2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
19 #include <isl_mat_private.h>
21 struct isl_basic_map *isl_basic_map_implicit_equalities(
22 struct isl_basic_map *bmap)
29 bmap = isl_basic_map_gauss(bmap, NULL);
30 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
32 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
34 if (bmap->n_ineq <= 1)
37 tab = isl_tab_from_basic_map(bmap);
38 if (isl_tab_detect_implicit_equalities(tab) < 0)
40 bmap = isl_basic_map_update_from_tab(bmap, tab);
42 bmap = isl_basic_map_gauss(bmap, NULL);
43 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
47 isl_basic_map_free(bmap);
51 struct isl_basic_set *isl_basic_set_implicit_equalities(
52 struct isl_basic_set *bset)
54 return (struct isl_basic_set *)
55 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
58 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
65 for (i = 0; i < map->n; ++i) {
66 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
77 /* Make eq[row][col] of both bmaps equal so we can add the row
78 * add the column to the common matrix.
79 * Note that because of the echelon form, the columns of row row
80 * after column col are zero.
82 static void set_common_multiple(
83 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
84 unsigned row, unsigned col)
88 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
93 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
94 isl_int_divexact(c, m, bset1->eq[row][col]);
95 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
96 isl_int_divexact(c, m, bset2->eq[row][col]);
97 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
102 /* Delete a given equality, moving all the following equalities one up.
104 static void delete_row(struct isl_basic_set *bset, unsigned row)
111 for (r = row; r < bset->n_eq; ++r)
112 bset->eq[r] = bset->eq[r+1];
113 bset->eq[bset->n_eq] = t;
116 /* Make first row entries in column col of bset1 identical to
117 * those of bset2, using the fact that entry bset1->eq[row][col]=a
118 * is non-zero. Initially, these elements of bset1 are all zero.
119 * For each row i < row, we set
120 * A[i] = a * A[i] + B[i][col] * A[row]
123 * A[i][col] = B[i][col] = a * old(B[i][col])
125 static void construct_column(
126 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
127 unsigned row, unsigned col)
136 total = 1 + isl_basic_set_n_dim(bset1);
137 for (r = 0; r < row; ++r) {
138 if (isl_int_is_zero(bset2->eq[r][col]))
140 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
141 isl_int_divexact(a, bset1->eq[row][col], b);
142 isl_int_divexact(b, bset2->eq[r][col], b);
143 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
144 b, bset1->eq[row], total);
145 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
149 delete_row(bset1, row);
152 /* Make first row entries in column col of bset1 identical to
153 * those of bset2, using only these entries of the two matrices.
154 * Let t be the last row with different entries.
155 * For each row i < t, we set
156 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
157 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
159 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
161 static int transform_column(
162 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
163 unsigned row, unsigned col)
169 for (t = row-1; t >= 0; --t)
170 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
175 total = 1 + isl_basic_set_n_dim(bset1);
179 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
180 for (i = 0; i < t; ++i) {
181 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
182 isl_int_gcd(g, a, b);
183 isl_int_divexact(a, a, g);
184 isl_int_divexact(g, b, g);
185 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
187 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
193 delete_row(bset1, t);
194 delete_row(bset2, t);
198 /* The implementation is based on Section 5.2 of Michael Karr,
199 * "Affine Relationships Among Variables of a Program",
200 * except that the echelon form we use starts from the last column
201 * and that we are dealing with integer coefficients.
203 static struct isl_basic_set *affine_hull(
204 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
210 if (!bset1 || !bset2)
213 total = 1 + isl_basic_set_n_dim(bset1);
216 for (col = total-1; col >= 0; --col) {
217 int is_zero1 = row >= bset1->n_eq ||
218 isl_int_is_zero(bset1->eq[row][col]);
219 int is_zero2 = row >= bset2->n_eq ||
220 isl_int_is_zero(bset2->eq[row][col]);
221 if (!is_zero1 && !is_zero2) {
222 set_common_multiple(bset1, bset2, row, col);
224 } else if (!is_zero1 && is_zero2) {
225 construct_column(bset1, bset2, row, col);
226 } else if (is_zero1 && !is_zero2) {
227 construct_column(bset2, bset1, row, col);
229 if (transform_column(bset1, bset2, row, col))
233 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
234 isl_basic_set_free(bset2);
235 bset1 = isl_basic_set_normalize_constraints(bset1);
238 isl_basic_set_free(bset1);
239 isl_basic_set_free(bset2);
243 /* Find an integer point in the set represented by "tab"
244 * that lies outside of the equality "eq" e(x) = 0.
245 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
246 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
247 * The point, if found, is returned.
248 * If no point can be found, a zero-length vector is returned.
250 * Before solving an ILP problem, we first check if simply
251 * adding the normal of the constraint to one of the known
252 * integer points in the basic set represented by "tab"
253 * yields another point inside the basic set.
255 * The caller of this function ensures that the tableau is bounded or
256 * that tab->basis and tab->n_unbounded have been set appropriately.
258 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
261 struct isl_vec *sample = NULL;
262 struct isl_tab_undo *snap;
270 sample = isl_vec_alloc(ctx, 1 + dim);
273 isl_int_set_si(sample->el[0], 1);
274 isl_seq_combine(sample->el + 1,
275 ctx->one, tab->bmap->sample->el + 1,
276 up ? ctx->one : ctx->negone, eq + 1, dim);
277 if (isl_basic_map_contains(tab->bmap, sample))
279 isl_vec_free(sample);
282 snap = isl_tab_snap(tab);
285 isl_seq_neg(eq, eq, 1 + dim);
286 isl_int_sub_ui(eq[0], eq[0], 1);
288 if (isl_tab_extend_cons(tab, 1) < 0)
290 if (isl_tab_add_ineq(tab, eq) < 0)
293 sample = isl_tab_sample(tab);
295 isl_int_add_ui(eq[0], eq[0], 1);
297 isl_seq_neg(eq, eq, 1 + dim);
299 if (sample && isl_tab_rollback(tab, snap) < 0)
304 isl_vec_free(sample);
308 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
312 bset = isl_basic_set_cow(bset);
315 isl_assert(bset->ctx, bset->n_div == 0, goto error);
317 for (i = 0; i < bset->n_eq; ++i)
318 isl_int_set_si(bset->eq[i][0], 0);
320 for (i = 0; i < bset->n_ineq; ++i)
321 isl_int_set_si(bset->ineq[i][0], 0);
323 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
324 return isl_basic_set_implicit_equalities(bset);
326 isl_basic_set_free(bset);
330 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
339 set = isl_set_remove_divs(set);
340 set = isl_set_cow(set);
344 for (i = 0; i < set->n; ++i) {
345 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
356 /* Extend an initial (under-)approximation of the affine hull of basic
357 * set represented by the tableau "tab"
358 * by looking for points that do not satisfy one of the equalities
359 * in the current approximation and adding them to that approximation
360 * until no such points can be found any more.
362 * The caller of this function ensures that "tab" is bounded or
363 * that tab->basis and tab->n_unbounded have been set appropriately.
365 static struct isl_basic_set *extend_affine_hull(struct isl_tab *tab,
366 struct isl_basic_set *hull)
376 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
379 for (i = 0; i < dim; ++i) {
380 struct isl_vec *sample;
381 struct isl_basic_set *point;
382 for (j = 0; j < hull->n_eq; ++j) {
383 sample = outside_point(tab, hull->eq[j], 1);
386 if (sample->size > 0)
388 isl_vec_free(sample);
389 sample = outside_point(tab, hull->eq[j], 0);
392 if (sample->size > 0)
394 isl_vec_free(sample);
396 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
402 tab = isl_tab_add_sample(tab, isl_vec_copy(sample));
405 point = isl_basic_set_from_vec(sample);
406 hull = affine_hull(hull, point);
413 isl_basic_set_free(hull);
417 /* Drop all constraints in bset that involve any of the dimensions
418 * first to first+n-1.
420 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving(
421 __isl_take isl_basic_set *bset, unsigned first, unsigned n)
428 bset = isl_basic_set_cow(bset);
433 for (i = bset->n_eq - 1; i >= 0; --i) {
434 if (isl_seq_first_non_zero(bset->eq[i] + 1 + first, n) == -1)
436 isl_basic_set_drop_equality(bset, i);
439 for (i = bset->n_ineq - 1; i >= 0; --i) {
440 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
442 isl_basic_set_drop_inequality(bset, i);
448 /* Look for all equalities satisfied by the integer points in bset,
449 * which is assumed to be bounded.
451 * The equalities are obtained by successively looking for
452 * a point that is affinely independent of the points found so far.
453 * In particular, for each equality satisfied by the points so far,
454 * we check if there is any point on a hyperplane parallel to the
455 * corresponding hyperplane shifted by at least one (in either direction).
457 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
459 struct isl_vec *sample = NULL;
460 struct isl_basic_set *hull;
461 struct isl_tab *tab = NULL;
464 if (isl_basic_set_fast_is_empty(bset))
467 dim = isl_basic_set_n_dim(bset);
469 if (bset->sample && bset->sample->size == 1 + dim) {
470 int contains = isl_basic_set_contains(bset, bset->sample);
476 sample = isl_vec_copy(bset->sample);
478 isl_vec_free(bset->sample);
483 tab = isl_tab_from_basic_set(bset);
488 isl_vec_free(sample);
489 return isl_basic_set_set_to_empty(bset);
491 if (isl_tab_track_bset(tab, isl_basic_set_copy(bset)) < 0)
495 struct isl_tab_undo *snap;
496 snap = isl_tab_snap(tab);
497 sample = isl_tab_sample(tab);
498 if (isl_tab_rollback(tab, snap) < 0)
500 isl_vec_free(tab->bmap->sample);
501 tab->bmap->sample = isl_vec_copy(sample);
506 if (sample->size == 0) {
508 isl_vec_free(sample);
509 return isl_basic_set_set_to_empty(bset);
512 hull = isl_basic_set_from_vec(sample);
514 isl_basic_set_free(bset);
515 hull = extend_affine_hull(tab, hull);
520 isl_vec_free(sample);
522 isl_basic_set_free(bset);
526 /* Given an unbounded tableau and an integer point satisfying the tableau,
527 * construct an intial affine hull containing the recession cone
528 * shifted to the given point.
530 * The unbounded directions are taken from the last rows of the basis,
531 * which is assumed to have been initialized appropriately.
533 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
534 __isl_take isl_vec *vec)
538 struct isl_basic_set *bset = NULL;
545 isl_assert(ctx, vec->size != 0, goto error);
547 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
550 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
551 for (i = 0; i < dim; ++i) {
552 k = isl_basic_set_alloc_equality(bset);
555 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
557 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
558 vec->size - 1, &bset->eq[k][0]);
559 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
562 bset = isl_basic_set_gauss(bset, NULL);
566 isl_basic_set_free(bset);
571 /* Given a tableau of a set and a tableau of the corresponding
572 * recession cone, detect and add all equalities to the tableau.
573 * If the tableau is bounded, then we can simply keep the
574 * tableau in its state after the return from extend_affine_hull.
575 * However, if the tableau is unbounded, then
576 * isl_tab_set_initial_basis_with_cone will add some additional
577 * constraints to the tableau that have to be removed again.
578 * In this case, we therefore rollback to the state before
579 * any constraints were added and then add the eqaulities back in.
581 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
582 struct isl_tab *tab_cone)
585 struct isl_vec *sample;
586 struct isl_basic_set *hull;
587 struct isl_tab_undo *snap;
589 if (!tab || !tab_cone)
592 snap = isl_tab_snap(tab);
594 isl_mat_free(tab->basis);
597 isl_assert(tab->mat->ctx, tab->bmap, goto error);
598 isl_assert(tab->mat->ctx, tab->samples, goto error);
599 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
600 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
602 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
605 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
609 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
611 isl_vec_free(tab->bmap->sample);
612 tab->bmap->sample = isl_vec_copy(sample);
614 if (tab->n_unbounded == 0)
615 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
617 hull = initial_hull(tab, isl_vec_copy(sample));
619 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
620 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
621 hull = affine_hull(hull,
622 isl_basic_set_from_vec(isl_vec_copy(sample)));
625 isl_vec_free(sample);
627 hull = extend_affine_hull(tab, hull);
631 if (tab->n_unbounded == 0) {
632 isl_basic_set_free(hull);
636 if (isl_tab_rollback(tab, snap) < 0)
639 if (hull->n_eq > tab->n_zero) {
640 for (j = 0; j < hull->n_eq; ++j) {
641 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
642 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
647 isl_basic_set_free(hull);
655 /* Compute the affine hull of "bset", where "cone" is the recession cone
658 * We first compute a unimodular transformation that puts the unbounded
659 * directions in the last dimensions. In particular, we take a transformation
660 * that maps all equalities to equalities (in HNF) on the first dimensions.
661 * Let x be the original dimensions and y the transformed, with y_1 bounded
664 * [ y_1 ] [ y_1 ] [ Q_1 ]
665 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
667 * Let's call the input basic set S. We compute S' = preimage(S, U)
668 * and drop the final dimensions including any constraints involving them.
669 * This results in set S''.
670 * Then we compute the affine hull A'' of S''.
671 * Let F y_1 >= g be the constraint system of A''. In the transformed
672 * space the y_2 are unbounded, so we can add them back without any constraints,
676 * [ F 0 ] [ y_2 ] >= g
679 * [ F 0 ] [ Q_2 ] x >= g
683 * The affine hull in the original space is then obtained as
684 * A = preimage(A'', Q_1).
686 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
687 struct isl_basic_set *cone)
691 struct isl_basic_set *hull;
692 struct isl_mat *M, *U, *Q;
697 total = isl_basic_set_total_dim(cone);
698 cone_dim = total - cone->n_eq;
700 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
701 M = isl_mat_left_hermite(M, 0, &U, &Q);
706 U = isl_mat_lin_to_aff(U);
707 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
709 bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
711 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
713 Q = isl_mat_lin_to_aff(Q);
714 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
716 if (bset && bset->sample && bset->sample->size == 1 + total)
717 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
719 hull = uset_affine_hull_bounded(bset);
724 struct isl_vec *sample = isl_vec_copy(hull->sample);
725 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
726 if (sample && sample->size > 0)
727 sample = isl_mat_vec_product(U, sample);
730 hull = isl_basic_set_preimage(hull, Q);
732 isl_vec_free(hull->sample);
733 hull->sample = sample;
735 isl_vec_free(sample);
738 isl_basic_set_free(cone);
742 isl_basic_set_free(bset);
743 isl_basic_set_free(cone);
747 /* Look for all equalities satisfied by the integer points in bset,
748 * which is assumed not to have any explicit equalities.
750 * The equalities are obtained by successively looking for
751 * a point that is affinely independent of the points found so far.
752 * In particular, for each equality satisfied by the points so far,
753 * we check if there is any point on a hyperplane parallel to the
754 * corresponding hyperplane shifted by at least one (in either direction).
756 * Before looking for any outside points, we first compute the recession
757 * cone. The directions of this recession cone will always be part
758 * of the affine hull, so there is no need for looking for any points
759 * in these directions.
760 * In particular, if the recession cone is full-dimensional, then
761 * the affine hull is simply the whole universe.
763 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
765 struct isl_basic_set *cone;
767 if (isl_basic_set_fast_is_empty(bset))
770 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
773 if (cone->n_eq == 0) {
774 struct isl_basic_set *hull;
775 isl_basic_set_free(cone);
776 hull = isl_basic_set_universe_like(bset);
777 isl_basic_set_free(bset);
781 if (cone->n_eq < isl_basic_set_total_dim(cone))
782 return affine_hull_with_cone(bset, cone);
784 isl_basic_set_free(cone);
785 return uset_affine_hull_bounded(bset);
787 isl_basic_set_free(bset);
791 /* Look for all equalities satisfied by the integer points in bmap
792 * that are independent of the equalities already explicitly available
795 * We first remove all equalities already explicitly available,
796 * then look for additional equalities in the reduced space
797 * and then transform the result to the original space.
798 * The original equalities are _not_ added to this set. This is
799 * the responsibility of the calling function.
800 * The resulting basic set has all meaning about the dimensions removed.
801 * In particular, dimensions that correspond to existential variables
802 * in bmap and that are found to be fixed are not removed.
804 static struct isl_basic_set *equalities_in_underlying_set(
805 struct isl_basic_map *bmap)
807 struct isl_mat *T1 = NULL;
808 struct isl_mat *T2 = NULL;
809 struct isl_basic_set *bset = NULL;
810 struct isl_basic_set *hull = NULL;
812 bset = isl_basic_map_underlying_set(bmap);
816 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
820 hull = uset_affine_hull(bset);
828 struct isl_vec *sample = isl_vec_copy(hull->sample);
829 if (sample && sample->size > 0)
830 sample = isl_mat_vec_product(T1, sample);
833 hull = isl_basic_set_preimage(hull, T2);
835 isl_vec_free(hull->sample);
836 hull->sample = sample;
838 isl_vec_free(sample);
844 isl_basic_set_free(bset);
845 isl_basic_set_free(hull);
849 /* Detect and make explicit all equalities satisfied by the (integer)
852 struct isl_basic_map *isl_basic_map_detect_equalities(
853 struct isl_basic_map *bmap)
856 struct isl_basic_set *hull = NULL;
860 if (bmap->n_ineq == 0)
862 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
864 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
866 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
867 return isl_basic_map_implicit_equalities(bmap);
869 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
872 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
873 isl_basic_set_free(hull);
874 return isl_basic_map_set_to_empty(bmap);
876 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0,
878 for (i = 0; i < hull->n_eq; ++i) {
879 j = isl_basic_map_alloc_equality(bmap);
882 isl_seq_cpy(bmap->eq[j], hull->eq[i],
883 1 + isl_basic_set_total_dim(hull));
885 isl_vec_free(bmap->sample);
886 bmap->sample = isl_vec_copy(hull->sample);
887 isl_basic_set_free(hull);
888 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
889 bmap = isl_basic_map_simplify(bmap);
890 return isl_basic_map_finalize(bmap);
892 isl_basic_set_free(hull);
893 isl_basic_map_free(bmap);
897 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
898 __isl_take isl_basic_set *bset)
900 return (isl_basic_set *)
901 isl_basic_map_detect_equalities((isl_basic_map *)bset);
904 struct isl_map *isl_map_detect_equalities(struct isl_map *map)
906 struct isl_basic_map *bmap;
912 for (i = 0; i < map->n; ++i) {
913 bmap = isl_basic_map_copy(map->p[i]);
914 bmap = isl_basic_map_detect_equalities(bmap);
917 isl_basic_map_free(map->p[i]);
927 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
929 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
932 /* After computing the rational affine hull (by detecting the implicit
933 * equalities), we compute the additional equalities satisfied by
934 * the integer points (if any) and add the original equalities back in.
936 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
938 bmap = isl_basic_map_detect_equalities(bmap);
939 bmap = isl_basic_map_cow(bmap);
941 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
945 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
947 return (struct isl_basic_set *)
948 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
951 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
954 struct isl_basic_map *model = NULL;
955 struct isl_basic_map *hull = NULL;
958 map = isl_map_detect_equalities(map);
959 map = isl_map_align_divs(map);
965 hull = isl_basic_map_empty_like_map(map);
970 model = isl_basic_map_copy(map->p[0]);
971 set = isl_map_underlying_set(map);
972 set = isl_set_cow(set);
976 for (i = 0; i < set->n; ++i) {
977 set->p[i] = isl_basic_set_cow(set->p[i]);
978 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
979 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
983 set = isl_set_remove_empty_parts(set);
985 hull = isl_basic_map_empty_like(model);
986 isl_basic_map_free(model);
988 struct isl_basic_set *bset;
990 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
994 bset = isl_basic_set_copy(set->p[0]);
995 hull = isl_basic_map_overlying_set(bset, model);
998 hull = isl_basic_map_simplify(hull);
999 return isl_basic_map_finalize(hull);
1001 isl_basic_map_free(model);
1006 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1008 return (struct isl_basic_set *)
1009 isl_map_affine_hull((struct isl_map *)set);