl_dim_set);
343         if (nvar == 0) {
344                 isl_set *dom;
345                 isl_qpolynomial_fold *fold;
346
347                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
348                 dom = isl_set_from_basic_set(bset);
349                 if (tight)
350                         *tight = 1;
351                 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
352                 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
353         }
354
355         if (isl_qpolynomial_is_zero(poly)) {
356                 isl_set *dom;
357                 isl_qpolynomial_fold *fold;
358                 fold = isl_qpolynomial_fold_alloc(data->type, poly);
359                 dom = isl_set_from_basic_set(bset);
360                 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
361                 if (tight)
362                         *tight = 1;
363                 return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
364         }
365
366         dim = isl_basic_set_get_space(bset);
367         dim = isl_space_params(dim);
368         dim = isl_space_from_domain(dim);
369         dim = isl_space_add_dims(dim, isl_dim_set, 1);
370         data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), data->type);
371         data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
372         data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
373         vertices = isl_basic_set_compute_vertices(bset);
374         isl_vertices_foreach_disjoint_cell(vertices,
375                 &bernstein_coefficients_cell, data);
376         isl_vertices_free(vertices);
377         isl_qpolynomial_free(data->poly);
378
379         isl_basic_set_free(bset);
380         isl_qpolynomial_free(poly);
381
382         covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
383         if (covers < 0)
384                 goto error;
385
386         if (tight)
387                 *tight = covers;
388
389         if (covers) {
390                 isl_pw_qpolynomial_fold_free(data->pwf);
391                 return data->pwf_tight;
392         }
393
394         data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
395
396         return data->pwf;
397 error:
398         isl_pw_qpolynomial_fold_free(data->pwf_tight);
399         isl_pw_qpolynomial_fold_free(data->pwf);
400         return NULL;
401 }
402
403 /* Apply bernstein expansion recursively by working in on len[i]
404  * set variables at a time, with i ranging from n_group - 1 to 0.
405  */
406 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
407         __isl_take isl_pw_qpolynomial *pwqp,
408         int n_group, int *len, struct bernstein_data *data, int *tight)
409 {
410         int i;
411         unsigned nparam;
412         unsigned nvar;
413         isl_pw_qpolynomial_fold *pwf;
414
415         if (!pwqp)
416                 return NULL;
417
418         nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
419         nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
420
421         pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
422                                         isl_dim_in, 0, nvar - len[n_group - 1]);
423         pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
424
425         for (i = n_group - 2; i >= 0; --i) {
426                 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
427                 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
428                                 isl_dim_param, nparam - len[i], len[i]);
429                 if (tight && !*tight)
430                         tight = NULL;
431                 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
432         }
433
434         return pwf;
435 }
436
437 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
438         __isl_take isl_basic_set *bset,
439         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
440 {
441         isl_factorizer *f;
442         isl_set *set;
443         isl_pw_qpolynomial *pwqp;
444         isl_pw_qpolynomial_fold *pwf;
445
446         f = isl_basic_set_factorizer(bset);
447         if (!f)
448                 goto error;
449         if (f->n_group == 0) {
450                 isl_factorizer_free(f);
451                 return  bernstein_coefficients_base(bset, poly, data, tight);
452         }
453
454         set = isl_set_from_basic_set(bset);
455         pwqp = isl_pw_qpolynomial_alloc(set, poly);
456         pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
457
458         pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
459                                                 tight);
460
461         isl_factorizer_free(f);
462
463         return pwf;
464 error:
465         isl_basic_set_free(bset);
466         isl_qpolynomial_free(poly);
467         return NULL;
468 }
469
470 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
471         __isl_take isl_basic_set *bset,
472         __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
473 {
474         int i;
475         int *len;
476         unsigned nvar;
477         isl_pw_qpolynomial_fold *pwf;
478         isl_set *set;
479         isl_pw_qpolynomial *pwqp;
480
481         if (!bset || !poly)
482                 goto error;
483
484         nvar = isl_basic_set_dim(bset, isl_dim_set);
485         
486         len = isl_alloc_array(bset->ctx, int, nvar);
487         if (!len)
488                 goto error;
489
490         for (i = 0; i < nvar; ++i)
491                 len[i] = 1;
492
493         set = isl_set_from_basic_set(bset);
494         pwqp = isl_pw_qpolynomial_alloc(set, poly);
495
496         pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
497
498         free(len);
499
500         return pwf;
501 error:
502         isl_basic_set_free(bset);
503         isl_qpolynomial_free(poly);
504         return NULL;
505 }
506
507 /* Compute a bound on the polynomial defined over the parametric polytope
508  * using bernstein expansion and store the result
509  * in bound->pwf and bound->pwf_tight.
510  *
511  * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
512  * the polytope can be factorized and apply bernstein expansion recursively
513  * on the factors.
514  * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
515  * bernstein expansion recursively on each dimension.
516  * Otherwise, we apply bernstein expansion on the entire polytope.
517  */
518 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
519         __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
520 {
521         struct bernstein_data data;
522         isl_pw_qpolynomial_fold *pwf;
523         unsigned nvar;
524         int tight = 0;
525         int *tp = bound->check_tight ? &tight : NULL;
526
527         if (!bset || !poly)
528                 goto error;
529
530         data.type = bound->type;
531         data.check_tight = bound->check_tight;
532
533         nvar = isl_basic_set_dim(bset, isl_dim_set);
534
535         if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
536                 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
537         else if (nvar > 1 &&
538             (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
539                 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
540         else
541                 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
542
543         if (tight)
544                 bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
545         else
546                 bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
547
548         return 0;
549 error:
550         isl_basic_set_free(bset);
551         isl_qpolynomial_free(poly);
552         return -1;
553 }