2 * Copyright 2006-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
18 #include <isl_morph.h>
19 #include <isl_factorization.h>
20 #include <isl_vertices_private.h>
21 #include <isl_polynomial_private.h>
22 #include <isl_bernstein.h>
23 #include <isl_map_private.h>
25 struct bernstein_data {
27 isl_qpolynomial *poly;
32 isl_qpolynomial_fold *fold;
33 isl_qpolynomial_fold *fold_tight;
34 isl_pw_qpolynomial_fold *pwf;
35 isl_pw_qpolynomial_fold *pwf_tight;
38 static int vertex_is_integral(__isl_keep isl_basic_set *vertex)
44 nvar = isl_basic_set_dim(vertex, isl_dim_set);
45 nparam = isl_basic_set_dim(vertex, isl_dim_param);
46 for (i = 0; i < nvar; ++i) {
48 if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
49 !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
56 static __isl_give isl_qpolynomial *vertex_coordinate(
57 __isl_keep isl_basic_set *vertex, int i, __isl_take isl_dim *dim)
65 nvar = isl_basic_set_dim(vertex, isl_dim_set);
66 nparam = isl_basic_set_dim(vertex, isl_dim_param);
70 isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
71 isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
73 if (isl_int_is_pos(denom))
74 isl_seq_neg(vertex->eq[r], vertex->eq[r],
75 1 + isl_basic_set_total_dim(vertex));
77 isl_int_neg(denom, denom);
79 v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom);
89 /* Check whether the bound associated to the selection "k" is tight,
90 * which is the case if we select exactly one vertex and if that vertex
91 * is integral for all values of the parameters.
93 static int is_tight(int *k, int n, int d, isl_cell *cell)
97 for (i = 0; i < n; ++i) {
104 v = cell->ids[n - 1 - i];
105 return vertex_is_integral(cell->vertices->v[v].vertex);
111 static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
112 int *k, int n, int d, struct bernstein_data *data)
114 isl_qpolynomial_fold *fold;
116 fold = isl_qpolynomial_fold_alloc(data->type, b);
118 if (data->check_tight && is_tight(k, n, d, data->cell))
119 data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
120 data->fold_tight, fold);
122 data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
126 /* Extract the coefficients of the Bernstein base polynomials and store
127 * them in data->fold and data->fold_tight.
129 * In particular, the coefficient of each monomial
130 * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
131 * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
133 * c[i] contains the coefficient of the selected powers of the first i+1 vars.
134 * multinom[i] contains the partial multinomial coefficient.
136 static void extract_coefficients(isl_qpolynomial *poly,
137 __isl_keep isl_set *dom, struct bernstein_data *data)
143 isl_qpolynomial **c = NULL;
146 isl_vec *multinom = NULL;
151 ctx = isl_qpolynomial_get_ctx(poly);
152 n = isl_qpolynomial_dim(poly, isl_dim_set);
153 d = isl_qpolynomial_degree(poly);
154 isl_assert(ctx, n >= 2, return);
156 c = isl_calloc_array(ctx, isl_qpolynomial *, n);
157 k = isl_alloc_array(ctx, int, n);
158 left = isl_alloc_array(ctx, int, n);
159 multinom = isl_vec_alloc(ctx, n);
160 if (!c || !k || !left || !multinom)
163 isl_int_set_si(multinom->el[0], 1);
164 for (k[0] = d; k[0] >= 0; --k[0]) {
166 isl_qpolynomial_free(c[0]);
167 c[0] = isl_qpolynomial_coeff(poly, isl_dim_set, n - 1, k[0]);
170 isl_int_set(multinom->el[1], multinom->el[0]);
177 for (j = 2; j <= left[i - 1]; ++j)
178 isl_int_divexact_ui(multinom->el[i],
180 b = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
181 n - 1 - i, left[i - 1]);
182 b = isl_qpolynomial_drop_dims(b, isl_dim_set,
184 dim = isl_qpolynomial_get_dim(b);
185 f = isl_qpolynomial_rat_cst(dim, ctx->one,
187 b = isl_qpolynomial_mul(b, f);
188 k[n - 1] = left[n - 2];
189 add_fold(b, dom, k, n, d, data);
193 if (k[i] >= left[i - 1]) {
199 isl_int_divexact_ui(multinom->el[i],
200 multinom->el[i], k[i]);
201 isl_qpolynomial_free(c[i]);
202 c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_set,
204 left[i] = left[i - 1] - k[i];
206 isl_int_set(multinom->el[i + 1], multinom->el[i]);
209 isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
212 for (i = 0; i < n; ++i)
213 isl_qpolynomial_free(c[i]);
215 isl_vec_free(multinom);
221 isl_vec_free(multinom);
225 for (i = 0; i < n; ++i)
226 isl_qpolynomial_free(c[i]);
231 /* Perform bernstein expansion on the parametric vertices that are active
234 * data->poly has been homogenized in the calling function.
236 * We plug in the barycentric coordinates for the set variables
238 * \vec x = \sum_i \alpha_i v_i(\vec p)
240 * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
241 * Next, we extract the coefficients of the Bernstein base polynomials.
243 static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user)
246 struct bernstein_data *data = (struct bernstein_data *)user;
249 isl_qpolynomial *poly = data->poly;
252 isl_qpolynomial **subs;
253 isl_pw_qpolynomial_fold *pwf;
257 nvar = isl_qpolynomial_dim(poly, isl_dim_set) - 1;
258 n_vertices = cell->n_vertices;
260 ctx = isl_qpolynomial_get_ctx(poly);
261 if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
262 return isl_cell_foreach_simplex(cell,
263 &bernstein_coefficients_cell, user);
265 subs = isl_alloc_array(data->poly->dim->ctx, isl_qpolynomial *,
270 dim_param = isl_basic_set_get_dim(cell->dom);
271 dim_dst = isl_qpolynomial_get_dim(poly);
272 dim_dst = isl_dim_add(dim_dst, isl_dim_set, n_vertices);
274 for (i = 0; i < 1 + nvar; ++i)
275 subs[i] = isl_qpolynomial_zero(isl_dim_copy(dim_dst));
277 for (i = 0; i < n_vertices; ++i) {
279 c = isl_qpolynomial_var(isl_dim_copy(dim_dst), isl_dim_set,
281 for (j = 0; j < nvar; ++j) {
282 int k = cell->ids[i];
284 v = vertex_coordinate(cell->vertices->v[k].vertex, j,
285 isl_dim_copy(dim_param));
286 v = isl_qpolynomial_add_dims(v, isl_dim_set,
287 1 + nvar + n_vertices);
288 v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
289 subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
291 subs[0] = isl_qpolynomial_add(subs[0], c);
293 isl_dim_free(dim_dst);
295 poly = isl_qpolynomial_copy(poly);
297 poly = isl_qpolynomial_add_dims(poly, isl_dim_set, n_vertices);
298 poly = isl_qpolynomial_substitute(poly, isl_dim_set, 0, 1 + nvar, subs);
299 poly = isl_qpolynomial_drop_dims(poly, isl_dim_set, 0, 1 + nvar);
302 dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
303 data->fold = isl_qpolynomial_fold_empty(data->type, isl_dim_copy(dim_param));
304 data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param);
305 extract_coefficients(poly, dom, data);
307 pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
309 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
310 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
311 data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
313 isl_qpolynomial_free(poly);
315 for (i = 0; i < 1 + nvar; ++i)
316 isl_qpolynomial_free(subs[i]);
324 /* Base case of applying bernstein expansion.
326 * We compute the chamber decomposition of the parametric polytope "bset"
327 * and then perform bernstein expansion on the parametric vertices
328 * that are active on each chamber.
330 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
331 __isl_take isl_basic_set *bset,
332 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
336 isl_pw_qpolynomial_fold *pwf;
337 isl_vertices *vertices;
340 nvar = isl_basic_set_dim(bset, isl_dim_set);
343 isl_qpolynomial_fold *fold;
344 fold = isl_qpolynomial_fold_alloc(data->type, poly);
345 dom = isl_set_from_basic_set(bset);
348 return isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
351 if (isl_qpolynomial_is_zero(poly)) {
353 isl_qpolynomial_fold *fold;
354 fold = isl_qpolynomial_fold_alloc(data->type, poly);
355 dom = isl_set_from_basic_set(bset);
356 pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
359 return isl_pw_qpolynomial_fold_drop_dims(pwf,
360 isl_dim_set, 0, nvar);
363 dim = isl_basic_set_get_dim(bset);
364 dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
365 data->pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim), data->type);
366 data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type);
367 data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
368 vertices = isl_basic_set_compute_vertices(bset);
369 isl_vertices_foreach_disjoint_cell(vertices,
370 &bernstein_coefficients_cell, data);
371 isl_vertices_free(vertices);
372 isl_qpolynomial_free(data->poly);
374 isl_basic_set_free(bset);
375 isl_qpolynomial_free(poly);
377 covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
385 isl_pw_qpolynomial_fold_free(data->pwf);
386 return data->pwf_tight;
389 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
393 isl_pw_qpolynomial_fold_free(data->pwf_tight);
394 isl_pw_qpolynomial_fold_free(data->pwf);
398 /* Apply bernstein expansion recursively by working in on len[i]
399 * set variables at a time, with i ranging from n_group - 1 to 0.
401 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
402 __isl_take isl_pw_qpolynomial *pwqp,
403 int n_group, int *len, struct bernstein_data *data, int *tight)
408 isl_pw_qpolynomial_fold *pwf;
413 nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
414 nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_set);
416 pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
417 isl_dim_set, 0, nvar - len[n_group - 1]);
418 pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
420 for (i = n_group - 2; i >= 0; --i) {
421 nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
422 pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_set, 0,
423 isl_dim_param, nparam - len[i], len[i]);
424 if (tight && !*tight)
426 pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
432 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
433 __isl_take isl_basic_set *bset,
434 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
438 isl_pw_qpolynomial *pwqp;
439 isl_pw_qpolynomial_fold *pwf;
441 f = isl_basic_set_factorizer(bset);
444 if (f->n_group == 0) {
445 isl_factorizer_free(f);
446 return bernstein_coefficients_base(bset, poly, data, tight);
449 set = isl_set_from_basic_set(bset);
450 pwqp = isl_pw_qpolynomial_alloc(set, poly);
451 pwqp = isl_pw_qpolynomial_morph(pwqp, isl_morph_copy(f->morph));
453 pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
456 isl_factorizer_free(f);
460 isl_basic_set_free(bset);
461 isl_qpolynomial_free(poly);
465 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
466 __isl_take isl_basic_set *bset,
467 __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight)
472 isl_pw_qpolynomial_fold *pwf;
474 isl_pw_qpolynomial *pwqp;
479 nvar = isl_basic_set_dim(bset, isl_dim_set);
481 len = isl_alloc_array(bset->ctx, int, nvar);
485 for (i = 0; i < nvar; ++i)
488 set = isl_set_from_basic_set(bset);
489 pwqp = isl_pw_qpolynomial_alloc(set, poly);
491 pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
497 isl_basic_set_free(bset);
498 isl_qpolynomial_free(poly);
502 /* Compute a bound on the polynomial defined over the parametric polytope
503 * using bernstein expansion and store the result
504 * in bound->pwf and bound->pwf_tight.
506 * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
507 * the polytope can be factorized and apply bernstein expansion recursively
509 * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
510 * bernstein expansion recursively on each dimension.
511 * Otherwise, we apply bernstein expansion on the entire polytope.
513 int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset,
514 __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
516 struct bernstein_data data;
517 isl_pw_qpolynomial_fold *pwf;
520 int *tp = bound->check_tight ? &tight : NULL;
525 data.type = bound->type;
526 data.check_tight = bound->check_tight;
528 nvar = isl_basic_set_dim(bset, isl_dim_set);
530 if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
531 pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
533 (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
534 pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
536 pwf = bernstein_coefficients_base(bset, poly, &data, tp);
539 bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
541 bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
545 isl_basic_set_free(bset);
546 isl_qpolynomial_free(poly);