2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
19 #include <isl_mat_private.h>
21 struct isl_basic_map *isl_basic_map_implicit_equalities(
22 struct isl_basic_map *bmap)
29 bmap = isl_basic_map_gauss(bmap, NULL);
30 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
32 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
34 if (bmap->n_ineq <= 1)
37 tab = isl_tab_from_basic_map(bmap);
38 if (isl_tab_detect_implicit_equalities(tab) < 0)
40 bmap = isl_basic_map_update_from_tab(bmap, tab);
42 bmap = isl_basic_map_gauss(bmap, NULL);
43 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
47 isl_basic_map_free(bmap);
51 struct isl_basic_set *isl_basic_set_implicit_equalities(
52 struct isl_basic_set *bset)
54 return (struct isl_basic_set *)
55 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
58 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
65 for (i = 0; i < map->n; ++i) {
66 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
77 /* Make eq[row][col] of both bmaps equal so we can add the row
78 * add the column to the common matrix.
79 * Note that because of the echelon form, the columns of row row
80 * after column col are zero.
82 static void set_common_multiple(
83 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
84 unsigned row, unsigned col)
88 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
93 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
94 isl_int_divexact(c, m, bset1->eq[row][col]);
95 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
96 isl_int_divexact(c, m, bset2->eq[row][col]);
97 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
102 /* Delete a given equality, moving all the following equalities one up.
104 static void delete_row(struct isl_basic_set *bset, unsigned row)
111 for (r = row; r < bset->n_eq; ++r)
112 bset->eq[r] = bset->eq[r+1];
113 bset->eq[bset->n_eq] = t;
116 /* Make first row entries in column col of bset1 identical to
117 * those of bset2, using the fact that entry bset1->eq[row][col]=a
118 * is non-zero. Initially, these elements of bset1 are all zero.
119 * For each row i < row, we set
120 * A[i] = a * A[i] + B[i][col] * A[row]
123 * A[i][col] = B[i][col] = a * old(B[i][col])
125 static void construct_column(
126 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
127 unsigned row, unsigned col)
136 total = 1 + isl_basic_set_n_dim(bset1);
137 for (r = 0; r < row; ++r) {
138 if (isl_int_is_zero(bset2->eq[r][col]))
140 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
141 isl_int_divexact(a, bset1->eq[row][col], b);
142 isl_int_divexact(b, bset2->eq[r][col], b);
143 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
144 b, bset1->eq[row], total);
145 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
149 delete_row(bset1, row);
152 /* Make first row entries in column col of bset1 identical to
153 * those of bset2, using only these entries of the two matrices.
154 * Let t be the last row with different entries.
155 * For each row i < t, we set
156 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
157 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
159 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
161 static int transform_column(
162 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
163 unsigned row, unsigned col)
169 for (t = row-1; t >= 0; --t)
170 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
175 total = 1 + isl_basic_set_n_dim(bset1);
179 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
180 for (i = 0; i < t; ++i) {
181 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
182 isl_int_gcd(g, a, b);
183 isl_int_divexact(a, a, g);
184 isl_int_divexact(g, b, g);
185 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
187 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
193 delete_row(bset1, t);
194 delete_row(bset2, t);
198 /* The implementation is based on Section 5.2 of Michael Karr,
199 * "Affine Relationships Among Variables of a Program",
200 * except that the echelon form we use starts from the last column
201 * and that we are dealing with integer coefficients.
203 static struct isl_basic_set *affine_hull(
204 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
210 if (!bset1 || !bset2)
213 total = 1 + isl_basic_set_n_dim(bset1);
216 for (col = total-1; col >= 0; --col) {
217 int is_zero1 = row >= bset1->n_eq ||
218 isl_int_is_zero(bset1->eq[row][col]);
219 int is_zero2 = row >= bset2->n_eq ||
220 isl_int_is_zero(bset2->eq[row][col]);
221 if (!is_zero1 && !is_zero2) {
222 set_common_multiple(bset1, bset2, row, col);
224 } else if (!is_zero1 && is_zero2) {
225 construct_column(bset1, bset2, row, col);
226 } else if (is_zero1 && !is_zero2) {
227 construct_column(bset2, bset1, row, col);
229 if (transform_column(bset1, bset2, row, col))
233 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
234 isl_basic_set_free(bset2);
235 bset1 = isl_basic_set_normalize_constraints(bset1);
238 isl_basic_set_free(bset1);
239 isl_basic_set_free(bset2);
243 /* Find an integer point in the set represented by "tab"
244 * that lies outside of the equality "eq" e(x) = 0.
245 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
246 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
247 * The point, if found, is returned.
248 * If no point can be found, a zero-length vector is returned.
250 * Before solving an ILP problem, we first check if simply
251 * adding the normal of the constraint to one of the known
252 * integer points in the basic set represented by "tab"
253 * yields another point inside the basic set.
255 * The caller of this function ensures that the tableau is bounded or
256 * that tab->basis and tab->n_unbounded have been set appropriately.
258 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
261 struct isl_vec *sample = NULL;
262 struct isl_tab_undo *snap;
270 sample = isl_vec_alloc(ctx, 1 + dim);
273 isl_int_set_si(sample->el[0], 1);
274 isl_seq_combine(sample->el + 1,
275 ctx->one, tab->bmap->sample->el + 1,
276 up ? ctx->one : ctx->negone, eq + 1, dim);
277 if (isl_basic_map_contains(tab->bmap, sample))
279 isl_vec_free(sample);
282 snap = isl_tab_snap(tab);
285 isl_seq_neg(eq, eq, 1 + dim);
286 isl_int_sub_ui(eq[0], eq[0], 1);
288 if (isl_tab_extend_cons(tab, 1) < 0)
290 if (isl_tab_add_ineq(tab, eq) < 0)
293 sample = isl_tab_sample(tab);
295 isl_int_add_ui(eq[0], eq[0], 1);
297 isl_seq_neg(eq, eq, 1 + dim);
299 if (sample && isl_tab_rollback(tab, snap) < 0)
304 isl_vec_free(sample);
308 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
312 bset = isl_basic_set_cow(bset);
315 isl_assert(bset->ctx, bset->n_div == 0, goto error);
317 for (i = 0; i < bset->n_eq; ++i)
318 isl_int_set_si(bset->eq[i][0], 0);
320 for (i = 0; i < bset->n_ineq; ++i)
321 isl_int_set_si(bset->ineq[i][0], 0);
323 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
324 return isl_basic_set_implicit_equalities(bset);
326 isl_basic_set_free(bset);
330 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
339 set = isl_set_remove_divs(set);
340 set = isl_set_cow(set);
344 for (i = 0; i < set->n; ++i) {
345 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
356 /* Extend an initial (under-)approximation of the affine hull of basic
357 * set represented by the tableau "tab"
358 * by looking for points that do not satisfy one of the equalities
359 * in the current approximation and adding them to that approximation
360 * until no such points can be found any more.
362 * The caller of this function ensures that "tab" is bounded or
363 * that tab->basis and tab->n_unbounded have been set appropriately.
365 static struct isl_basic_set *extend_affine_hull(struct isl_tab *tab,
366 struct isl_basic_set *hull)
376 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
379 for (i = 0; i < dim; ++i) {
380 struct isl_vec *sample;
381 struct isl_basic_set *point;
382 for (j = 0; j < hull->n_eq; ++j) {
383 sample = outside_point(tab, hull->eq[j], 1);
386 if (sample->size > 0)
388 isl_vec_free(sample);
389 sample = outside_point(tab, hull->eq[j], 0);
392 if (sample->size > 0)
394 isl_vec_free(sample);
396 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
402 tab = isl_tab_add_sample(tab, isl_vec_copy(sample));
405 point = isl_basic_set_from_vec(sample);
406 hull = affine_hull(hull, point);
413 isl_basic_set_free(hull);
417 /* Drop all constraints in bset that involve any of the dimensions
418 * first to first+n-1.
420 static struct isl_basic_set *drop_constraints_involving
421 (struct isl_basic_set *bset, unsigned first, unsigned n)
428 bset = isl_basic_set_cow(bset);
430 for (i = bset->n_eq - 1; i >= 0; --i) {
431 if (isl_seq_first_non_zero(bset->eq[i] + 1 + first, n) == -1)
433 isl_basic_set_drop_equality(bset, i);
436 for (i = bset->n_ineq - 1; i >= 0; --i) {
437 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
439 isl_basic_set_drop_inequality(bset, i);
445 /* Look for all equalities satisfied by the integer points in bset,
446 * which is assumed to be bounded.
448 * The equalities are obtained by successively looking for
449 * a point that is affinely independent of the points found so far.
450 * In particular, for each equality satisfied by the points so far,
451 * we check if there is any point on a hyperplane parallel to the
452 * corresponding hyperplane shifted by at least one (in either direction).
454 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
456 struct isl_vec *sample = NULL;
457 struct isl_basic_set *hull;
458 struct isl_tab *tab = NULL;
461 if (isl_basic_set_fast_is_empty(bset))
464 dim = isl_basic_set_n_dim(bset);
466 if (bset->sample && bset->sample->size == 1 + dim) {
467 int contains = isl_basic_set_contains(bset, bset->sample);
473 sample = isl_vec_copy(bset->sample);
475 isl_vec_free(bset->sample);
480 tab = isl_tab_from_basic_set(bset);
485 isl_vec_free(sample);
486 return isl_basic_set_set_to_empty(bset);
488 if (isl_tab_track_bset(tab, isl_basic_set_copy(bset)) < 0)
492 struct isl_tab_undo *snap;
493 snap = isl_tab_snap(tab);
494 sample = isl_tab_sample(tab);
495 if (isl_tab_rollback(tab, snap) < 0)
497 isl_vec_free(tab->bmap->sample);
498 tab->bmap->sample = isl_vec_copy(sample);
503 if (sample->size == 0) {
505 isl_vec_free(sample);
506 return isl_basic_set_set_to_empty(bset);
509 hull = isl_basic_set_from_vec(sample);
511 isl_basic_set_free(bset);
512 hull = extend_affine_hull(tab, hull);
517 isl_vec_free(sample);
519 isl_basic_set_free(bset);
523 /* Given an unbounded tableau and an integer point satisfying the tableau,
524 * construct an intial affine hull containing the recession cone
525 * shifted to the given point.
527 * The unbounded directions are taken from the last rows of the basis,
528 * which is assumed to have been initialized appropriately.
530 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
531 __isl_take isl_vec *vec)
535 struct isl_basic_set *bset = NULL;
542 isl_assert(ctx, vec->size != 0, goto error);
544 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
547 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
548 for (i = 0; i < dim; ++i) {
549 k = isl_basic_set_alloc_equality(bset);
552 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
554 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
555 vec->size - 1, &bset->eq[k][0]);
556 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
559 bset = isl_basic_set_gauss(bset, NULL);
563 isl_basic_set_free(bset);
568 /* Given a tableau of a set and a tableau of the corresponding
569 * recession cone, detect and add all equalities to the tableau.
570 * If the tableau is bounded, then we can simply keep the
571 * tableau in its state after the return from extend_affine_hull.
572 * However, if the tableau is unbounded, then
573 * isl_tab_set_initial_basis_with_cone will add some additional
574 * constraints to the tableau that have to be removed again.
575 * In this case, we therefore rollback to the state before
576 * any constraints were added and then add the eqaulities back in.
578 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
579 struct isl_tab *tab_cone)
582 struct isl_vec *sample;
583 struct isl_basic_set *hull;
584 struct isl_tab_undo *snap;
586 if (!tab || !tab_cone)
589 snap = isl_tab_snap(tab);
591 isl_mat_free(tab->basis);
594 isl_assert(tab->mat->ctx, tab->bmap, goto error);
595 isl_assert(tab->mat->ctx, tab->samples, goto error);
596 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
597 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
599 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
602 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
606 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
608 isl_vec_free(tab->bmap->sample);
609 tab->bmap->sample = isl_vec_copy(sample);
611 if (tab->n_unbounded == 0)
612 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
614 hull = initial_hull(tab, isl_vec_copy(sample));
616 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
617 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
618 hull = affine_hull(hull,
619 isl_basic_set_from_vec(isl_vec_copy(sample)));
622 isl_vec_free(sample);
624 hull = extend_affine_hull(tab, hull);
628 if (tab->n_unbounded == 0) {
629 isl_basic_set_free(hull);
633 if (isl_tab_rollback(tab, snap) < 0)
636 if (hull->n_eq > tab->n_zero) {
637 for (j = 0; j < hull->n_eq; ++j) {
638 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
639 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
644 isl_basic_set_free(hull);
652 /* Compute the affine hull of "bset", where "cone" is the recession cone
655 * We first compute a unimodular transformation that puts the unbounded
656 * directions in the last dimensions. In particular, we take a transformation
657 * that maps all equalities to equalities (in HNF) on the first dimensions.
658 * Let x be the original dimensions and y the transformed, with y_1 bounded
661 * [ y_1 ] [ y_1 ] [ Q_1 ]
662 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
664 * Let's call the input basic set S. We compute S' = preimage(S, U)
665 * and drop the final dimensions including any constraints involving them.
666 * This results in set S''.
667 * Then we compute the affine hull A'' of S''.
668 * Let F y_1 >= g be the constraint system of A''. In the transformed
669 * space the y_2 are unbounded, so we can add them back without any constraints,
673 * [ F 0 ] [ y_2 ] >= g
676 * [ F 0 ] [ Q_2 ] x >= g
680 * The affine hull in the original space is then obtained as
681 * A = preimage(A'', Q_1).
683 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
684 struct isl_basic_set *cone)
688 struct isl_basic_set *hull;
689 struct isl_mat *M, *U, *Q;
694 total = isl_basic_set_total_dim(cone);
695 cone_dim = total - cone->n_eq;
697 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
698 M = isl_mat_left_hermite(M, 0, &U, &Q);
703 U = isl_mat_lin_to_aff(U);
704 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
706 bset = drop_constraints_involving(bset, total - cone_dim, cone_dim);
707 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
709 Q = isl_mat_lin_to_aff(Q);
710 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
712 if (bset && bset->sample && bset->sample->size == 1 + total)
713 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
715 hull = uset_affine_hull_bounded(bset);
720 struct isl_vec *sample = isl_vec_copy(hull->sample);
721 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
722 if (sample && sample->size > 0)
723 sample = isl_mat_vec_product(U, sample);
726 hull = isl_basic_set_preimage(hull, Q);
728 isl_vec_free(hull->sample);
729 hull->sample = sample;
731 isl_vec_free(sample);
734 isl_basic_set_free(cone);
738 isl_basic_set_free(bset);
739 isl_basic_set_free(cone);
743 /* Look for all equalities satisfied by the integer points in bset,
744 * which is assumed not to have any explicit equalities.
746 * The equalities are obtained by successively looking for
747 * a point that is affinely independent of the points found so far.
748 * In particular, for each equality satisfied by the points so far,
749 * we check if there is any point on a hyperplane parallel to the
750 * corresponding hyperplane shifted by at least one (in either direction).
752 * Before looking for any outside points, we first compute the recession
753 * cone. The directions of this recession cone will always be part
754 * of the affine hull, so there is no need for looking for any points
755 * in these directions.
756 * In particular, if the recession cone is full-dimensional, then
757 * the affine hull is simply the whole universe.
759 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
761 struct isl_basic_set *cone;
763 if (isl_basic_set_fast_is_empty(bset))
766 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
769 if (cone->n_eq == 0) {
770 struct isl_basic_set *hull;
771 isl_basic_set_free(cone);
772 hull = isl_basic_set_universe_like(bset);
773 isl_basic_set_free(bset);
777 if (cone->n_eq < isl_basic_set_total_dim(cone))
778 return affine_hull_with_cone(bset, cone);
780 isl_basic_set_free(cone);
781 return uset_affine_hull_bounded(bset);
783 isl_basic_set_free(bset);
787 /* Look for all equalities satisfied by the integer points in bmap
788 * that are independent of the equalities already explicitly available
791 * We first remove all equalities already explicitly available,
792 * then look for additional equalities in the reduced space
793 * and then transform the result to the original space.
794 * The original equalities are _not_ added to this set. This is
795 * the responsibility of the calling function.
796 * The resulting basic set has all meaning about the dimensions removed.
797 * In particular, dimensions that correspond to existential variables
798 * in bmap and that are found to be fixed are not removed.
800 static struct isl_basic_set *equalities_in_underlying_set(
801 struct isl_basic_map *bmap)
803 struct isl_mat *T1 = NULL;
804 struct isl_mat *T2 = NULL;
805 struct isl_basic_set *bset = NULL;
806 struct isl_basic_set *hull = NULL;
808 bset = isl_basic_map_underlying_set(bmap);
812 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
816 hull = uset_affine_hull(bset);
824 struct isl_vec *sample = isl_vec_copy(hull->sample);
825 if (sample && sample->size > 0)
826 sample = isl_mat_vec_product(T1, sample);
829 hull = isl_basic_set_preimage(hull, T2);
831 isl_vec_free(hull->sample);
832 hull->sample = sample;
834 isl_vec_free(sample);
840 isl_basic_set_free(bset);
841 isl_basic_set_free(hull);
845 /* Detect and make explicit all equalities satisfied by the (integer)
848 struct isl_basic_map *isl_basic_map_detect_equalities(
849 struct isl_basic_map *bmap)
852 struct isl_basic_set *hull = NULL;
856 if (bmap->n_ineq == 0)
858 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
860 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
862 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
863 return isl_basic_map_implicit_equalities(bmap);
865 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
868 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
869 isl_basic_set_free(hull);
870 return isl_basic_map_set_to_empty(bmap);
872 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0,
874 for (i = 0; i < hull->n_eq; ++i) {
875 j = isl_basic_map_alloc_equality(bmap);
878 isl_seq_cpy(bmap->eq[j], hull->eq[i],
879 1 + isl_basic_set_total_dim(hull));
881 isl_vec_free(bmap->sample);
882 bmap->sample = isl_vec_copy(hull->sample);
883 isl_basic_set_free(hull);
884 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
885 bmap = isl_basic_map_simplify(bmap);
886 return isl_basic_map_finalize(bmap);
888 isl_basic_set_free(hull);
889 isl_basic_map_free(bmap);
893 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
894 __isl_take isl_basic_set *bset)
896 return (isl_basic_set *)
897 isl_basic_map_detect_equalities((isl_basic_map *)bset);
900 struct isl_map *isl_map_detect_equalities(struct isl_map *map)
902 struct isl_basic_map *bmap;
908 for (i = 0; i < map->n; ++i) {
909 bmap = isl_basic_map_copy(map->p[i]);
910 bmap = isl_basic_map_detect_equalities(bmap);
913 isl_basic_map_free(map->p[i]);
923 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
925 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
928 /* After computing the rational affine hull (by detecting the implicit
929 * equalities), we compute the additional equalities satisfied by
930 * the integer points (if any) and add the original equalities back in.
932 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
934 bmap = isl_basic_map_detect_equalities(bmap);
935 bmap = isl_basic_map_cow(bmap);
937 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
941 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
943 return (struct isl_basic_set *)
944 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
947 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
950 struct isl_basic_map *model = NULL;
951 struct isl_basic_map *hull = NULL;
954 map = isl_map_detect_equalities(map);
955 map = isl_map_align_divs(map);
961 hull = isl_basic_map_empty_like_map(map);
966 model = isl_basic_map_copy(map->p[0]);
967 set = isl_map_underlying_set(map);
968 set = isl_set_cow(set);
972 for (i = 0; i < set->n; ++i) {
973 set->p[i] = isl_basic_set_cow(set->p[i]);
974 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
975 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
979 set = isl_set_remove_empty_parts(set);
981 hull = isl_basic_map_empty_like(model);
982 isl_basic_map_free(model);
984 struct isl_basic_set *bset;
986 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
990 bset = isl_basic_set_copy(set->p[0]);
991 hull = isl_basic_map_overlying_set(bset, model);
994 hull = isl_basic_map_simplify(hull);
995 return isl_basic_map_finalize(hull);
997 isl_basic_map_free(model);
1002 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1004 return (struct isl_basic_set *)
1005 isl_map_affine_hull((struct isl_map *)set);