2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
20 struct isl_basic_map *isl_basic_map_implicit_equalities(
21 struct isl_basic_map *bmap)
28 bmap = isl_basic_map_gauss(bmap, NULL);
29 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
31 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
33 if (bmap->n_ineq <= 1)
36 tab = isl_tab_from_basic_map(bmap);
37 tab = isl_tab_detect_implicit_equalities(tab);
38 bmap = isl_basic_map_update_from_tab(bmap, tab);
40 bmap = isl_basic_map_gauss(bmap, NULL);
41 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
45 struct isl_basic_set *isl_basic_set_implicit_equalities(
46 struct isl_basic_set *bset)
48 return (struct isl_basic_set *)
49 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
52 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
59 for (i = 0; i < map->n; ++i) {
60 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
71 /* Make eq[row][col] of both bmaps equal so we can add the row
72 * add the column to the common matrix.
73 * Note that because of the echelon form, the columns of row row
74 * after column col are zero.
76 static void set_common_multiple(
77 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
78 unsigned row, unsigned col)
82 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
87 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
88 isl_int_divexact(c, m, bset1->eq[row][col]);
89 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
90 isl_int_divexact(c, m, bset2->eq[row][col]);
91 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
96 /* Delete a given equality, moving all the following equalities one up.
98 static void delete_row(struct isl_basic_set *bset, unsigned row)
105 for (r = row; r < bset->n_eq; ++r)
106 bset->eq[r] = bset->eq[r+1];
107 bset->eq[bset->n_eq] = t;
110 /* Make first row entries in column col of bset1 identical to
111 * those of bset2, using the fact that entry bset1->eq[row][col]=a
112 * is non-zero. Initially, these elements of bset1 are all zero.
113 * For each row i < row, we set
114 * A[i] = a * A[i] + B[i][col] * A[row]
117 * A[i][col] = B[i][col] = a * old(B[i][col])
119 static void construct_column(
120 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
121 unsigned row, unsigned col)
130 total = 1 + isl_basic_set_n_dim(bset1);
131 for (r = 0; r < row; ++r) {
132 if (isl_int_is_zero(bset2->eq[r][col]))
134 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
135 isl_int_divexact(a, bset1->eq[row][col], b);
136 isl_int_divexact(b, bset2->eq[r][col], b);
137 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
138 b, bset1->eq[row], total);
139 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
143 delete_row(bset1, row);
146 /* Make first row entries in column col of bset1 identical to
147 * those of bset2, using only these entries of the two matrices.
148 * Let t be the last row with different entries.
149 * For each row i < t, we set
150 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
151 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
153 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
155 static int transform_column(
156 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
157 unsigned row, unsigned col)
163 for (t = row-1; t >= 0; --t)
164 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
169 total = 1 + isl_basic_set_n_dim(bset1);
173 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
174 for (i = 0; i < t; ++i) {
175 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
176 isl_int_gcd(g, a, b);
177 isl_int_divexact(a, a, g);
178 isl_int_divexact(g, b, g);
179 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
181 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
187 delete_row(bset1, t);
188 delete_row(bset2, t);
192 /* The implementation is based on Section 5.2 of Michael Karr,
193 * "Affine Relationships Among Variables of a Program",
194 * except that the echelon form we use starts from the last column
195 * and that we are dealing with integer coefficients.
197 static struct isl_basic_set *affine_hull(
198 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
204 total = 1 + isl_basic_set_n_dim(bset1);
207 for (col = total-1; col >= 0; --col) {
208 int is_zero1 = row >= bset1->n_eq ||
209 isl_int_is_zero(bset1->eq[row][col]);
210 int is_zero2 = row >= bset2->n_eq ||
211 isl_int_is_zero(bset2->eq[row][col]);
212 if (!is_zero1 && !is_zero2) {
213 set_common_multiple(bset1, bset2, row, col);
215 } else if (!is_zero1 && is_zero2) {
216 construct_column(bset1, bset2, row, col);
217 } else if (is_zero1 && !is_zero2) {
218 construct_column(bset2, bset1, row, col);
220 if (transform_column(bset1, bset2, row, col))
224 isl_basic_set_free(bset2);
225 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
226 bset1 = isl_basic_set_normalize_constraints(bset1);
229 isl_basic_set_free(bset1);
233 /* Find an integer point in the set represented by "tab"
234 * that lies outside of the equality "eq" e(x) = 0.
235 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
236 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
237 * The point, if found, is returned.
238 * If no point can be found, a zero-length vector is returned.
240 * Before solving an ILP problem, we first check if simply
241 * adding the normal of the constraint to one of the known
242 * integer points in the basic set represented by "tab"
243 * yields another point inside the basic set.
245 * The caller of this function ensures that the tableau is bounded or
246 * that tab->basis and tab->n_unbounded have been set appropriately.
248 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
251 struct isl_vec *sample = NULL;
252 struct isl_tab_undo *snap;
260 sample = isl_vec_alloc(ctx, 1 + dim);
263 isl_int_set_si(sample->el[0], 1);
264 isl_seq_combine(sample->el + 1,
265 ctx->one, tab->bmap->sample->el + 1,
266 up ? ctx->one : ctx->negone, eq + 1, dim);
267 if (isl_basic_map_contains(tab->bmap, sample))
269 isl_vec_free(sample);
272 snap = isl_tab_snap(tab);
275 isl_seq_neg(eq, eq, 1 + dim);
276 isl_int_sub_ui(eq[0], eq[0], 1);
278 if (isl_tab_extend_cons(tab, 1) < 0)
280 if (isl_tab_add_ineq(tab, eq) < 0)
283 sample = isl_tab_sample(tab);
285 isl_int_add_ui(eq[0], eq[0], 1);
287 isl_seq_neg(eq, eq, 1 + dim);
289 if (isl_tab_rollback(tab, snap) < 0)
294 isl_vec_free(sample);
298 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
302 bset = isl_basic_set_cow(bset);
305 isl_assert(bset->ctx, bset->n_div == 0, goto error);
307 for (i = 0; i < bset->n_eq; ++i)
308 isl_int_set_si(bset->eq[i][0], 0);
310 for (i = 0; i < bset->n_ineq; ++i)
311 isl_int_set_si(bset->ineq[i][0], 0);
313 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
314 return isl_basic_set_implicit_equalities(bset);
316 isl_basic_set_free(bset);
320 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
329 set = isl_set_remove_divs(set);
330 set = isl_set_cow(set);
334 for (i = 0; i < set->n; ++i) {
335 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
346 /* Extend an initial (under-)approximation of the affine hull of basic
347 * set represented by the tableau "tab"
348 * by looking for points that do not satisfy one of the equalities
349 * in the current approximation and adding them to that approximation
350 * until no such points can be found any more.
352 * The caller of this function ensures that "tab" is bounded or
353 * that tab->basis and tab->n_unbounded have been set appropriately.
355 static struct isl_basic_set *extend_affine_hull(struct isl_tab *tab,
356 struct isl_basic_set *hull)
366 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
369 for (i = 0; i < dim; ++i) {
370 struct isl_vec *sample;
371 struct isl_basic_set *point;
372 for (j = 0; j < hull->n_eq; ++j) {
373 sample = outside_point(tab, hull->eq[j], 1);
376 if (sample->size > 0)
378 isl_vec_free(sample);
379 sample = outside_point(tab, hull->eq[j], 0);
382 if (sample->size > 0)
384 isl_vec_free(sample);
386 tab = isl_tab_add_eq(tab, hull->eq[j]);
393 tab = isl_tab_add_sample(tab, isl_vec_copy(sample));
396 point = isl_basic_set_from_vec(sample);
397 hull = affine_hull(hull, point);
402 isl_basic_set_free(hull);
406 /* Drop all constraints in bset that involve any of the dimensions
407 * first to first+n-1.
409 static struct isl_basic_set *drop_constraints_involving
410 (struct isl_basic_set *bset, unsigned first, unsigned n)
417 bset = isl_basic_set_cow(bset);
419 for (i = bset->n_eq - 1; i >= 0; --i) {
420 if (isl_seq_first_non_zero(bset->eq[i] + 1 + first, n) == -1)
422 isl_basic_set_drop_equality(bset, i);
425 for (i = bset->n_ineq - 1; i >= 0; --i) {
426 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
428 isl_basic_set_drop_inequality(bset, i);
434 /* Look for all equalities satisfied by the integer points in bset,
435 * which is assumed to be bounded.
437 * The equalities are obtained by successively looking for
438 * a point that is affinely independent of the points found so far.
439 * In particular, for each equality satisfied by the points so far,
440 * we check if there is any point on a hyperplane parallel to the
441 * corresponding hyperplane shifted by at least one (in either direction).
443 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
445 struct isl_vec *sample = NULL;
446 struct isl_basic_set *hull;
447 struct isl_tab *tab = NULL;
450 if (isl_basic_set_fast_is_empty(bset))
453 dim = isl_basic_set_n_dim(bset);
455 if (bset->sample && bset->sample->size == 1 + dim) {
456 int contains = isl_basic_set_contains(bset, bset->sample);
462 sample = isl_vec_copy(bset->sample);
464 isl_vec_free(bset->sample);
469 tab = isl_tab_from_basic_set(bset);
474 isl_vec_free(sample);
475 return isl_basic_set_set_to_empty(bset);
477 if (isl_tab_track_bset(tab, isl_basic_set_copy(bset)) < 0)
481 struct isl_tab_undo *snap;
482 snap = isl_tab_snap(tab);
483 sample = isl_tab_sample(tab);
484 if (isl_tab_rollback(tab, snap) < 0)
486 isl_vec_free(tab->bmap->sample);
487 tab->bmap->sample = isl_vec_copy(sample);
492 if (sample->size == 0) {
494 isl_vec_free(sample);
495 return isl_basic_set_set_to_empty(bset);
498 hull = isl_basic_set_from_vec(sample);
500 isl_basic_set_free(bset);
501 hull = extend_affine_hull(tab, hull);
506 isl_vec_free(sample);
508 isl_basic_set_free(bset);
512 /* Given an unbounded tableau and an integer point satisfying the tableau,
513 * construct an intial affine hull containing the recession cone
514 * shifted to the given point.
516 * The unbounded directions are taken from the last rows of the basis,
517 * which is assumed to have been initialized appropriately.
519 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
520 __isl_take isl_vec *vec)
524 struct isl_basic_set *bset = NULL;
531 isl_assert(ctx, vec->size != 0, goto error);
533 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
536 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
537 for (i = 0; i < dim; ++i) {
538 k = isl_basic_set_alloc_equality(bset);
541 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
543 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
544 vec->size - 1, &bset->eq[k][0]);
545 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
548 bset = isl_basic_set_gauss(bset, NULL);
552 isl_basic_set_free(bset);
557 /* Given a tableau of a set and a tableau of the corresponding
558 * recession cone, detect and add all equalities to the tableau.
559 * If the tableau is bounded, then we can simply keep the
560 * tableau in its state after the return from extend_affine_hull.
561 * However, if the tableau is unbounded, then
562 * isl_tab_set_initial_basis_with_cone will add some additional
563 * constraints to the tableau that have to be removed again.
564 * In this case, we therefore rollback to the state before
565 * any constraints were added and then add the eqaulities back in.
567 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
568 struct isl_tab *tab_cone)
571 struct isl_vec *sample;
572 struct isl_basic_set *hull;
573 struct isl_tab_undo *snap;
575 if (!tab || !tab_cone)
578 snap = isl_tab_snap(tab);
580 isl_mat_free(tab->basis);
583 isl_assert(tab->mat->ctx, tab->bmap, goto error);
584 isl_assert(tab->mat->ctx, tab->samples, goto error);
585 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
586 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
588 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
591 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
595 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
597 isl_vec_free(tab->bmap->sample);
598 tab->bmap->sample = isl_vec_copy(sample);
600 if (tab->n_unbounded == 0)
601 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
603 hull = initial_hull(tab, isl_vec_copy(sample));
605 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
606 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
607 hull = affine_hull(hull,
608 isl_basic_set_from_vec(isl_vec_copy(sample)));
611 isl_vec_free(sample);
613 hull = extend_affine_hull(tab, hull);
617 if (tab->n_unbounded == 0) {
618 isl_basic_set_free(hull);
622 if (isl_tab_rollback(tab, snap) < 0)
625 if (hull->n_eq > tab->n_zero) {
626 for (j = 0; j < hull->n_eq; ++j) {
627 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
628 tab = isl_tab_add_eq(tab, hull->eq[j]);
632 isl_basic_set_free(hull);
640 /* Compute the affine hull of "bset", where "cone" is the recession cone
643 * We first compute a unimodular transformation that puts the unbounded
644 * directions in the last dimensions. In particular, we take a transformation
645 * that maps all equalities to equalities (in HNF) on the first dimensions.
646 * Let x be the original dimensions and y the transformed, with y_1 bounded
649 * [ y_1 ] [ y_1 ] [ Q_1 ]
650 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
652 * Let's call the input basic set S. We compute S' = preimage(S, U)
653 * and drop the final dimensions including any constraints involving them.
654 * This results in set S''.
655 * Then we compute the affine hull A'' of S''.
656 * Let F y_1 >= g be the constraint system of A''. In the transformed
657 * space the y_2 are unbounded, so we can add them back without any constraints,
661 * [ F 0 ] [ y_2 ] >= g
664 * [ F 0 ] [ Q_2 ] x >= g
668 * The affine hull in the original space is then obtained as
669 * A = preimage(A'', Q_1).
671 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
672 struct isl_basic_set *cone)
676 struct isl_basic_set *hull;
677 struct isl_mat *M, *U, *Q;
682 total = isl_basic_set_total_dim(cone);
683 cone_dim = total - cone->n_eq;
685 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
686 M = isl_mat_left_hermite(M, 0, &U, &Q);
691 U = isl_mat_lin_to_aff(U);
692 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
694 bset = drop_constraints_involving(bset, total - cone_dim, cone_dim);
695 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
697 Q = isl_mat_lin_to_aff(Q);
698 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
700 if (bset && bset->sample && bset->sample->size == 1 + total)
701 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
703 hull = uset_affine_hull_bounded(bset);
708 struct isl_vec *sample = isl_vec_copy(hull->sample);
709 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
710 if (sample && sample->size > 0)
711 sample = isl_mat_vec_product(U, sample);
714 hull = isl_basic_set_preimage(hull, Q);
715 isl_vec_free(hull->sample);
716 hull->sample = sample;
719 isl_basic_set_free(cone);
723 isl_basic_set_free(bset);
724 isl_basic_set_free(cone);
728 /* Look for all equalities satisfied by the integer points in bset,
729 * which is assumed not to have any explicit equalities.
731 * The equalities are obtained by successively looking for
732 * a point that is affinely independent of the points found so far.
733 * In particular, for each equality satisfied by the points so far,
734 * we check if there is any point on a hyperplane parallel to the
735 * corresponding hyperplane shifted by at least one (in either direction).
737 * Before looking for any outside points, we first compute the recession
738 * cone. The directions of this recession cone will always be part
739 * of the affine hull, so there is no need for looking for any points
740 * in these directions.
741 * In particular, if the recession cone is full-dimensional, then
742 * the affine hull is simply the whole universe.
744 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
746 struct isl_basic_set *cone;
748 if (isl_basic_set_fast_is_empty(bset))
751 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
754 if (cone->n_eq == 0) {
755 struct isl_basic_set *hull;
756 isl_basic_set_free(cone);
757 hull = isl_basic_set_universe_like(bset);
758 isl_basic_set_free(bset);
762 if (cone->n_eq < isl_basic_set_total_dim(cone))
763 return affine_hull_with_cone(bset, cone);
765 isl_basic_set_free(cone);
766 return uset_affine_hull_bounded(bset);
768 isl_basic_set_free(bset);
772 /* Look for all equalities satisfied by the integer points in bmap
773 * that are independent of the equalities already explicitly available
776 * We first remove all equalities already explicitly available,
777 * then look for additional equalities in the reduced space
778 * and then transform the result to the original space.
779 * The original equalities are _not_ added to this set. This is
780 * the responsibility of the calling function.
781 * The resulting basic set has all meaning about the dimensions removed.
782 * In particular, dimensions that correspond to existential variables
783 * in bmap and that are found to be fixed are not removed.
785 static struct isl_basic_set *equalities_in_underlying_set(
786 struct isl_basic_map *bmap)
788 struct isl_mat *T1 = NULL;
789 struct isl_mat *T2 = NULL;
790 struct isl_basic_set *bset = NULL;
791 struct isl_basic_set *hull = NULL;
793 bset = isl_basic_map_underlying_set(bmap);
797 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
801 hull = uset_affine_hull(bset);
808 struct isl_vec *sample = isl_vec_copy(hull->sample);
809 if (sample && sample->size > 0)
810 sample = isl_mat_vec_product(T1, sample);
813 hull = isl_basic_set_preimage(hull, T2);
814 isl_vec_free(hull->sample);
815 hull->sample = sample;
821 isl_basic_set_free(bset);
822 isl_basic_set_free(hull);
826 /* Detect and make explicit all equalities satisfied by the (integer)
829 struct isl_basic_map *isl_basic_map_detect_equalities(
830 struct isl_basic_map *bmap)
833 struct isl_basic_set *hull = NULL;
837 if (bmap->n_ineq == 0)
839 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
841 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
843 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
844 return isl_basic_map_implicit_equalities(bmap);
846 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
849 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
850 isl_basic_set_free(hull);
851 return isl_basic_map_set_to_empty(bmap);
853 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0,
855 for (i = 0; i < hull->n_eq; ++i) {
856 j = isl_basic_map_alloc_equality(bmap);
859 isl_seq_cpy(bmap->eq[j], hull->eq[i],
860 1 + isl_basic_set_total_dim(hull));
862 isl_vec_free(bmap->sample);
863 bmap->sample = isl_vec_copy(hull->sample);
864 isl_basic_set_free(hull);
865 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
866 bmap = isl_basic_map_simplify(bmap);
867 return isl_basic_map_finalize(bmap);
869 isl_basic_set_free(hull);
870 isl_basic_map_free(bmap);
874 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
875 __isl_take isl_basic_set *bset)
877 return (isl_basic_set *)
878 isl_basic_map_detect_equalities((isl_basic_map *)bset);
881 struct isl_map *isl_map_detect_equalities(struct isl_map *map)
883 struct isl_basic_map *bmap;
889 for (i = 0; i < map->n; ++i) {
890 bmap = isl_basic_map_copy(map->p[i]);
891 bmap = isl_basic_map_detect_equalities(bmap);
894 isl_basic_map_free(map->p[i]);
904 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
906 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
909 /* After computing the rational affine hull (by detecting the implicit
910 * equalities), we compute the additional equalities satisfied by
911 * the integer points (if any) and add the original equalities back in.
913 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
915 bmap = isl_basic_map_detect_equalities(bmap);
916 bmap = isl_basic_map_cow(bmap);
917 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
921 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
923 return (struct isl_basic_set *)
924 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
927 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
930 struct isl_basic_map *model = NULL;
931 struct isl_basic_map *hull = NULL;
934 map = isl_map_detect_equalities(map);
935 map = isl_map_align_divs(map);
941 hull = isl_basic_map_empty_like_map(map);
946 model = isl_basic_map_copy(map->p[0]);
947 set = isl_map_underlying_set(map);
948 set = isl_set_cow(set);
952 for (i = 0; i < set->n; ++i) {
953 set->p[i] = isl_basic_set_cow(set->p[i]);
954 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
955 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
959 set = isl_set_remove_empty_parts(set);
961 hull = isl_basic_map_empty_like(model);
962 isl_basic_map_free(model);
964 struct isl_basic_set *bset;
966 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
970 bset = isl_basic_set_copy(set->p[0]);
971 hull = isl_basic_map_overlying_set(bset, model);
974 hull = isl_basic_map_simplify(hull);
975 return isl_basic_map_finalize(hull);
977 isl_basic_map_free(model);
982 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
984 return (struct isl_basic_set *)
985 isl_map_affine_hull((struct isl_map *)set);