2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
21 #include "isl_equalities.h"
22 #include "isl_sample.h"
24 #include <isl_mat_private.h>
26 struct isl_basic_map *isl_basic_map_implicit_equalities(
27 struct isl_basic_map *bmap)
34 bmap = isl_basic_map_gauss(bmap, NULL);
35 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
37 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
39 if (bmap->n_ineq <= 1)
42 tab = isl_tab_from_basic_map(bmap, 0);
43 if (isl_tab_detect_implicit_equalities(tab) < 0)
45 bmap = isl_basic_map_update_from_tab(bmap, tab);
47 bmap = isl_basic_map_gauss(bmap, NULL);
48 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
52 isl_basic_map_free(bmap);
56 struct isl_basic_set *isl_basic_set_implicit_equalities(
57 struct isl_basic_set *bset)
59 return (struct isl_basic_set *)
60 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
63 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
70 for (i = 0; i < map->n; ++i) {
71 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
82 /* Make eq[row][col] of both bmaps equal so we can add the row
83 * add the column to the common matrix.
84 * Note that because of the echelon form, the columns of row row
85 * after column col are zero.
87 static void set_common_multiple(
88 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
89 unsigned row, unsigned col)
93 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
98 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
99 isl_int_divexact(c, m, bset1->eq[row][col]);
100 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
101 isl_int_divexact(c, m, bset2->eq[row][col]);
102 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
107 /* Delete a given equality, moving all the following equalities one up.
109 static void delete_row(struct isl_basic_set *bset, unsigned row)
116 for (r = row; r < bset->n_eq; ++r)
117 bset->eq[r] = bset->eq[r+1];
118 bset->eq[bset->n_eq] = t;
121 /* Make first row entries in column col of bset1 identical to
122 * those of bset2, using the fact that entry bset1->eq[row][col]=a
123 * is non-zero. Initially, these elements of bset1 are all zero.
124 * For each row i < row, we set
125 * A[i] = a * A[i] + B[i][col] * A[row]
128 * A[i][col] = B[i][col] = a * old(B[i][col])
130 static void construct_column(
131 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
132 unsigned row, unsigned col)
141 total = 1 + isl_basic_set_n_dim(bset1);
142 for (r = 0; r < row; ++r) {
143 if (isl_int_is_zero(bset2->eq[r][col]))
145 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
146 isl_int_divexact(a, bset1->eq[row][col], b);
147 isl_int_divexact(b, bset2->eq[r][col], b);
148 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
149 b, bset1->eq[row], total);
150 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
154 delete_row(bset1, row);
157 /* Make first row entries in column col of bset1 identical to
158 * those of bset2, using only these entries of the two matrices.
159 * Let t be the last row with different entries.
160 * For each row i < t, we set
161 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
162 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
164 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
166 static int transform_column(
167 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
168 unsigned row, unsigned col)
174 for (t = row-1; t >= 0; --t)
175 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
180 total = 1 + isl_basic_set_n_dim(bset1);
184 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
185 for (i = 0; i < t; ++i) {
186 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
187 isl_int_gcd(g, a, b);
188 isl_int_divexact(a, a, g);
189 isl_int_divexact(g, b, g);
190 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
192 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
198 delete_row(bset1, t);
199 delete_row(bset2, t);
203 /* The implementation is based on Section 5.2 of Michael Karr,
204 * "Affine Relationships Among Variables of a Program",
205 * except that the echelon form we use starts from the last column
206 * and that we are dealing with integer coefficients.
208 static struct isl_basic_set *affine_hull(
209 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
215 if (!bset1 || !bset2)
218 total = 1 + isl_basic_set_n_dim(bset1);
221 for (col = total-1; col >= 0; --col) {
222 int is_zero1 = row >= bset1->n_eq ||
223 isl_int_is_zero(bset1->eq[row][col]);
224 int is_zero2 = row >= bset2->n_eq ||
225 isl_int_is_zero(bset2->eq[row][col]);
226 if (!is_zero1 && !is_zero2) {
227 set_common_multiple(bset1, bset2, row, col);
229 } else if (!is_zero1 && is_zero2) {
230 construct_column(bset1, bset2, row, col);
231 } else if (is_zero1 && !is_zero2) {
232 construct_column(bset2, bset1, row, col);
234 if (transform_column(bset1, bset2, row, col))
238 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
239 isl_basic_set_free(bset2);
240 bset1 = isl_basic_set_normalize_constraints(bset1);
243 isl_basic_set_free(bset1);
244 isl_basic_set_free(bset2);
248 /* Find an integer point in the set represented by "tab"
249 * that lies outside of the equality "eq" e(x) = 0.
250 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
251 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
252 * The point, if found, is returned.
253 * If no point can be found, a zero-length vector is returned.
255 * Before solving an ILP problem, we first check if simply
256 * adding the normal of the constraint to one of the known
257 * integer points in the basic set represented by "tab"
258 * yields another point inside the basic set.
260 * The caller of this function ensures that the tableau is bounded or
261 * that tab->basis and tab->n_unbounded have been set appropriately.
263 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
266 struct isl_vec *sample = NULL;
267 struct isl_tab_undo *snap;
275 sample = isl_vec_alloc(ctx, 1 + dim);
278 isl_int_set_si(sample->el[0], 1);
279 isl_seq_combine(sample->el + 1,
280 ctx->one, tab->bmap->sample->el + 1,
281 up ? ctx->one : ctx->negone, eq + 1, dim);
282 if (isl_basic_map_contains(tab->bmap, sample))
284 isl_vec_free(sample);
287 snap = isl_tab_snap(tab);
290 isl_seq_neg(eq, eq, 1 + dim);
291 isl_int_sub_ui(eq[0], eq[0], 1);
293 if (isl_tab_extend_cons(tab, 1) < 0)
295 if (isl_tab_add_ineq(tab, eq) < 0)
298 sample = isl_tab_sample(tab);
300 isl_int_add_ui(eq[0], eq[0], 1);
302 isl_seq_neg(eq, eq, 1 + dim);
304 if (sample && isl_tab_rollback(tab, snap) < 0)
309 isl_vec_free(sample);
313 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
317 bset = isl_basic_set_cow(bset);
320 isl_assert(bset->ctx, bset->n_div == 0, goto error);
322 for (i = 0; i < bset->n_eq; ++i)
323 isl_int_set_si(bset->eq[i][0], 0);
325 for (i = 0; i < bset->n_ineq; ++i)
326 isl_int_set_si(bset->ineq[i][0], 0);
328 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
329 return isl_basic_set_implicit_equalities(bset);
331 isl_basic_set_free(bset);
335 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
344 set = isl_set_remove_divs(set);
345 set = isl_set_cow(set);
349 for (i = 0; i < set->n; ++i) {
350 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
361 /* Move "sample" to a point that is one up (or down) from the original
362 * point in dimension "pos".
364 static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
367 isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
369 isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
372 /* Check if any points that are adjacent to "sample" also belong to "bset".
373 * If so, add them to "hull" and return the updated hull.
375 * Before checking whether and adjacent point belongs to "bset", we first
376 * check whether it already belongs to "hull" as this test is typically
379 static __isl_give isl_basic_set *add_adjacent_points(
380 __isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
381 __isl_keep isl_basic_set *bset)
389 dim = isl_basic_set_dim(hull, isl_dim_set);
391 for (i = 0; i < dim; ++i) {
392 for (up = 0; up <= 1; ++up) {
394 isl_basic_set *point;
396 adjacent_point(sample, i, up);
397 contains = isl_basic_set_contains(hull, sample);
401 adjacent_point(sample, i, !up);
404 contains = isl_basic_set_contains(bset, sample);
408 point = isl_basic_set_from_vec(
409 isl_vec_copy(sample));
410 hull = affine_hull(hull, point);
412 adjacent_point(sample, i, !up);
418 isl_vec_free(sample);
422 isl_vec_free(sample);
423 isl_basic_set_free(hull);
427 /* Extend an initial (under-)approximation of the affine hull of basic
428 * set represented by the tableau "tab"
429 * by looking for points that do not satisfy one of the equalities
430 * in the current approximation and adding them to that approximation
431 * until no such points can be found any more.
433 * The caller of this function ensures that "tab" is bounded or
434 * that tab->basis and tab->n_unbounded have been set appropriately.
436 * "bset" may be either NULL or the basic set represented by "tab".
437 * If "bset" is not NULL, we check for any point we find if any
438 * of its adjacent points also belong to "bset".
440 static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
441 __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
451 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
454 for (i = 0; i < dim; ++i) {
455 struct isl_vec *sample;
456 struct isl_basic_set *point;
457 for (j = 0; j < hull->n_eq; ++j) {
458 sample = outside_point(tab, hull->eq[j], 1);
461 if (sample->size > 0)
463 isl_vec_free(sample);
464 sample = outside_point(tab, hull->eq[j], 0);
467 if (sample->size > 0)
469 isl_vec_free(sample);
471 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
477 tab = isl_tab_add_sample(tab, isl_vec_copy(sample));
481 hull = add_adjacent_points(hull, isl_vec_copy(sample),
483 point = isl_basic_set_from_vec(sample);
484 hull = affine_hull(hull, point);
491 isl_basic_set_free(hull);
495 /* Drop all constraints in bmap that involve any of the dimensions
496 * first to first+n-1.
498 static __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving(
499 __isl_take isl_basic_map *bmap, unsigned first, unsigned n)
506 bmap = isl_basic_map_cow(bmap);
511 for (i = bmap->n_eq - 1; i >= 0; --i) {
512 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) == -1)
514 isl_basic_map_drop_equality(bmap, i);
517 for (i = bmap->n_ineq - 1; i >= 0; --i) {
518 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) == -1)
520 isl_basic_map_drop_inequality(bmap, i);
526 /* Drop all constraints in bset that involve any of the dimensions
527 * first to first+n-1.
529 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving(
530 __isl_take isl_basic_set *bset, unsigned first, unsigned n)
532 return isl_basic_map_drop_constraints_involving(bset, first, n);
535 /* Drop all constraints in bmap that do not involve any of the dimensions
536 * first to first + n - 1 of the given type.
538 __isl_give isl_basic_map *isl_basic_map_drop_constraints_not_involving_dims(
539 __isl_take isl_basic_map *bmap,
540 enum isl_dim_type type, unsigned first, unsigned n)
546 return isl_basic_map_set_to_empty(bmap);
547 bmap = isl_basic_map_cow(bmap);
551 dim = isl_basic_map_dim(bmap, type);
552 if (first + n > dim || first + n < first)
553 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
554 "index out of bounds", return isl_basic_map_free(bmap));
556 first += isl_basic_map_offset(bmap, type) - 1;
558 for (i = bmap->n_eq - 1; i >= 0; --i) {
559 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) != -1)
561 isl_basic_map_drop_equality(bmap, i);
564 for (i = bmap->n_ineq - 1; i >= 0; --i) {
565 if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) != -1)
567 isl_basic_map_drop_inequality(bmap, i);
573 /* Drop all constraints in bset that do not involve any of the dimensions
574 * first to first + n - 1 of the given type.
576 __isl_give isl_basic_set *isl_basic_set_drop_constraints_not_involving_dims(
577 __isl_take isl_basic_set *bset,
578 enum isl_dim_type type, unsigned first, unsigned n)
580 return isl_basic_map_drop_constraints_not_involving_dims(bset,
584 /* Drop all constraints in bmap that involve any of the dimensions
585 * first to first + n - 1 of the given type.
587 __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_dims(
588 __isl_take isl_basic_map *bmap,
589 enum isl_dim_type type, unsigned first, unsigned n)
598 dim = isl_basic_map_dim(bmap, type);
599 if (first + n > dim || first + n < first)
600 isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
601 "index out of bounds", return isl_basic_map_free(bmap));
603 bmap = isl_basic_map_remove_divs_involving_dims(bmap, type, first, n);
604 first += isl_basic_map_offset(bmap, type) - 1;
605 return isl_basic_map_drop_constraints_involving(bmap, first, n);
608 /* Drop all constraints in bset that involve any of the dimensions
609 * first to first + n - 1 of the given type.
611 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_dims(
612 __isl_take isl_basic_set *bset,
613 enum isl_dim_type type, unsigned first, unsigned n)
615 return isl_basic_map_drop_constraints_involving_dims(bset,
619 /* Drop all constraints in map that involve any of the dimensions
620 * first to first + n - 1 of the given type.
622 __isl_give isl_map *isl_map_drop_constraints_involving_dims(
623 __isl_take isl_map *map,
624 enum isl_dim_type type, unsigned first, unsigned n)
634 dim = isl_map_dim(map, type);
635 if (first + n > dim || first + n < first)
636 isl_die(isl_map_get_ctx(map), isl_error_invalid,
637 "index out of bounds", return isl_map_free(map));
639 map = isl_map_cow(map);
643 for (i = 0; i < map->n; ++i) {
644 map->p[i] = isl_basic_map_drop_constraints_involving_dims(
645 map->p[i], type, first, n);
647 return isl_map_free(map);
653 /* Drop all constraints in set that involve any of the dimensions
654 * first to first + n - 1 of the given type.
656 __isl_give isl_set *isl_set_drop_constraints_involving_dims(
657 __isl_take isl_set *set,
658 enum isl_dim_type type, unsigned first, unsigned n)
660 return isl_map_drop_constraints_involving_dims(set, type, first, n);
663 /* Construct an initial underapproximatino of the hull of "bset"
664 * from "sample" and any of its adjacent points that also belong to "bset".
666 static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
667 __isl_take isl_vec *sample)
671 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
672 hull = add_adjacent_points(hull, sample, bset);
677 /* Look for all equalities satisfied by the integer points in bset,
678 * which is assumed to be bounded.
680 * The equalities are obtained by successively looking for
681 * a point that is affinely independent of the points found so far.
682 * In particular, for each equality satisfied by the points so far,
683 * we check if there is any point on a hyperplane parallel to the
684 * corresponding hyperplane shifted by at least one (in either direction).
686 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
688 struct isl_vec *sample = NULL;
689 struct isl_basic_set *hull;
690 struct isl_tab *tab = NULL;
693 if (isl_basic_set_plain_is_empty(bset))
696 dim = isl_basic_set_n_dim(bset);
698 if (bset->sample && bset->sample->size == 1 + dim) {
699 int contains = isl_basic_set_contains(bset, bset->sample);
705 sample = isl_vec_copy(bset->sample);
707 isl_vec_free(bset->sample);
712 tab = isl_tab_from_basic_set(bset, 1);
717 isl_vec_free(sample);
718 return isl_basic_set_set_to_empty(bset);
722 struct isl_tab_undo *snap;
723 snap = isl_tab_snap(tab);
724 sample = isl_tab_sample(tab);
725 if (isl_tab_rollback(tab, snap) < 0)
727 isl_vec_free(tab->bmap->sample);
728 tab->bmap->sample = isl_vec_copy(sample);
733 if (sample->size == 0) {
735 isl_vec_free(sample);
736 return isl_basic_set_set_to_empty(bset);
739 hull = initialize_hull(bset, sample);
741 hull = extend_affine_hull(tab, hull, bset);
742 isl_basic_set_free(bset);
747 isl_vec_free(sample);
749 isl_basic_set_free(bset);
753 /* Given an unbounded tableau and an integer point satisfying the tableau,
754 * construct an initial affine hull containing the recession cone
755 * shifted to the given point.
757 * The unbounded directions are taken from the last rows of the basis,
758 * which is assumed to have been initialized appropriately.
760 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
761 __isl_take isl_vec *vec)
765 struct isl_basic_set *bset = NULL;
772 isl_assert(ctx, vec->size != 0, goto error);
774 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
777 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
778 for (i = 0; i < dim; ++i) {
779 k = isl_basic_set_alloc_equality(bset);
782 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
784 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
785 vec->size - 1, &bset->eq[k][0]);
786 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
789 bset = isl_basic_set_gauss(bset, NULL);
793 isl_basic_set_free(bset);
798 /* Given a tableau of a set and a tableau of the corresponding
799 * recession cone, detect and add all equalities to the tableau.
800 * If the tableau is bounded, then we can simply keep the
801 * tableau in its state after the return from extend_affine_hull.
802 * However, if the tableau is unbounded, then
803 * isl_tab_set_initial_basis_with_cone will add some additional
804 * constraints to the tableau that have to be removed again.
805 * In this case, we therefore rollback to the state before
806 * any constraints were added and then add the equalities back in.
808 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
809 struct isl_tab *tab_cone)
812 struct isl_vec *sample;
813 struct isl_basic_set *hull = NULL;
814 struct isl_tab_undo *snap;
816 if (!tab || !tab_cone)
819 snap = isl_tab_snap(tab);
821 isl_mat_free(tab->basis);
824 isl_assert(tab->mat->ctx, tab->bmap, goto error);
825 isl_assert(tab->mat->ctx, tab->samples, goto error);
826 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
827 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
829 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
832 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
836 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
838 isl_vec_free(tab->bmap->sample);
839 tab->bmap->sample = isl_vec_copy(sample);
841 if (tab->n_unbounded == 0)
842 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
844 hull = initial_hull(tab, isl_vec_copy(sample));
846 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
847 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
848 hull = affine_hull(hull,
849 isl_basic_set_from_vec(isl_vec_copy(sample)));
852 isl_vec_free(sample);
854 hull = extend_affine_hull(tab, hull, NULL);
858 if (tab->n_unbounded == 0) {
859 isl_basic_set_free(hull);
863 if (isl_tab_rollback(tab, snap) < 0)
866 if (hull->n_eq > tab->n_zero) {
867 for (j = 0; j < hull->n_eq; ++j) {
868 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
869 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
874 isl_basic_set_free(hull);
878 isl_basic_set_free(hull);
883 /* Compute the affine hull of "bset", where "cone" is the recession cone
886 * We first compute a unimodular transformation that puts the unbounded
887 * directions in the last dimensions. In particular, we take a transformation
888 * that maps all equalities to equalities (in HNF) on the first dimensions.
889 * Let x be the original dimensions and y the transformed, with y_1 bounded
892 * [ y_1 ] [ y_1 ] [ Q_1 ]
893 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
895 * Let's call the input basic set S. We compute S' = preimage(S, U)
896 * and drop the final dimensions including any constraints involving them.
897 * This results in set S''.
898 * Then we compute the affine hull A'' of S''.
899 * Let F y_1 >= g be the constraint system of A''. In the transformed
900 * space the y_2 are unbounded, so we can add them back without any constraints,
904 * [ F 0 ] [ y_2 ] >= g
907 * [ F 0 ] [ Q_2 ] x >= g
911 * The affine hull in the original space is then obtained as
912 * A = preimage(A'', Q_1).
914 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
915 struct isl_basic_set *cone)
919 struct isl_basic_set *hull;
920 struct isl_mat *M, *U, *Q;
925 total = isl_basic_set_total_dim(cone);
926 cone_dim = total - cone->n_eq;
928 M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
929 M = isl_mat_left_hermite(M, 0, &U, &Q);
934 U = isl_mat_lin_to_aff(U);
935 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
937 bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
939 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
941 Q = isl_mat_lin_to_aff(Q);
942 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
944 if (bset && bset->sample && bset->sample->size == 1 + total)
945 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
947 hull = uset_affine_hull_bounded(bset);
953 struct isl_vec *sample = isl_vec_copy(hull->sample);
954 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
955 if (sample && sample->size > 0)
956 sample = isl_mat_vec_product(U, sample);
959 hull = isl_basic_set_preimage(hull, Q);
961 isl_vec_free(hull->sample);
962 hull->sample = sample;
964 isl_vec_free(sample);
967 isl_basic_set_free(cone);
971 isl_basic_set_free(bset);
972 isl_basic_set_free(cone);
976 /* Look for all equalities satisfied by the integer points in bset,
977 * which is assumed not to have any explicit equalities.
979 * The equalities are obtained by successively looking for
980 * a point that is affinely independent of the points found so far.
981 * In particular, for each equality satisfied by the points so far,
982 * we check if there is any point on a hyperplane parallel to the
983 * corresponding hyperplane shifted by at least one (in either direction).
985 * Before looking for any outside points, we first compute the recession
986 * cone. The directions of this recession cone will always be part
987 * of the affine hull, so there is no need for looking for any points
988 * in these directions.
989 * In particular, if the recession cone is full-dimensional, then
990 * the affine hull is simply the whole universe.
992 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
994 struct isl_basic_set *cone;
996 if (isl_basic_set_plain_is_empty(bset))
999 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
1002 if (cone->n_eq == 0) {
1003 struct isl_basic_set *hull;
1004 isl_basic_set_free(cone);
1005 hull = isl_basic_set_universe_like(bset);
1006 isl_basic_set_free(bset);
1010 if (cone->n_eq < isl_basic_set_total_dim(cone))
1011 return affine_hull_with_cone(bset, cone);
1013 isl_basic_set_free(cone);
1014 return uset_affine_hull_bounded(bset);
1016 isl_basic_set_free(bset);
1020 /* Look for all equalities satisfied by the integer points in bmap
1021 * that are independent of the equalities already explicitly available
1024 * We first remove all equalities already explicitly available,
1025 * then look for additional equalities in the reduced space
1026 * and then transform the result to the original space.
1027 * The original equalities are _not_ added to this set. This is
1028 * the responsibility of the calling function.
1029 * The resulting basic set has all meaning about the dimensions removed.
1030 * In particular, dimensions that correspond to existential variables
1031 * in bmap and that are found to be fixed are not removed.
1033 static struct isl_basic_set *equalities_in_underlying_set(
1034 struct isl_basic_map *bmap)
1036 struct isl_mat *T1 = NULL;
1037 struct isl_mat *T2 = NULL;
1038 struct isl_basic_set *bset = NULL;
1039 struct isl_basic_set *hull = NULL;
1041 bset = isl_basic_map_underlying_set(bmap);
1045 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
1049 hull = uset_affine_hull(bset);
1057 struct isl_vec *sample = isl_vec_copy(hull->sample);
1058 if (sample && sample->size > 0)
1059 sample = isl_mat_vec_product(T1, sample);
1062 hull = isl_basic_set_preimage(hull, T2);
1064 isl_vec_free(hull->sample);
1065 hull->sample = sample;
1067 isl_vec_free(sample);
1074 isl_basic_set_free(bset);
1075 isl_basic_set_free(hull);
1079 /* Detect and make explicit all equalities satisfied by the (integer)
1082 struct isl_basic_map *isl_basic_map_detect_equalities(
1083 struct isl_basic_map *bmap)
1086 struct isl_basic_set *hull = NULL;
1090 if (bmap->n_ineq == 0)
1092 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1094 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
1096 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
1097 return isl_basic_map_implicit_equalities(bmap);
1099 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
1102 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
1103 isl_basic_set_free(hull);
1104 return isl_basic_map_set_to_empty(bmap);
1106 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0,
1108 for (i = 0; i < hull->n_eq; ++i) {
1109 j = isl_basic_map_alloc_equality(bmap);
1112 isl_seq_cpy(bmap->eq[j], hull->eq[i],
1113 1 + isl_basic_set_total_dim(hull));
1115 isl_vec_free(bmap->sample);
1116 bmap->sample = isl_vec_copy(hull->sample);
1117 isl_basic_set_free(hull);
1118 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
1119 bmap = isl_basic_map_simplify(bmap);
1120 return isl_basic_map_finalize(bmap);
1122 isl_basic_set_free(hull);
1123 isl_basic_map_free(bmap);
1127 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
1128 __isl_take isl_basic_set *bset)
1130 return (isl_basic_set *)
1131 isl_basic_map_detect_equalities((isl_basic_map *)bset);
1134 __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
1136 return isl_map_inline_foreach_basic_map(map,
1137 &isl_basic_map_detect_equalities);
1140 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
1142 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
1145 /* After computing the rational affine hull (by detecting the implicit
1146 * equalities), we compute the additional equalities satisfied by
1147 * the integer points (if any) and add the original equalities back in.
1149 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
1151 bmap = isl_basic_map_detect_equalities(bmap);
1152 bmap = isl_basic_map_cow(bmap);
1154 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
1155 bmap = isl_basic_map_finalize(bmap);
1159 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
1161 return (struct isl_basic_set *)
1162 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
1165 /* Given a rational affine matrix "M", add stride constraints to "bmap"
1170 * is an integer vector. The variables x include all the variables
1171 * of "bmap" except the unknown divs.
1173 * If d is the common denominator of M, then we need to impose that
1179 * exists alpha : d M(x) = d alpha
1181 * This function is similar to add_strides in isl_morph.c
1183 static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap,
1184 __isl_keep isl_mat *M, int n_known)
1189 if (isl_int_is_one(M->row[0][0]))
1192 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
1193 M->n_row - 1, M->n_row - 1, 0);
1196 for (i = 1; i < M->n_row; ++i) {
1197 isl_seq_gcd(M->row[i], M->n_col, &gcd);
1198 if (isl_int_is_divisible_by(gcd, M->row[0][0]))
1200 div = isl_basic_map_alloc_div(bmap);
1203 isl_int_set_si(bmap->div[div][0], 0);
1204 k = isl_basic_map_alloc_equality(bmap);
1207 isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col);
1208 isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known);
1209 isl_int_set(bmap->eq[k][M->n_col - n_known + div],
1217 isl_basic_map_free(bmap);
1221 /* If there are any equalities that involve (multiple) unknown divs,
1222 * then extract the stride information encoded by those equalities
1223 * and make it explicitly available in "bmap".
1225 * We first sort the divs so that the unknown divs appear last and
1226 * then we count how many equalities involve these divs.
1228 * Let these equalities be of the form
1232 * where y represents the unknown divs and x the remaining variables.
1233 * Let [H 0] be the Hermite Normal Form of B, i.e.,
1237 * Then x is a solution of the equalities iff
1239 * H^-1 A(x) (= - [I 0] Q y)
1241 * is an integer vector. Let d be the common denominator of H^-1.
1244 * d H^-1 A(x) = d alpha
1246 * in add_strides, with alpha fresh existentially quantified variables.
1248 static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit(
1249 __isl_take isl_basic_map *bmap)
1258 known = isl_basic_map_divs_known(bmap);
1260 return isl_basic_map_free(bmap);
1263 bmap = isl_basic_map_sort_divs(bmap);
1264 bmap = isl_basic_map_gauss(bmap, NULL);
1268 for (n_known = 0; n_known < bmap->n_div; ++n_known)
1269 if (isl_int_is_zero(bmap->div[n_known][0]))
1271 ctx = isl_basic_map_get_ctx(bmap);
1272 total = isl_space_dim(bmap->dim, isl_dim_all);
1273 for (n = 0; n < bmap->n_eq; ++n)
1274 if (isl_seq_first_non_zero(bmap->eq[n] + 1 + total + n_known,
1275 bmap->n_div - n_known) == -1)
1279 B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + total + n_known);
1280 n_col = bmap->n_div - n_known;
1281 A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + total + n_known, n_col);
1282 A = isl_mat_left_hermite(A, 0, NULL, NULL);
1283 A = isl_mat_drop_cols(A, n, n_col - n);
1284 A = isl_mat_lin_to_aff(A);
1285 A = isl_mat_right_inverse(A);
1286 B = isl_mat_insert_zero_rows(B, 0, 1);
1287 B = isl_mat_set_element_si(B, 0, 0, 1);
1288 M = isl_mat_product(A, B);
1290 return isl_basic_map_free(bmap);
1291 bmap = add_strides(bmap, M, n_known);
1292 bmap = isl_basic_map_gauss(bmap, NULL);
1298 /* Compute the affine hull of each basic map in "map" separately
1299 * and make all stride information explicit so that we can remove
1300 * all unknown divs without losing this information.
1301 * The result is also guaranteed to be gaussed.
1303 * In simple cases where a div is determined by an equality,
1304 * calling isl_basic_map_gauss is enough to make the stride information
1305 * explicit, as it will derive an explicit representation for the div
1306 * from the equality. If, however, the stride information
1307 * is encoded through multiple unknown divs then we need to make
1308 * some extra effort in isl_basic_map_make_strides_explicit.
1310 static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map)
1314 map = isl_map_cow(map);
1318 for (i = 0; i < map->n; ++i) {
1319 map->p[i] = isl_basic_map_affine_hull(map->p[i]);
1320 map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
1321 map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]);
1323 return isl_map_free(map);
1329 static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set)
1331 return isl_map_local_affine_hull(set);
1334 /* Compute the affine hull of "map".
1336 * We first compute the affine hull of each basic map separately.
1337 * Then we align the divs and recompute the affine hulls of the basic
1338 * maps since some of them may now have extra divs.
1339 * In order to avoid performing parametric integer programming to
1340 * compute explicit expressions for the divs, possible leading to
1341 * an explosion in the number of basic maps, we first drop all unknown
1342 * divs before aligning the divs. Note that isl_map_local_affine_hull tries
1343 * to make sure that all stride information is explicitly available
1344 * in terms of known divs. This involves calling isl_basic_set_gauss,
1345 * which is also needed because affine_hull assumes its input has been gaussed,
1346 * while isl_map_affine_hull may be called on input that has not been gaussed,
1347 * in particular from initial_facet_constraint.
1348 * Similarly, align_divs may reorder some divs so that we need to
1349 * gauss the result again.
1350 * Finally, we combine the individual affine hulls into a single
1353 __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map)
1355 struct isl_basic_map *model = NULL;
1356 struct isl_basic_map *hull = NULL;
1357 struct isl_set *set;
1358 isl_basic_set *bset;
1360 map = isl_map_detect_equalities(map);
1361 map = isl_map_local_affine_hull(map);
1362 map = isl_map_remove_empty_parts(map);
1363 map = isl_map_remove_unknown_divs(map);
1364 map = isl_map_align_divs(map);
1370 hull = isl_basic_map_empty_like_map(map);
1375 model = isl_basic_map_copy(map->p[0]);
1376 set = isl_map_underlying_set(map);
1377 set = isl_set_cow(set);
1378 set = isl_set_local_affine_hull(set);
1383 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1385 bset = isl_basic_set_copy(set->p[0]);
1386 hull = isl_basic_map_overlying_set(bset, model);
1388 hull = isl_basic_map_simplify(hull);
1389 return isl_basic_map_finalize(hull);
1391 isl_basic_map_free(model);
1396 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1398 return (struct isl_basic_set *)
1399 isl_map_affine_hull((struct isl_map *)set);